首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brassinosteroid (BR), an endogenous steroid growth regulator of higher plants, enhances expansion and division of the cell in a number of plant species. It has been recently reported that a shared auxin–BR signalling pathway is involved in the seedling growth in Arabidopsis . Here, we show that BR specifically enhanced the expression of AtACS4 , which encodes an auxin-responsive ACC synthase 4, by a distinct temporal induction mechanism compared with that of IAA in etiolated Arabidopsis seedlings. This BR induction of AtACS4 was undetectable in the light-grown seedlings. In addition, BR failed to activate the AtACS4 gene in auxin-resistant1 ( axr1-3 ) and auxin-resistant2 ( axr2-1 ), both of which are auxin-resistant mutants. Thus, it appears that there is a possible regulatory link between light, auxin and BR to control ethylene synthesis in Arabidopsis young seedlings. Analysis of transgenic Arabidopsis plants harbouring AtACS4::GUS fusion revealed the AtACS4 promoter-driven GUS activity in the highly elongating zone of the hypocotyls in response to BR treatment. Furthermore, Arabidopsis plants homozygous for the T-DNA insertion in the AtACS4 gene exhibited longer hypocotyls and roots than those of control seedlings. Taken together, these results suggest that the BR-induced ethylene production may participate in the elongation growth response in early seedling development of Arabidopsis .  相似文献   

2.
3.
A semi-dominant mutant suppressor of hy2 (shy2-1D) of Arabidopsis thaliana, originally isolated as a photomorphogenesis mutant, shows altered auxin responses. Recent molecular cloning revealed that the SHY2 gene is identical to the IAA3 gene, a member of the primary auxin-response genes designated the Aux/IAA gene family. Because Aux/IAA proteins are reported to interact with auxin response factors, we investigated the pattern of expression of early auxin genes in the iaa3/shy2-1D mutant. RNA hybridization analysis showed that levels of mRNA accumulation of the early genes were reduced dramatically in the iaa3/shy2-1D mutants, although auxin still enhanced gene expression in the iaa3/shy2-1D mutant. Histochemical analysis using a fusion gene of the auxin responsive domain (AuxRD) and the GUS gene showed no IAA-inducible GUS expression in the root elongation zone of the iaa3/shy2-1D mutant. On the other hand, ectopic GUS expression occurred in the hypocotyl, cotyledon, petiole and root vascular tissues in the absence of auxin. These results suggest that IAA3/SHY2 functions both negatively and positively on early auxin gene expression.  相似文献   

4.
The plant hormones auxin and ethylene have been shown to play important roles during root hair development. However, cross talk between auxin and ethylene makes it difficult to understand the independent role of either hormone. To dissect their respective roles, we examined the effects of two compounds, chromosaponin I (CSI) and 1-naphthoxyacetic acid (1-NOA), on the root hair developmental process in wild-type Arabidopsis, ethylene-insensitive mutant ein2-1, and auxin influx mutants aux1-7, aux1-22, and double mutant aux1-7 ein2. Beta-glucuronidase (GUS) expression analysis in the BA-GUS transgenic line, consisting of auxin-responsive domains of PS-IAA4/5 promoter and GUS reporter, revealed that 1-NOA and CSI act as auxin uptake inhibitors in Arabidopsis roots. The frequency of root hairs in ein2-1 roots was greatly reduced in the presence of CSI or 1-NOA, suggesting that endogenous auxin plays a critical role for the root hair initiation in the absence of an ethylene response. All of these mutants showed a reduction in root hair length, however, the root hair length could be restored with a variable concentration of 1-naphthaleneacetic acid (NAA). NAA (10 nM) restored the root hair length of aux1 mutants to wild-type level, whereas 100 nM NAA was needed for ein2-1 and aux1-7 ein2 mutants. Our results suggest that insensitivity in ethylene response affects the auxin-driven root hair elongation. CSI exhibited a similar effect to 1-NOA, reducing root hair growth and the number of root hair-bearing cells in wild-type and ein2-1 roots, while stimulating these traits in aux1-7and aux1-7ein2 roots, confirming that CSI is a unique modulator of AUX1.  相似文献   

5.
Rock CD  Sun X 《Planta》2005,222(1):98-106
Studies of abscisic acid (ABA) and auxin have revealed that these pathways impinge on each other. The Daucus carota (L.) Dc3 promoter: uidA (-glucuronidase: GUS) chimaeric reporter (ProDc3:GUS) is induced by ABA, osmoticum, and the auxin indole-3-acetic acid (IAA) in vegetative tissues of transgenic Arabidopsis thaliana (L.) Heynh. Here, we describe the root tissue-specific expression of ProDc3:GUS in the ABA-insensitive-2 (abi2-1), auxin-insensitive-1 (aux1), auxin-resistant-4 (axr4), and rooty (rty1) mutants of Arabidopsis in response to ABA, IAA and synthetic auxins naphthalene acetic acid (NAA), and 2, 4-(dichlorophenoxy) acetic acid. Quantitative analysis of ProDc3:GUS expression showed that the abi2-1 mutant had reduced GUS activity in response to ABA, IAA, or 2, 4-d, but not to NAA. Similarly, chromogenic staining of ProDc3:GUS activity showed that the aux1 and axr4 mutants gave predictable hypomorphic ProDc3:GUS expression phenotypes in roots treated with IAA or 2, 4-d, but not the diffusible auxin NAA. Likewise the rty mutant, which accumulates auxin, showed elevated ProDc3:GUS expression in the absence or presence of hormones relative to wild type. Interestingly, the aux1 and axr4 mutants showed a hypomorphic effect on ABA-inducible ProDc3:GUS expression, demonstrating that ABA and IAA signaling pathways interact in roots. Possible mechanisms of crosstalk between ABA and auxin signaling are discussed.  相似文献   

6.
In comparison to wild type Arabidopsis thaliana, the auxin resistant mutants axr1 and axr2 exhibit reduced inhibition of root elongation in response to auxins. Several auxin-regulated physiological processes are also altered in the mutant plants. When wild-type, axr1 and axr2 seedlings were grown in darkness on media containing indoleacetic acid (IAA), promotion of root growth was observed at low concentrations of IAA (10?11 to 10?7M) in 5-day-old axr2 seedlings, but not in axr1 or wild-type seedlings. In axr1 there was little or no measurable root growth response over the same concentration range. In wild type, root growth was inhibited at concentrations greater than 10?10M and no detectable root growth response was observed at lower concentrations. In addition, production of lateral roots in response to IAA increased in axr2 seedlings and decreased in axr1 seedlings relative to wild type. Promotion of root elongation and initiation of lateral roots in axr2 seedlings in response to auxin indicate that axr2 seedlings are able to perceive and respond to IAA.  相似文献   

7.
Arabidopsis , aux1-7, axr1-3 and axr2-1, grown in a natural sandy soil, without sucrose supplementation. The three mutants showed impaired epidermal cell elongation in the hypocotyls of 15-day-old seedlings, with axr2-1 showing the most marked effects. In addition, the roots of axr2-1 elongated faster and presented a more extended meristematic zone than the other genotypes. Unchanged epidermal cell length in the differentiation zone of axr2-1 relative to the wild-type suggested enhancement of cell proliferation. These alterations may have affected the timing and site of emergence of the root hairs, starting later and further from the root tip than in the other genotypes. Similarly to the wild-type, no root hair growth was initiated in axr2-1 drought-induced short roots, although the epidermis was differentiated into trichoblasts and atrichoblasts. On rehydration of the short roots, hair formation occurred from trichoblasts prior to epidermal cell elongation. Therefore, auxin-insensitivity in the axr2-1 mutant did not result in alterations of the hair-forming process itself. The differential development of axr2-1 seedlings, relative to the other auxin-insensitive mutants, suggested that the AXR2 gene has a complex, regulatory function in multiple hormone signaling. Received 26 July 2000/ Accepted in revised form 28 February 2001  相似文献   

8.
Plant shoots do not respond when they are reoriented relative to gravity at 4 degrees C. However, when returned to vertical at room temperature, these organs bend in response to the previous cold gravistimulation. The inflorescence stem of the Arabidopsis thaliana gravity persistent signal (gps) mutants respond abnormally after the cold gravistimulation: gps1 does not bend when returned to room temperature, gps2 bends the wrong way and gps3 over-responds, curving past the predicted angle. In wild type and the mutants, basipetal auxin transport in the inflorescence stem was abolished at 4 degrees C but restored when plants were returned to room temperature. In gps1, auxin transport was increased; in both gps2 and gps3, no significant difference was found when compared to wild type. Expression of the auxin-inducible P(IAA2)::GUS reporter gene, indicated that auxin-induced gene expression was redistributed to the lower side of the inflorescence stem in wild type after gravistimulation at 4 degrees C. In gps1, no asymmetries in P(IAA2)::GUS expression were seen. In gps2, P(IAA2)::GUS expression was localized to the upper side of the stem and in gps3, asymmetric P(IAA2):GUS expression was extended throughout the elongation zone of the inflorescence stem. These results are consistent with altered lateral Indole-3-acetic-acid (IAA) gradients being responsible for the phenotype of each mutant.  相似文献   

9.
10.
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elongation of agravitropic mutant aux1-7 roots toward the gravity. The CSI-induced restoration of gravitropic response in aux1-7 roots was not observed in other agravitropic mutants, axr2 and eir1-1. Because the aux1-7 mutant is reduced in sensitivity to auxin and ethylene, we examined the effects of CSI on another auxin-resistant mutant, axr1-3, and ethylene-insensitive mutant ein2-1. In aux1-7 roots, CSI stimulated the uptake of [(3)H]indole-3-acetic acid (IAA) and induced gravitropic bending. In contrast, in wild-type, axr1-3, and ein2-1 roots, CSI slowed down the rates of gravitropic bending and inhibited IAA uptake. In the null allele of aux1, aux1-22, the agravitropic nature of the roots and IAA uptake were not affected by CSI. This close correlation between auxin uptake and gravitropic bending suggests that CSI may regulate gravitropic response by inhibiting or stimulating the uptake of endogenous auxin in root cells. CSI exhibits selective influence toward IAA versus 1-naphthaleneacetic acid as to auxin-induced inhibition in root growth and auxin uptake. The selective action of CSI toward IAA along with the complete insensitivity of the null mutant aux1-22 toward CSI strongly suggest that CSI specifically interacts with AUX1 protein.  相似文献   

11.
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.  相似文献   

12.
13.
AXR2 encodes a member of the Aux/IAA protein family   总被引:27,自引:0,他引:27  
The dominant gain-of-function axr2-1 mutation of Arabidopsis causes agravitropic root and shoot growth, a short hypocotyl and stem, and auxin-resistant root growth. We have cloned the AXR2 gene using a map-based approach, and find that it is the same as IAA7, a member of the IAA (indole-3-acetic acid) family of auxin-inducible genes. The axr2-1 mutation changes a single amino acid in conserved domain II of AXR2/IAA7. We isolated loss-of-function mutations in AXR2/IAA7 as intragenic suppressors of axr2-1 or in a screen for insertion mutations in IAA genes. A null mutant has a slightly longer hypocotyl than wild-type plants, indicating that AXR2/IAA7 controls development in light-grown seedlings, perhaps in concert with other gene products. Dark-grown axr2-1 mutant plants have short hypocotyls and make leaves, suggesting that activation of AXR2/IAA7 is sufficient to induce morphological responses normally elicited by light. Previously described semidominant mutations in two other Arabidopsis IAA genes cause some of the same phenotypes as axr2-1, but also cause distinct phenotypes. These results illustrate functional differences among members of the Arabidopsis IAA gene family.  相似文献   

14.
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven beta-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2::GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5::GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.  相似文献   

15.
Regulation of the cytosolic acetyl-coenzyme A carboxylase (ACCase) gene promoter from common bean (Phaseolus vulgaris) was studied in transgenic Arabidopsis (Arabidopsis thaliana) plants using a beta-glucuronidase (GUS) reporter gene fusion (PvACCase::GUS). Under normal growth conditions, GUS was expressed in hydathodes, stipules, trichome bases, flowers, pollen, and embryos. In roots, expression was observed in the tip, elongation zone, hypocotyl-root transition zone, and lateral root primordia. The PvACCase promoter was induced by wounding, Pseudomonas syringae infection, hydrogen peroxide, jasmonic acid (JA), ethylene, or auxin treatment. Analysis of PvACCase::GUS expression in JA and ethylene mutants (coronatine insensitive1-1 [coi1-1], ethylene resistant1-1 [etr1-1], coi1-1/etr1-1) suggests that neither JA nor ethylene perception participates in the activation of this gene in response to wounding, although each of these independent signaling pathways is sufficient for pathogen or hydrogen peroxide-induced PvACCase gene expression. We propose a model involving different pathways of PvACCase gene activation in response to stress.  相似文献   

16.
17.
Yang Y  Xu R  Ma CJ  Vlot AC  Klessig DF  Pichersky E 《Plant physiology》2008,147(3):1034-1045
The plant hormone auxin (indole-3-acetic acid [IAA]) is found both free and conjugated to a variety of carbohydrates, amino acids, and peptides. We have recently shown that IAA could be converted to its methyl ester (MeIAA) by the Arabidopsis (Arabidopsis thaliana) enzyme IAA carboxyl methyltransferase 1. However, the presence and function of MeIAA in vivo remains unclear. Recently, it has been shown that the tobacco (Nicotiana tabacum) protein SABP2 (salicylic acid binding protein 2) hydrolyzes methyl salicylate to salicylic acid. There are 20 homologs of SABP2 in the genome of Arabidopsis, which we have named AtMES (for methyl esterases). We tested 15 of the proteins encoded by these genes in biochemical assays with various substrates and identified several candidate MeIAA esterases that could hydrolyze MeIAA. MeIAA, like IAA, exerts inhibitory activity on the growth of wild-type roots when applied exogenously. However, the roots of Arabidopsis plants carrying T-DNA insertions in the putative MeIAA esterase gene AtMES17 (At3g10870) displayed significantly decreased sensitivity to MeIAA compared with wild-type roots while remaining as sensitive to free IAA as wild-type roots. Incubating seedlings in the presence of [(14)C]MeIAA for 30 min revealed that mes17 mutants hydrolyzed only 40% of the [(14)C]MeIAA taken up by plants, whereas wild-type plants hydrolyzed 100% of absorbed [(14)C]MeIAA. Roots of Arabidopsis plants overexpressing AtMES17 showed increased sensitivity to MeIAA but not to IAA. Additionally, mes17 plants have longer hypocotyls and display increased expression of the auxin-responsive DR5:beta-glucuronidase reporter gene, suggesting a perturbation in IAA homeostasis and/or transport. mes17-1/axr1-3 double mutant plants have the same phenotype as axr1-3, suggesting MES17 acts upstream of AXR1. The protein encoded by AtMES17 had a K(m) value of 13 microm and a K(cat) value of 0.18 s(-1) for MeIAA. AtMES17 was expressed at the highest levels in shoot apex, stem, and root of Arabidopsis. Our results demonstrate that MeIAA is an inactive form of IAA, and the manifestations of MeIAA in vivo activity are due to the action of free IAA that is generated from MeIAA upon hydrolysis by one or more plant esterases.  相似文献   

18.
As indicated by various and some overlapped phenotypes of the dominant mutants, the Aux/IAA genes of Arabidopsis (Arabidopsis thaliana) concomitantly exhibit a functional similarity and differentiation. To evaluate the contributions of their expression patterns determined by promoter activity and molecular properties of their gene products to Aux/IAA function, we examined phenotypes of transgenic plants expressing the green fluorescent protein (GFP)-tagged msg2-1/iaa19, axr2-1/iaa7, or slr-1/iaa14 cDNA by the MSG2 or AXR2 promoter. When driven by the MSG2 promoter (pMSG2), each GFP-tagged cDNA caused the msg2-1 phenotype, that is, the wild-type stature in the mature-plant stage, long and straight hypocotyls in the dark, reduced lateral root formation, relatively mild agravitropic traits in hypocotyls, and a normal gravitropic response in roots. However, development of one or two cotyledonary primordia was often arrested in embryogenesis of the pMSG2::axr2-1::GFP and pMSG2::slr-1::GFP plants, resulting in monocotyledonary or no cotyledonary seedlings. Such defects in embryogenesis were never seen in pMSG2::msg2-1::GFP or the msg2-1, axr2-1, or slr-1 mutant. The MSG2 promoter-GUS staining showed that expression of MSG2 started specifically in cotyledonary primordia of the triangular-stage embryos. When driven by the AXR2 promoter (pAXR2), each GFP-tagged mutant cDNA caused, in principle, aberrant aboveground phenotypes of the corresponding dominant mutant. However, either the axr2-1::GFP or slr-1::GFP cDNA brought about dwarf, agravitropic stems almost identical to those of axr2-1, and the pAXR2::msg2-1::GFP and pAXR2::slr-1::GFP hypocotyls exhibited complete loss of gravitropism as did axr2-1. These results showed functional differences among the msg2-1, axr2-1, and slr-1 proteins, though some phenotypes were determined by the promoter activity.  相似文献   

19.
A role for phospholipase A in auxin-regulated gene expression   总被引:1,自引:0,他引:1  
Scherer GF  Zahn M  Callis J  Jones AM 《FEBS letters》2007,581(22):4205-4211
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号