首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
Leukocyte inhibitory factor (LIF), which was derived from human peripheral blood lymphocytes by stimulation with concanavalin A ad partially purified by Sephadex G-100 gel filtration, inhibited the in vitro spontaneous migration and chemotaxis of human PMN leukocytes as assessed in a Boyden chamber micropore filter assay. The inhibitory activity was attributed to LIF, a principle defined in terms of its inhibition of PMN leukocyte migration from glass capillary tubes since it was preferentially directed to PMN leukocytes as compared to mononuclear leukocytes, exhibited a size comparable to LIF by gel filtration, and was inactivated by diisopropyl fluorophosphate in parallel with LIF. Incubation of PMN leukocytes with LIF released additional inhibitory activity, distinct from LIF, which resembled the neutrophil-immobilizing factor (NIF) by virtue of its approximate m.w. of 4000 by filtration on Sephadex G-25, inactivation by trypsin digestion, and preferential noncytotoxic inhibition of spontaneous migration and chemotaxis of PMN leukocytes as compared to mononuclear leukocytes. Thus LIF inhibits PMN leukocyte migration both by a direct action on the cells and by an amplification pathway that is mediated by low m.w. chemotactic inhibitors similar to NIF.  相似文献   

2.
We have used a new centrifugation assay to examine the effects of highly purified human C5a and C5a des Arg, as well as effects of N-formyl-methionyl-leucyl-phenylalanine (FMLP), on both the extent and strength of human polymorphonuclear leukocyte (PMN) adherence to monolayers of cultured human umbilical vein endothelial cells. At concentrations that were chemotactic for PMN, C5a (0.1 nM), C5a des Arg (5.0 nM), and FMLP (1.0 nM) significantly reduced the percentage of PMN that adhered to endothelial monolayers. Adherence also was reduced by C5a des Arg that was generated by incubating (37 degrees C, 30 min) fresh human serum with either zymosan or purified C5a. High concentrations of C5a (greater than 1.0 nM) and FMLP (greater than 50 nM) that diminished PMN chemotaxis significantly enhanced the percentage of PMN that adhered tightly to endothelial cells (adherent cells resisted a dislodgment force of 1200 X G). Tight adherence of PMN to endothelial cells also was increased by high concentrations of C5a that were added to human serum in which carboxypeptidase N activity was destroyed by heating (56 degrees C, 30 min), and by C5a that was generated by incubating (37 degrees C, 30 min) fresh human serum with zymosan in the presence of the carboxypeptidase N inhibitor, epsilon-aminocaproic acid. High concentrations of C5a des Arg (up to 80 nM) neither enhanced adherence of PMN to endothelial cells nor decreased PMN migration. Thus, a reciprocal relation exists between PMN migration and PMN adherence to endothelial cells in response to chemotactic factors. At concentrations that are chemotactic for human PMN, C5-derived peptides and FMLP reduce the adherence of PMN to endothelial monolayers. Only at concentrations that decrease PMN migration do C5a and FMLP augment PMN adherence.  相似文献   

3.
Besides its function as a growth factor, the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) "primes" polymorphonuclear leukocytes (PMN) for enhanced biologic responses to a number of secondary stimuli. We examined the effect of priming PMN with GM-CSF on the production of [3H] platelet-activating factor (PAF) from [3H]acetate upon stimulation with the chemotactic factors FMLP and C5a. In PMN stimulated with the individual peptide mediators alone [3H]PAF levels were close to controls, whereas considerable amounts of [3H]PAF are formed after stimulation of PMN which have been preexposed to GM-CSF. The priming effect was concentration and time dependent. It was optimal after a preincubation period of 2 h. A maximum of [3H]PAF accumulation is reached within 2.5 min (C5a) and 5.0 min (FMLP) after activation of GM-CSF-primed PMN. In addition, we show that PAF isolated from PMN preincubated with GM-CSF and triggered with chemotactic factors is able to enhance the respiratory burst in PMN. PAF formed by sequentially activated PMN could contribute to the enhanced oxygen radical production and cytotoxicity in effector cells and play a role in modulating and amplifying inflammatory reactions.  相似文献   

4.
IL-8 is a novel chemotactic cytokine, produced by a variety of blood and tissue cells, that has marked activating effects on polymorphonuclear leukocytes (PMN). We report that IL-8 is produced and released by human PMN after stimulation with the chemotactic agonist FMLP. Release of IL-8 in response to FMLP was transient and not influenced by PMN adherence or by the absence of serum in the medium. Maximum yields were usually obtained with 10 nM FMLP within 2 h of stimulation (0.5-3.5 ng/ml/7 x 10(6) cells, range of 17 different donors). IL-8 release was dependent on FMLP-induced de novo protein synthesis because it was inhibited by cycloheximide, was paralleled by enhanced expression of IL-8 mRNA and was potentiated from two- to sixfold after preincubation of PMN with cytochalasin B. The FMLP effect was direct and not dependent on LPS or on contaminating monocytes, which showed only low responsiveness to FMLP. Pretreatment of PMN with pertussis toxin prevented FMLP-dependent IL-8 production, the effect being evident both at the level of mRNA expression and protein secretion. In addition, two other chemoattractans, platelet-activating factor and C5a, were found capable to induce release of IL-8 by PMN. The results of this study suggest that chemotactically stimulated PMN may be able to amplify the recruitment process of PMN to the inflammatory site by releasing IL-8. As a long-lived cytokine, IL-8 could markedly prolong the attractant effect.  相似文献   

5.
Human as well as canine and rat polymorphonuclear cells (PMN) were separated from whole blood by centrifugation. Two-step discontinuous Percoll gradients with distinct different densities were used. The chemiluminescence properties of the isolated PMN and of phagocytes in small quantities of whole blood were compared in luminol-enhanced assays after stimulation with various agents: non-opsonized zymosan (3.5 g/I), phorbol myristate acetate (PMA, 2.8 × 10?6 mol/I), calcium ionophore A 23187 (10?5 mol/l) and N-formylmethionyl-leucyl-phenylalanine (FMLP, 3.5 × 10?6 mol/l). The isolated cells of the three species responded to all of the various stimuli. Species-related sensitivity could be ordered: human > canine > rat. Response to the various agents in the human cells can be ranked: PMA ? A 23187 > zymosan > FMLP; for the dog: A 23187 > PMA > zymosan > FMLP; and for the rat: zymosan ? PMA > FMLP ? A 23187. Time course and peak maximum response were different upon stimulation in the absence and presence of autologous plasma. Distinct soluble stimuli resulted in maximum responses below the baseline in the whole blood assays with canine (FMLP) and rat (FMLP, A 23187) phagocytes.  相似文献   

6.
When polymorphonuclear leukocytes (PMN) are exposed to most harvests of influenza A virus (depressing virus, DV) for 20 min, chemotactic, secretory, and oxidative functions are depressed upon subsequent exposure to soluble or particulate stimuli. Other harvests of influenza A virus (non-DV) do not alter these activities. The DV-induced changes in multiple functions suggest the virus may interfere with steps involved in PMN activation. Because some of these steps may be regulated by protein phosphorylation, we examined the effect of non-DV and DV on cellular protein phosphorylation. PMN loaded with 32P-labeled inorganic orthophosphate were exposed to non-DV, DV, or buffer for 30 min; cells were then treated with buffer, FMLP (10(-6) M), or PMA (100 ng/ml) for 30 s. Samples were sonicated and centrifuged; cytosolic and particulate fractions were analyzed by SDS-PAGE and autoradiography. Exposure of PMN to either non-DV or DV caused phosphorylation of several cell proteins. However, when DV-treated PMN were then stimulated with FMLP or PMA, further phosphorylation was inhibited compared to non-DV- or buffer-treated cells. This suggests that DV-induced depression of PMN end-stage functions may be due to changes in cell protein phosphorylation. DV could interfere with phosphorylation of PMN proteins by altering protein kinase activity. We therefore examined the influence of non-DV and DV on some parameters that could affect kinase function. PMN intracellular [Ca2+] was monitored by using the fluorescent Ca2+ indicator, Indo 1, and cAMP levels were measured by RIA. PMN treated with DV alone or DV plus FMLP had higher intracellular [CA2+] than PMN similarly treated with non-DV or buffer. Exposure of PMN to non-DV, DV, or buffer caused minimal changes in cAMP levels, and similar increases occurred in cAMP levels upon FMLP stimulation. To determine whether DV interferes with transmembrane signaling, the effect of influenza virus on PMN transmembrane potential was studied by using a fluorescent cyanine dye. Transmembrane potential changes were greater in PMN exposed to DV than to non-DV or buffer; however, subsequent stimulation with FMLP caused equivalent changes in transmembrane potential. Our data show that protein phosphorylation in PMN is induced by DV and non-DV infection; upon subsequent stimulation with FMLP or PMA, there is inhibited cellular phosphorylation only in PMN previously exposed to DV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Removal of surface sialic acid specifically inhibits human polymorphonuclear leukocyte (PMN) chemotactic responses to N-formyl-methionyl-leucyl-phenylalanine (FMLP). Neuraminidase-treated (NT)-PMN bound and internalized [3H]FMLP (used as receptor marker) as well as normal PMN. NT-PMN, however, retained more [3H]FMLP-associated radioactivity than normal PMN. Subcellular fractionation studies demonstrated that NT-PMN retained more sedimentable (100,000 X G for 180 min) [3H]FMLP-associated radioactivity within light Golgi-containing fractions than normal PMN. Furthermore, NT-PMN exhibited a defect in their ability to reexpress (or recycle) a population of FMLP receptors. Abnormal receptor recycling was associated with inhibition of FMLP-induced PMN chemotaxis. Thus, it appears that recycling of formyl peptide receptors may be necessary for optimal PMN chemotactic responses to FMLP. We postulate that removal of PMN surface sialic acid inhibits FMLP-induced PMN chemotaxis by blocking the reexpression (or recycling) of a population of formyl peptide receptors, perhaps by preventing trafficking of desialated receptors through a light Golgi pathway.  相似文献   

8.
Summary We investigated the ability of free or liposome-incorporated synthetic chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) to generate tumoricidal properties in mouse macrophages. As FMLP contains three hydrophobic amino acid residues, it can readily be incorporated into multilamellar vesicles (MLV) consisting of phosphatidylcholine (PC) and phosphatidylserine (PS). The incorporation of FMLP into MLV with a PC:PS ratio of 7:3 mol at FMLP concentrations of up to 10–4 M did not affect the phagocytosis of liposomes by mouse peritoneal macrophages. Studies with radioactive FMLP revealed that higher levels of FMLP can be delivered to macrophages by liposomes than in the free, nonencapsulated form. Treatment of mouse macrophages with liposome-encapsulated FMLP, but not with free FMLP, generated tumoricidal properties in the macrophages. The mechanism appears to involve an intracellular site since 100-fold concentrations of free FMLP or free N-acetyl-methionyl-leucyl-phenylalanine, the FMLP agonist, failed to competitively inhibit the macrophage's tumoricidal properties generated by liposome-encapsulated FMLP.  相似文献   

9.
A 3,4-dehydroproline analogue of tuftsin (L-Thr-L-Lys-L-Pro-L-Arg) was prepared by the solid phase synthetic method. Following reversed-phase high performance liquid chromatography (HPLC) purification, the analogue was compared to tuftsin for its ability to enhance the chemotactic, bactericidal and phagocytic activities of polymorphonuclear leukocytes (PMN). Both tuftsin and [Δ3-pro3]-tuftsin elicited a similar significant chemotactic effect at a concentration of 10 μg/ml. A slight suppression of the chemotactic activity was observed with tuftsin at 10?3 μg/ml and with [Δ3-pro3]-tuftsin at concentrations of 10?3, 10?2 (significant) and 10?1 μg/ml. Although similar bactericidal activities were observed for both peptides, PMN exposed to [Δ3-pro3]-tuftsin exhibited increased phagocytic indicies 2–4 times that of tuftsin-treated PMN at concentrations of 0.4, 0.6 and 1.0 μg/ml.  相似文献   

10.
Human recombinant tumor necrosis factor (TNF) induced migration across polycarbonate and nitrocellulose filters of human peripheral blood monocytes and polymorphonuclear leukocytes, TNF was active in inducing migration at concentrations less than 1 U/ml, and maximal responses (observed at greater than 100 U/ml) were comparable to those elicited by standard reference chemoattractants (FMLP, 10 nM; activated human serum, 5%). Checkerboard analysis performed by seeding different concentrations of TNF above and below the filter revealed that maximal induction of migration required a positive concentration gradient between the lower and upper compartments and that TNF elicited an actual chemotactic response in phagocytes. An anti-TNF rabbit antiserum and anti-TNF mouse monoclonal antibody abolished the chemotactic activity of TNF. Recombinant lymphotoxin was also chemotactic for phagocytes, and its activity was blocked by an anti-lymphotoxin antiserum. Human umbilical vein endothelial cells and blood large granular lymphocytes did not respond chemotactically to TNF under conditions in which appropriate reference chemoattractants were active. The chemotactic activity of TNF may serve to recruit phagocytic cells from the blood compartment to amplify resistance against noxious agents.  相似文献   

11.
Summary Activation of polymorphonuclear (PMN) leukocytes is known to generate oxygen free radicals (OFR). However the fate of activated PMN leukocytes is not known. We investigated the OFR producing (chemiluminescence) activity and the survival of the activated PMN leukocytes. The study was divided into two groups. Group I, In vivo study (n = 7): zymosan (8.4 mg/kg) was administered intravenously in the anesthetized dogs and the blood samples were collected before and after 5, 15, 30, 60 and 120 min of zymosan administration. This group represents the in vivo pre-stimulated PMN leukocytes; Group II, In vitro study (n = 7): the blood were collected from dogs and further divided into two groups. Group A (n = 7): non-stimulated, without any added zymosan and group B (n = 7): zymosan was added to stimulate PMN leukocytes. Blood samples from group A and B were also collected at various time intervals similar to in vivo studies. Oxygen free radical producing activity of PMN leukocytes was monitored by measuring luminoldependent chemiluminescence (CL). Opsonized zymosan was used to activate PMN leukocytes. The studies in which the PMN leukocytes were stimulated in in vivo, both oxygen derived free radicals and superoxide dismutase (SOD) inhibitable oxygen free radical CL decreased significantly for 60 min and tended to reach thereafter to the pre-stimulated values. The resting chemiluminescence (chemiluminescence without zymosan stimulation in the assay medium) increased significantly for 15 min reaching to pre-stimulated values at 30 min and thereafter. In in vitro studies, oxygen derived free radicals CL of pre-stimulated PMN leukocytes (Group B) was depressed for the whole duration of investigation while SOD inhibitable CL was depressed for only 60 min. There was approximately a two-fold increase in the resting CL within 5 min of PMN leukocyte activation and it remained high for the whole duration of study. The chemiluminescence of non-stimulated PMN leukocytes in vitro (group A) remained practically normal throughout the period of observation. In in vivo studies, total white blood cells (WBC) and PMN leukocyte counts decreased initially and tended to approach towards pre-stimulated values at the end of the protocol. There were no changes in these counts in in vitro studies. These results indicate that the capacity to generate OFR is decreased in the in vivo and in vitro pre-stimulated PMN leukocytes. However this activity recovers with time. This study also suggests that the activated PMN leukocytes are not destroyed.  相似文献   

12.
A range of chemotactic factors has been shown to affect the adhesion of rabbit peritoneal neutrophil granulocytes to cultured endothelial cells and to serum-coated glass. At chemotactically optimal concentrations, αs-casein, β-casein, alkali denatured human serum albumin (HSA) and several synthetic formyl-peptides reduced the number of adherent neutrophils after 30 min to around 50% of control values. These effects were still observed after neutrophils, but not endothelium or serum-coated glass had been exposed to chemotactic factors and washed before use in assays. Two non-chemotactic analogues, native HSA and a non-formyl-peptide were ineffective. The dose responses for adhesion after 30 min in the presence of αs-casein and formyl-methionyl-leucyl-phenylalanine (FMLP) were found to be inversely related to those for migration towards these substances. After incubation for 60 min in high (10?8–10?7 M) concentrations of FMLP, neutrophil adhesion was found to be enhanced. Neutrophil aggregation was also affected by the presence of chemotactic factors in a similar time- and dose-dependent manner to the adhesion to substratum assays. Using FMLP, it was also shown that the timing of the adhesive changes depended on the concentration of chemotactic factor present.  相似文献   

13.
The CD45 Ag family is a group of high m.w. glycoproteins that are expressed on the plasma membranes of all leukocytes. CD45 has protein tyrosine phosphatase activity and appears to regulate signal transduction and lymphocyte activation by specific association with receptor molecules on T and B lymphocytes. However, little is known about CD45 function in neutrophils (PMN). In this study, PMN were incubated with CD45 mAb and tested for their chemotactic responses to four unrelated chemo-attractants: FMLP, leukotriene B4 (LTB4), recombinant human C5a (C5a), and recombinant human neutrophil-activating protein-1, recently designated IL-8. A panel of CD45 mAb including an IgM mAb, AHN-12.1, and six IgG1 mAb, AHN-12, AHN-12.2, AHN-12.3, AHN-12.4, HLe-1, and KC56(T200), were tested for their effects on PMN chemotaxis. PMN chemotaxis was evaluated with two different membrane assays; one assay quantified the total number of migrating PMN and the other assayed the leading front of migrating PMN. AHN-12.1 and KC56(T200) significantly inhibited PMN chemotaxis to LTB4 and C5a. AHN-12.1 slightly inhibited PMN chemotaxis to FMLP, but KC56(T200) did not. In contrast, AHN-12 and HLe-1 did not significantly inhibit PMN chemotaxis to any of the chemoattractants. None of the CD45 mAb inhibited PMN chemotaxis to neutrophil-activating protein-1/IL-8. None of the CD45 mAb inhibited PMN superoxide production. These results suggest that PMN CD45 epitopes may interact with LTB4 and C5a receptor-associated molecules and regulate chemotactic responses.  相似文献   

14.
Endogenous phospholipid metabolism was examined during the initial 0–120 seconds of neutrophil (PMN) stimulation. When PMN were exposed to the chemotactic peptide FMLP (10?7 M) or the tumor promotor, phorbol myristate acetate (PMA, 1 μg/ml) extensive changes in specific phospholipid (PL) classes were evident within 15 seconds. The profile and kinetics of stimulus-induced PL changes were stimulus-dependent. Five seconds after the addition of FMLP, PMN content of PC, PS and PA increased, while the level of PI decreased. Kinetic studies revealed that only PA levels remained elevated (0–120 s) while other PL decreased. In contrast, when cells were exposed to PMA (1 μg/ml), the levels of PC and PS rapidly increased (< 15 s). With PMA as stimulus, changes in PI and PA were not observed until > 60 s. Results indicate that exposure to PMN to stimuli leads to rapid changes in specific PL. In addition, they support the concept that neutrophils rapidly “remodel” endogenous PL upon stimulation.  相似文献   

15.
A synthetic peptide, AVLPRSAKEL (LU10), the N-terminal amino acid sequence of chemotactic protein (LUCT/IL-8), showed chemotactic activity to polymorphonuclear leukocytes (PMN) with an ED50 of 5 nM for comparable to that of LUCT. Native LUCT and LU10 specifically induced the phosphorylation of 64 kD protein of PMN, and serine residue in the 64 kD protein was major phosphorylated amino acid. Furthermore, native LUCT enhanced the release of myeloperoxidase and beta-glucuronidase from PMN in the presence of cytochalasin B and FMLP, but LU10 did not. These results strongly suggest that the active site for both chemotactic stimulation and 64 kD protein phosphorylation is localized on the sequence of N-terminal 10 amino acids of LUCT.  相似文献   

16.
Directed migration of monocytes is dependent upon interaction of cell surface receptors and specific chemotactic ligands. To determine whether circulating human monocytes express multiple chemotactic ligand receptors or whether subpopulations of monocytes exist with a single receptor specificity, nonoverlapping fluorescent probes for two chemotactic ligands, N-formyl methionyl leucyl phenylalanine (FMLP) and C5a, were developed to simultaneously evaluate the expression of receptors for these ligands on individual monocytes. The subsequent incubation with different fluorochrome labeled C5a and FMLP probes and monoclonal antibodies specific for antigenic determinants on distinct subsets of mononuclear cells followed by analysis with dual parameter flow microfluorometry indicated that cells that express C5a and FMLP receptors are the OKM1, Mac-1, and Fc gamma receptor positive population. Furthermore, it was demonstrated that approximately 90% of peripheral blood monocytes expressed FMLP receptors, and the majority of FMLP+ cells were also C5a receptor positive. In addition, a parallel spectrum of chemotactic ligand receptor density from low to high levels was demonstrated for both C5a and FMLP. Additional analysis revealed that the density of chemotactic ligand receptors on resting peripheral blood monocytes did not correlate with monocyte maturation levels measured by HLA-DR expression. Elucidation of the monocyte chemotactic receptor-ligand interactions that lead to migration and/or activation may provide insight into the regulation of monocyte function in inflammation.  相似文献   

17.
Body temperature can modulate the pathogenesis of infectious, metabolic and autoimmune diseases. This effect has been attributed to several hypothesized mechanisms. Body temperature could play an important role in influencing some cellular functions of human white blood cells. In this work we examined the temperature effect on the respiratory burst in human neutrophils. Human polymorphonuclear leucocytes (PMN) were obtained from heparinized venous blood by dextran sedimentation and erythrocyte lysis with NH4Cl (0.87%). Granulocytes were stimulated with opsonized zymosan (OZ), formyl-methionyl-leucyl-phenylalanine (FMLP), phorbol myristate acetate (PMA), and monosodium urate (MSU) crystals at different temperatures (26, 37, 39, 40, 42 degrees C). The technique of luminol dependent chemiluminescence (CL) was used as indicator of oxygen free radicals (OFR) release by stimulated cells. OFR production from PMN stimulated with OZ, PMA, FMLP was higher at 37 degrees C than at 26, 39, 40, 42 degrees C (p < 0.001 OZ stimulated PMN at 40-42 degrees C; p < 0.05 PMA stimulated PMN at 42 degrees C. Significantly different from 37 degrees C value). OFR release from PMN stimulated with MSU crystals was significantly increased at 39 degrees C compared to 37 degrees C value (p < 0.001). This effect could not only be attributed to temperature influence on neutrophil activity. The specific polymorphonuclear leukocyte response to the microcrystals and the temperature influence on chemical and physical characteristics of the crystals may play an important role. We are now studying the temperature effect on activity of PMN exposed to others crystals.  相似文献   

18.
We observed that the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L- phenylalanine (FMLP) induced pulmonary edema when polymorphonuclear leukocytes (PMNs) were added to isolated constant-flow buffer-perfused rabbit lungs. This study was designed to test the hypothesis that PMNs activated by FMLP induced lung injury by the modulation of reactive oxygen species (ROS), cyclooxygenase products, or cysteinyl leukotrienes (LTs). Addition of FMLP alone did not increase microvascular permeability (Kf). When PMNs were added to the isolated lung, FMLP caused an 80% increase in Kf. Wet-to-dry weight ratio was also significantly increased with PMNs + FMLP compared with FMLP only. There was a significant positive correlation between total myeloperoxidase activity in lung tissue and Kf values after FMLP (30 min). Pretreatment with two dissimilar cyclooxygenase inhibitors, meclofenamate or ibuprofen, had no effect on the PMN + FMLP-induced increase in Kf. However, the ROS inhibitor catalase and the nonantioxidant LT synthesis blocker MK 886 inhibited the PMN + FMLP increase in Kf. Perfusate levels of LTs (LTC4, -D4, and -E4) were significantly increased from baseline values 30 min after FMLP. Both MK 886 and catalase suppressed the elevation of LTs after PMN + FMLP. These results indicate that FMLP increased a pulmonary microvascular permeability in isolated buffer-perfused rabbit lungs that is PMN dependent and mediated by LT produced possibly by a result of ROS production.  相似文献   

19.
Polymorphonuclear leukocyte (PMN) surface membrane glycoproteins are probably involved in the phenomenon of stimulus-response coupling. Consequently, we examined the effects of either removal or oxidation of surface membrane-associated sialic acid residues on some responses of human PMN to chemotactic factors. Treatment of human PMN with either neuraminidase or sodium metaperiodate did not affect the ability of these cells to migrate randomly, but did inhibit their ability to respond chemotactically to the synthetic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). Treated PMN responded normally, however, to the complement-derived peptide C5a, and to the lipoxygenase product leukotriene B4. Enzymatic removal or oxidation of membrane sialic acid residues did not affect either FMLP-induced PMN degranulation or FMLP-induced generation by PMN of superoxide anion radicals. Removal of sialic acid did not significantly alter specific binding of [3H]FMLP to its receptor(s) on the PMN membrane. These findings indicate that sialic acid residues on the PMN surface membrane play an important role in modulating PMN responses to FMLP.  相似文献   

20.
Purified lipopolysaccharide (LPS) from Veillonella incubated in normal rabbit serum was tested for chemotactic activity on rabbit polymorphonuclear leukocytes (PMNs) in modified Boyden chambers. In doses above those giving optimal response (over-optimal dose), a decrease of the PMN migration activity was found. This decrease also correlated well with an increase in the migration inhibition of the PMNs as demonstrated with the capillary tube assay. The PMN chemotactic factor isolated from LPS-induced inflammatory exudate (LPS-CF) in rabbits, produced both a decrease in chemotactic response and a migration inhibition of PMNs in over-optimal doses. This inhibitory effect was not due to cytotoxicity, proved by the trypan blue exclusion test. Also, a reduced locomotion of PMNs first preincubated with chemoattractants and then reactivated, was shown when the same PMNs were restimulated to migration using the same chemoattractants. This was interpreted as a deactivation of the cells. A cross-deactivation was demonstrated between LPS-CF and casein. The results from the experiments reported show that the Boyden chamber may be used to disciminate directional chemotaxis and migration inhibition. It may also be concluded from the study that the reduced migration activity of PMNs at over-optimal doses of chemoattractants is not due to cytotoxicity, but most probably is caused by a deactivation of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号