首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The phylogeny of the temperate Gondwanan harvestman family Pettalidae is investigated by means of a new morphological matrix of 45 characters, and DNA sequence data from five markers, including two nuclear ribosomal genes (18S rRNA and 28S rRNA), one nuclear protein coding gene (histone H3), and two mitochondrial genes–one protein coding (cytochrome c oxidase subunit I) and one ribosomal (16S rRNA). Phylogenetic analyses using an array of homology schemes (dynamic and static), criteria (parsimony and maximum likelihood), and sampling strategies (optimal trees versus Bayesian phylogenetics) all agree on the monophyly of Pettalidae as well as several of its subclades, each of which is restricted to a modern landmass. While most genera as traditionally defined are monophyletic, Rakaia and Neopurcellia, distributed across Queensland (Australia) and New Zealand, are not. Instead, the species from Queensland, previously described under three genera, constitute a well‐supported clade, suggesting that in this case biogeography prevails over traditional taxonomy. A taxonomic emendation of the genera from Queensland and New Zealand is presented, and the new genus Aoraki is erected to include the species of the New Zealand denticulata group. A biogeographical hypothesis of the relationships of the former temperate Gondwana landmasses (with the exception of Madagascar) is presented, although ambiguity in the deep nodes of the pettalid tree renders such inference provisional. The data suggest that neither the South African fauna, the New Zealand fauna nor the Australian fauna is monophyletic but instead monophyly is found at smaller geographic scales (e.g., Western Australia, Queensland, NE South Africa). © The Willi Hennig Society 2007.  相似文献   

2.
We evaluate the phylogenetic and biogeographical relationships of the members of the family Pettalidae (Opiliones, Cyphophthalmi), a textbook example of an ancient temperate Gondwanan taxon, by means of DNA sequence data from four markers. Taxon sampling is optimized to cover more than 70% of the described species in the family, with 117 ingroup specimens included in the analyses. The data were submitted to diverse analytical treatments, including static and dynamic homology, untrimmed and trimmed alignments, and a variety of optimality criteria including parsimony and maximum‐likelihood (traditional search and Bayesian). All analyses found strong support for the monophyly of the family Pettalidae and of all its genera, with the exception of Speleosiro, which is nested within Purcellia. However, the relationships among genera are poorly resolved, with the exceptions of a first split between the South African genus Parapurcellia and the remaining species, and, less supported, a possible relationship between Chileogovea and the other South African genus Purcellia. The diversification of most genera is Mesozoic, and of the three New Zealand genera, two show evidence of constant diversification through time, contradicting scenarios of total submersion of New Zealand during the Oligocene drowning episode. The genera Karripurcellia from Western Australia and Neopurcellia from the Australian plate of New Zealand show a pattern typical of relicts, with ancient origin, depauperate extant diversity and recent diversification. The following taxonomic actions are taken: Milipurcellia Karaman, 2012 is synonymized with Karripurcellia Giribet, 2003 syn. nov. ; Speleosiro Lawrence, 1931 is synonymised with Purcellia Hansen & Sørensen, 1904 syn. nov . The following new combinations are proposed: Parapurcellia transvaalica (Lawrence, 1963) comb. nov. ; Purcellia argasiformis (Lawrence, 1931) comb. nov .  相似文献   

3.
A phylogenetic estimation of the temperate Gondwanan mite harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi) was conducted using 143 morphological variables (59 raw and 84 scaled measurements) from 37 ingroup and 15 outgroup terminals. We used custom algorithms to do pairwise comparisons between characters and identify sets of dependent characters, which were collapsed using principal components analysis. We analysed the resulting data without discretization under the parsimony criterion. Monophyly or paraphyly of most groups suspected from previous molecular and morphological phylogenetic studies were recovered. Trees were optimized for monophyly of 20 different focus clades by varying character phylogenetic independence. This yielded a final tree with monophyly of 15 out of 20 focus clades, including the South African pettalids, which contains the troglomorphic species Speleosiro argasiformis Lawrence, 1931. Two of the remaining five clades were found paraphyletic, with the genera Aoraki, Rakaia, and Siro always being found polyphyeletic.  相似文献   

4.
We investigate the phylogeny, biogeography, time of origin and diversification, ancestral area reconstruction and large‐scale distributional patterns of an ancient group of arachnids, the harvestman suborder Cyphophthalmi. Analysis of molecular and morphological data allow us to propose a new classification system for the group; Pettalidae constitutes the infraorder Scopulophthalmi new clade , sister group to all other families, which are divided into the infraorders Sternophthalmi new clade and Boreophthalmi new clade . Sternophthalmi includes the families Troglosironidae, Ogoveidae, and Neogoveidae; Boreophthalmi includes Stylocellidae and Sironidae, the latter family of questionable monophyly. The internal resolution of each family is discussed and traced back to its geological time origin, as well as to its original landmass, using methods for estimating divergence times and ancestral area reconstruction. The origin of Cyphophthalmi can be traced back to the Carboniferous, whereas the diversification time of most families ranges between the Carboniferous and the Jurassic, with the exception of Troglosironidae, whose current diversity originates in the Cretaceous/Tertiary. Ancestral area reconstruction is ambiguous in most cases. Sternophthalmi is traced back to an ancestral land mass that contained New Caledonia and West Africa in the Permian, whereas the ancestral landmass for Neogoveidae included the south‐eastern USA and West Africa, dating back to the Triassic. For Pettalidae, most results include South Africa, or a combination of South Africa with the Australian plate of New Zealand or Sri Lanka, as the most likely ancestral landmass, back in the Jurassic. Stylocellidae is reconstructed to the Thai‐Malay Penisula during the Jurassic. Combination of the molecular and morphological data results in a hypothesis for all the cyphophthalmid genera, although the limited data available for some taxa represented only in the morphological partition negatively affects the phylogenetic reconstruction by decreasing nodal support in most clades. However, it resolves the position of many monotypic genera not available for molecular analysis, such as Iberosiro, Odontosiro, Speleosiro, Managotria or Marwe, although it does not place Shearogovea or Ankaratra within any existing family. The biogeographical data show a strong correlation between relatedness and formerly adjacent landmasses, and oceanic dispersal does not need to be postulated to explain disjunct distributions, especially when considering the time of divergence. The data also allow testing of the hypotheses of the supposed total submersion of New Zealand and New Caledonia, clearly falsifying submersion of the former, although the data cannot reject the latter. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 92–130.  相似文献   

5.
Orthoglymma Liebherr, Marris, Emberson, Syrett & Roig‐Juñent gen.n. (Coleoptera: Carabidae: Broscini) is described to accommodate the single type species Orthoglymma wangapeka Liebherr, Marris, Emberson, Syrett & Roig‐Juñent sp.n., known from the Wangapeka Track, Kahurangi National Park, north‐western South Island, New Zealand. Orthoglymma wangapeka sp.n. is analysed cladistically along with a comprehensive array of 42 other broscine generic terminals and four out‐group taxa, using information obtained from 73 morphological characters, and placed as adelphotaxon to the remainder of subtribe Nothobroscina, a clade distributed in New Zealand, southern South America and Australia. Based on fossil evidence for Carabidae, the occurrence of Orthoglymma wangapeka sp.n. on the Buller Terrane, a geological feature once situated on the eastern margin of Gondwana, and early cladistic divergence of Orthoglymma from the remaining Nothobroscina, Orthoglymma wangapeka sp.n. is interpreted as a Gondwanan relict. The New Zealand arthropod fauna is reviewed to identify other taxa in existence at the time of Cretaceous vicariance of New Zealand and Australia. These candidate Gondwanan taxa, all of which are specified using fossil data or molecular divergence‐based estimates, are analysed biogeographically. Where phylogenetic hypotheses are available, primordial distributions are optimized using event‐based, dispersal‐vicariance (DIVA) analysis. The hypothesized Gondwanan‐aged taxa demonstrate inordinate fidelity to the Gondwanan‐aged geological terranes that constitute the western portions of New Zealand, especially in the South Island. Persistence of these relicts through a hypothesized ‘Oligocene drowning’ event is the most parsimonious explanation for the concentration of Gondwanan relicts in the Nelson, Buller and Fiordland districts of the South Island. Geographic patterns of Gondwanan‐aged taxa are compared with distributions of taxa hypothesized to have colonized New Zealand across the Tasman Sea from Australia and New Caledonia, subsequent to Cretaceous vicariance. These post‐Gondwanan taxa exhibit very different patterns of distribution and diversification in New Zealand, including: (i) abundant endemism in Northland, and the islands and peninsulas of the North Island; (ii) species geographically restricted to areas underlain by the youngest Rakaia and Pahau geological terranes; and (iii) species exhibiting exceedingly widespread geographic distributions spanning geological terranes of disparate ages.
相似文献   

6.
Sanoamuang  L.  Stout  V. M. 《Hydrobiologia》1993,255(1):481-490
Thirty-five lakes in the South Island of New Zealand were surveyed for rotifers during 1988–1991. Of 85 taxa identified, 31 are first records for New Zealand, bringing the rotifers recorded from the country to 331. Four species (Keratella australis, K. slacki, Lecane herzigi and L. tasmaniensis), previously recorded as endemic forms only in Australia, are now added to the New Zealand checklist. Several of the new records are photographed, and scanning electron micrographs of the trophi are shown. Comments are made on the Australasian endemics and rotifer biogeography in New Zealand.  相似文献   

7.
Aim The sequential break‐up of Gondwana is thought to be a dominant process in the establishment of shared biota across landmasses of the Southern Hemisphere. Yet similar distributions are shared by taxa whose radiations clearly post‐date the Gondwanan break‐up. Thus, determining the contribution of vicariance versus dispersal to seemingly Gondwanan biota is complex. The southern freshwater crayfishes (family Parastacidae) are distributed on Australia and New Guinea, South America, Madagascar and New Zealand and are unlikely to have dispersed via oceans, owing to strict freshwater limitations. We test the hypotheses that the break‐up of Gondwana has led to (1) a predominately east–west (((Australia, New Zealand: 80 Ma) Madagascar: 160–121 Ma) South America: 165–140 Ma), or (2) a southern (((Australia, South America: 52–35 Ma) New Zealand: 80 Ma) Madagascar: 160–121 Ma) pattern for parastacid crayfish. Further, we examine the evidence for a complete drowning of New Zealand and subsequent colonization by freshwater crayfish. Location Southern Hemisphere. Methods The evolutionary relationships among the 15 genera of Parastacidae were reconstructed using mitochondrial [16S, cytochrome c oxidase subunit I (COI)] and nuclear (18S, 28S) sequence data and maximum likelihood and Bayesian methods of phylogenetic reconstruction. A Bayesian (multidivtime ) molecular dating method using six fossil calibrations and phylogenetic inference was used to estimate divergence time among crayfish clades on Gondwanan landmasses. Results The South American crayfish are monophyletic and a sister group to all other southern crayfish. Australian crayfish are not monophyletic, with two Tasmanian genera, Spinastacoides and Ombrastacoides, forming a clade with New Zealand and Malagasy crayfish (both monophyletic). Divergence of crayfish among southern landmasses is estimated to have occurred around the Late Jurassic to Early Cretaceous (109–178 Ma). Main conclusions The estimated phylogenetic relationships and time of divergence among the Southern Hemisphere crayfishes were consistent with an east–west pattern of Gondwanan divergence. The divergence between Australia and New Zealand (109–160 Ma) pre‐dated the rifting at around 80 Ma, suggesting that these lineages were established prior to the break‐up. Owing to the age of the New Zealand crayfish, we reject the hypothesis that there was a complete drowning of New Zealand crayfish habitat.  相似文献   

8.
Crabs of the family Hymenosomatidae are common in coastal and shelf regions throughout much of the southern hemisphere. One of the genera in the family, Hymenosoma, is represented in Africa and the South Pacific (Australia and New Zealand). This distribution can be explained either by vicariance (presence of the genus on the Gondwanan supercontinent and divergence following its break-up) or more recent transoceanic dispersal from one region to the other. We tested these hypotheses by reconstructing phylogenetic relationships among the seven presently-accepted species in the genus, as well as examining their placement among other hymenosomatid crabs, using sequence data from two nuclear markers (Adenine Nucleotide Transporter [ANT] exon 2 and 18S rDNA) and three mitochondrial markers (COI, 12S and 16S rDNA). The five southern African representatives of the genus were recovered as a monophyletic lineage, and another southern African species, Neorhynchoplax bovis, was identified as their sister taxon. The two species of Hymenosoma from the South Pacific neither clustered with their African congeners, nor with each other, and should therefore both be placed into different genera. Molecular dating supports a post-Gondwanan origin of the Hymenosomatidae. While long-distance dispersal cannot be ruled out to explain the presence of the family Hymenosomatidae on the former Gondwanan land-masses and beyond, the evolutionary history of the African species of Hymenosoma indicates that a third means of speciation may be important in this group: gradual along-coast dispersal from tropical towards temperate regions, with range expansions into formerly inhospitable habitat during warm climatic phases, followed by adaptation and speciation during subsequent cooler phases.  相似文献   

9.
The moss bugs of the Peloridiidae, a small group of cryptic and mostly flightless insects, is the only living family in Coleorrhyncha (Insecta: Hemiptera). Today 37 species in 17 genera are known from eastern Australia, New Zealand, New Caledonia and Patagonia, and the peloridiids are thereby a group with a classical southern Gondwanan distribution. To explicitly test whether the present-day distribution of the Peloridiidae actually results from the sequential breakup of southern Gondwana, we provide the first total-evidence phylogenetic study based on morphological and molecular characters sampled from about 75% of recognized species representing 13 genera. The results largely confirm the established morphological phylogenetic context except that South American Peloridium hammoniorum constitutes the sister group to the remaining peloridiids. A timescale analysis indicates that the Peloridiidae began to diversify in the land mass that is today's Patagonia in the late Jurassic (153 Ma, 95% highest posterior density: 78–231 Ma), and that splitting into the three extant well-supported biogeographical clades (i.e. Australia, Patagonia and New Zealand/New Caledonia) is consistent with the sequential breakup of southern Gondwana in the late Cretaceous, indicating that the current transoceanic disjunct distributions of the Peloridiidae are best explained by a Gondwanan vicariance hypothesis.  相似文献   

10.
East meets west: biogeology of the Campbell Plateau   总被引:1,自引:0,他引:1  
The New Zealand Subantarctic Islands, emergent remnants of the Campbell Plateau, were given World Heritage status in 1998 in recognition of their importance to global biodiversity. We describe the flora and fauna of these islands and discuss the results of recent phylogenetic analyses. Part of the New Zealand Subantarctic biota appears to be relictual and to be derived from west Gondwana. The relictual element is characterized by genera endemic to the Campbell Plateau that show relationships with taxa of the southern South Island, New Zealand, southern South America, and the north Pacific. In contrast, a younger, east Gondwanan element is composed of species that are either taxonomically identical to widespread mainland species, or endemic species with close New Zealand relatives. Area cladograms support the inclusion of the southern South Island, New Zealand and Macquarie Island (although this is separate geologically) as parts of the Campbell Plateau, but suggest the Chatham Rise and Torlesse terranes of the eastern South Island, New Zealand were originally parts of east Gondwana. East and west Antarctica acted as independent plates during the breakup of Gondwana, and were separated by oceanic crust until a compressive phase sutured them along the trace of the trans‐Antarctic mountains during the early Tertiary. The Campbell Plateau microcontinent was connected to west Antarctica until its separation at 80 Mya, contemporaneous with the separation of the southern portion of the Melanesian rift from east Gondwana. Presently the Campbell Plateau is joined to the Melanesian Rift along the Alpine Fault. Cenozoic plate tectonic reconstructions place the Campbell Plateau adjacent to the Melanesian Rift throughout the rift–drift phase, relative motion being confined to strike–slip movement over the last 20 Myr. Our synthesis of phylogenetic and plate tectonic evidence suggests that the Alpine Fault is the most recent development of a much older extensional rift/basin boundary originally separating west and east Gondwana. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 86 , 95–115.  相似文献   

11.

Nearly 20 000 specimens of pseudoscorpions from a full range of habitats have been examined. For New Zealand, 70 species and subspecies in 28 genera are recognised, and for Norfolk and Lord Howe Islands, 11 species in 9 genera. Endemism is very high in this area: in New Zealand, 13 out of 25 indigenous genera are endemic; 2 others (Apatochernes, Nesochernes) are shared with Norfolk Island; and 4 (Sathrochthonius, Austrochthonius, Synsphyronus, Protochelifer) extend their distribution to Australia (Austrochthonius is known also from South America and South Africa). The rest of the native genera have a wider distribution in the Pacific. Three species (Lamprochernes savignyi, Withius subruber, Chelifer cancroides) have a wide and disjunct distribution induced by human traffic, and are considered to be an introduced element.  相似文献   

12.
Aim To develop a comprehensive explanation for the biological diversity of Southeast Asia, especially in the Wallacea and Sundaland regions. This study focuses on a group of arachnids, mite harvestmen, which are thought to be an extremely old group of endemic animals that have been present in the region since most of its land supposedly formed part of the northern rim of the supercontinent Gondwana. Location Eastern Himalayas, Thai‐Malay Peninsula, Sumatra, Borneo, Java, Sulawesi, and New Guinea. Methods  Approximately 5.6 kb of sequence data were obtained from 110 South‐east Asian Cyphophthalmi specimens. Phylogenetic analyses were conducted under a variety of methods and analytical parameters, and the optimal tree was dated using calibration points derived from fossil data. Event based and paralogy‐free subtree biogeographical analyses were conducted. Results The Southeast Asian family Stylocellidae was recovered as monophyletic, arising on what is now the Thai‐Malay Peninsula and diversifying into three main clades. One clade (Meghalaya, here formally placed in Stylocellidae) expanded north as far as the eastern Himalayas, a second clade entered Borneo and later expanded back across the Sundaland Peninsula to Sumatra, and a third clade expanded out of Borneo into the entire lower part of Sundaland. Molecular dating suggested that Stylocellidae separated from other Cyphophthalmi 295 Ma and began diversifying 258 Ma, and the lineage that inhabits mostly Borneo today began diversifying between 175 and 150 Ma. Main conclusions The topology and molecular dating of our phylogenetic hypothesis suggest that Stylocellidae originated on Gondwana, arrived in Southeast Asia via the Cimmerian palaeocontinent, and subsequently diversified north, then south. Their present distribution in the Indo‐Malay Archipelago is explained largely by a diversification over the Sundaland Peninsula before western Sulawesi departed and the peninsula was extensively inundated.  相似文献   

13.
The Iberian Peninsula represents a hot spot of cyphophthalmid (mite harvestman) disparity, with four of the eight genera currently recognized in the family Sironidae represented in the region – a generic diversity and morphological disparity not found in any other region of the World so far. From these, two genera (Iberosiro and Odontosiro) are monotypic, and are restricted to the western side of the peninsula. Parasiro is restricted to the north‐east region, from the Catalonian Coastal Ranges and both sides of the Eastern Pyrenees, in areas where the annual rainfall surpasses 1000 mm, and mostly restricted to areas with Paleozoic and Variscan rocks, with other species of the genus extending to Corsica, Sardinia, and the Italian Peninsula. A second species of the genus Paramiopsalis, Paramiopsalis eduardoi sp. nov. from Fragas do Eume, is described here along with a re‐diagnosis of the genus. Paramiopsalis species, together with Odontosiro, inhabit the north‐west corner of the Iberian Peninsula, an area with some of the highest recorded annual rainfall, and with Paleozoic rocks from the Iberian Massif or Variscan granitoid rocks. A phylogenetic analysis of the members of the family Sironidae using four molecular markers, despite not including all of the Iberian genera, clearly shows the non‐monophyly of the Iberian Cyphophthalmi, indicating that the Iberian Peninsula is home to multiple ancient lineages of mite harvestmen. The two Paramiopsalis species form a sister clade to the Balkan genus Cyphophthalmus, whereas Parasiro constitutes the first lineage of the sironids represented.  相似文献   

14.
Aim To test the hypothesis that continental drift drives diversification of organisms through vicariance, we selected a group of primitive arachnids which originated before the break‐up of Pangaea and currently inhabits all major landmasses with the exception of Antarctica, but lacks the ability to disperse across oceanic barriers. Location Major continental temperate to tropical landmasses (North America, South America, Eurasia, Africa, Australia) and continental islands (Bioko, Borneo, Japan, Java, New Caledonia, New Guinea, New Zealand, Sri Lanka, Sulawesi, Sumatra). Methods Five kb of sequence data from five gene regions for more than 100 cyphophthalmid exemplars were analysed phylogenetically using different methods, including direct optimization under parsimony and maximum likelihood under a broad set of analytical parameters. We also used geological calibration points to estimate gross phylogenetic time divergences. Results Our analyses show that all families except the Laurasian Sironidae are monophyletic and adhere to clear biogeographical patterns. Pettalidae is restricted to temperate Gondwana, Neogoveidae to tropical Gondwana, Stylocellidae to Southeast Asia, and Troglosironidae to New Caledonia. Relationships between the families inhabiting these landmasses indicate that New Caledonia is related to tropical Gondwana instead of to the Australian portion of temperate Gondwana. The results also concur with a Gondwanan origin of Florida, as supported by modern geological data. Main conclusions By studying a group of organisms with not only an ancient origin, low vagility and restricted habitats, but also a present global distribution, we have been able to test biogeographical hypotheses at a scale rarely attempted. Our results strongly support the presence of a circum‐Antarctic clade of formerly temperate Gondwanan species, a clade restricted to tropical Gondwana and a Southeast Asian clade that originated from a series of early Gondwanan terranes that rifted off northwards from the Devonian to the Triassic and accreted to tropical Laurasia. The relationships among the Laurasian species remain more obscure.  相似文献   

15.
Saccharomyces is one of the best‐studied microbial genera, but our understanding of the global distributions and evolutionary histories of its members is relatively poor. Recent studies have altered our view of Saccharomyces’ origin, but a lack of sampling from the vast majority of the world precludes a holistic perspective. We evaluate alternate Gondwanan and Far East Asian hypotheses concerning the origin of these yeasts. Being part of Gondwana, and only colonized by humans in the last ~1000 years, New Zealand represents a unique environment for testing these ideas. Genotyping and ribosomal sequencing of samples from North Island native forest parks identified a widespread population of Saccharomyces. Whole genome sequencing identified the presence of S. arboricola and S. eubayanus in New Zealand, which is the first report of S. arboricola outside Far East Asia, and also expands S. eubayanus’ known distribution to include the Oceanic region. Phylogenomic approaches place the S. arboricola population as significantly diverged from the only other sequenced Chinese isolate but indicate that S. eubayanus might be a recent migrant from South America. These data tend to support the Far East Asian origin of the Saccharomyces, but the history of this group is still far from clear.  相似文献   

16.
Abstract

New genera Isothraulus, Arachnocolus, and Penniketellus are established for three species of leptophlebiid mayfly from New Zealand. Each genus is monotypic and endemic to New Zealand. Isothraulus and Arachnocolus are known only from the northern North Island, and Penniketellus is known only from the Arthur's Pass area of the central South Island. The male and female imago, nymph, and egg of Isothraulus abditus n.sp., the male imago, male subimago, and nymph of Arachnocolus phillipsi n.sp., and the male and female imago, female subimago, and egg of Penniketellus insolitus n.sp. are described. The relationships of each genus and the ecology of nymphs of each species are discussed.  相似文献   

17.
Focussed searches were made across New Zealand between 2013 and 2016, for endemic aphids from the Schizaphis (Rhopalosiphina) genus, which is currently represented by two putative, undescribed species from the endemic host plants Aciphylla and Dracophyllum. Cytochrome c oxidase I (COI) gene sequences (48 in total) from the Schizaphis were analysed together with those from a broader collection of New Zealand endemic aphids that has been assembled since the year 2000. The bulk of the Schizaphis belonged to two clusters corresponding to the host plant genera. Two aphids from central North Island Dracophyllum represented a much diverged lineage without clear affiliations to other New Zealand Schizaphis. Inter-population variation in the New Zealand Schizaphis was high compared with that seen in international studies of Aphidinae and among populations of other endemic New Zealand Aphidina. Within Schizaphis from Dracophyllum, geography played an apparent role in genetic structuring, with populations from Taranaki (North Island) and especially Mt Lyford (South Island) being divergent from those on the South Island main divide. Two distinct lineages of Schizaphis, which co-occurred at some sites, were found on Aciphylla. Our sequence comparisons, including GMYC analyses, indicated up to five New Zealand Schizaphis lineages, and two newly discovered endemic Aphis species from the host plants Clematis and Hebe.  相似文献   

18.
Microcotyle arripis Sandars, 1945 is redescribed from Arripis georgianus from four localities: Spencer Gulf, Gulf St. Vincent, off Kangaroo Island and Coffin Bay, South Australia, Australia. Kahawaia truttae (Dillon & Hargis, 1965) Lebedev, 1969 is reported from A. trutta off Bermagui, New South Wales and is redescribed from a new host, A. truttaceus, from four localities in South Australian waters: Spencer Gulf, Gulf St. Vincent, off Kangaroo Island and Coffin Bay. Phylogenetic analysis of the partial 28S ribosomal RNA gene (28S rRNA) nucleotide sequences for both microcotylid species and comparison with other available sequence data for microcotylid species across four genera contributes to our understanding of relationships in this monogenean family.  相似文献   

19.
Aim The distribution of Onychophora across the southern continents has long been considered the result of vicariance events. However, it has recently been hypothesized that New Zealand was completely inundated during the late Oligocene (25–22 Ma) and therefore that the entire biota is the result of long-distance dispersal. We tested this assumption using phylogenetic and molecular dating of DNA sequence data from Onychophora. Location New Zealand, Australia, South Africa, Chile (South America). Methods We obtained DNA sequence data from the nuclear genes 28S and 18S rRNA to reconstruct relationships among species of Peripatopsidae (Onychophora). We performed molecular dating under a Bayesian relaxed clock model with a range of prior distributions using the rifting of South America and South Africa as a calibration. Results Our phylogenetic trees revealed that the New Zealand genera Ooperipatellus and Peripatoides, together with selected Australian genera (Euperipatoides, Phallocephale and an undescribed genus from Tasmania), form a monophyletic group that is the sister group to genera from Chile (Metaperipatus) and South Africa (Peripatopsis and Opisthopatus). The relaxed clock dating analyses yielded mean divergence times from 71.3 to 78.9 Ma for the split of the New Zealand Peripatoides from their Australian sister taxa. The 0.95 Bayesian posterior intervals were very broad and ranged from 24.5 to 137.6 Ma depending on the prior assumptions. The mean divergence of the New Zealand species of Ooperipatellus from the Australian species Ooperipatellus insignis was estimated at between 39.9 and 46.2 Ma, with posterior intervals ranging from 9.5 to 91.6 Ma. Main conclusions The age of Peripatoides is consistent with long-term survival in New Zealand and implies that New Zealand was not completely submerged during the Oligocene. Ooperipatellus is less informative on the question of continuous land in the New Zealand region because we cannot exclude a post-Oligocene divergence. The great age of Peripatoides is consistent with a vicariant origin of this genus resulting from the rifting of New Zealand from the eastern margin of Gondwana and supports the assumptions of previous authors who considered the Onychophora to be a relict component of the New Zealand biota.  相似文献   

20.
Seven species and one sub-species of Mecoptera are aquatic as larvae and pupae. All aquatic species are classified in two genera of the family Nannochoristidae and have very restricted geographic ranges, with three species confined to extreme southern South America, three species and one sub-species confined to New South Wales or Tasmania in Australia, and one species confined to the South Island of New Zealand. Guest editors: E. V. Balian, C. Lévêque, H. Segers & K. Martens Freshwater Animal Diversity Assessment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号