首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fragment of Mycobacterium tuberculosis DNA containing recA-like sequences was identified by hybridization with the Escherichia coli recA gene and cloned. Although no expression was detected from its own promoter in E. coli, expression from a vector promoter partially complemented E. coli recA mutants for recombination, DNA repair, and mutagenesis, but not for induction of phage lambda. This clone produced a protein which cross-reacts with antisera raised against the E. coli RecA protein and was approximately the same size. However, the nucleotide sequence of the cloned fragment revealed the presence of an open reading frame for a protein about twice the size of other RecA proteins and the cloned product detected by Western blotting (immunoblotting). The predicted M. tuberculosis RecA protein sequence was homologous with RecA sequences from other bacteria, but this homology was not dispersed; rather it was localized to the first 254 and the last 96 amino acids, with the intervening 440 amino acids being unrelated. Furthermore, the junctions of homology were in register with the uninterrupted sequence of the E. coli RecA protein. Identical restriction fragments were found in the genomic DNAs of M. tuberculosis H37Rv and H37Ra and of M. bovis BCG. It is concluded that the ancestral recA gene of these species diversified via an insertional mutation of at least 1,320 bp of DNA. Possible processing mechanisms for synthesizing a normal-size RecA protein from this elongated sequence are discussed.  相似文献   

2.
A recA-like gene was isolated from a gene library of Lactococcus lactis subsp. lactis by intergeneric complementation of an E. coli recA mutant. A plasmid was obtained which fully complemented the RecA response to DNA damaging agents and UV inducibility of prophage, but not P1 plating efficiency in an E. coli recA mutant. The cloned DNA fragment also partially complemented the rec mutation in Lc. lactis MMS36. Hybridization studies showed that there was no detectable sequence homology between the recA gene of E. coli and Lc. lactis subsp. lactis chromosomal DNA.  相似文献   

3.
Molecular analysis of the Bacteroides fragilis recA gene   总被引:6,自引:0,他引:6  
H J Goodman  D R Woods 《Gene》1990,94(1):77-82
  相似文献   

4.
Functions of the Borrelia burgdorferi RecA protein were investigated in Escherichia coli recA null mutants. Complementation with B. burgdorferi recA increased survival of E. coli recA mutants by 3 orders of magnitude at a UV dose of 2,000 microJ/cm(2). The viability at this UV dose was about 10% that provided by the homologous recA gene. Expression of B. burgdorferi recA resulted in survival of E. coli at levels of mitomycin C that were lethal to noncomplemented hosts. B. burgdorferi RecA was as effective as E. coli RecA in mediating homologous recombination in E. coli. Furthermore, E. coli lambda phage lysogens complemented with B. burgdorferi recA produced phage even in the absence of UV irradiation. The level of phage induction was 55-fold higher than the level in cells complemented with the homologous recA gene, suggesting that B. burgdorferi RecA may possess an enhanced coprotease activity. This study indicates that B. burgdorferi RecA mediates the same functions in E. coli as the homologous E. coli protein mediates. However, the rapid loss of viability and the absence of induction in recA expression after UV irradiation in B. burgdorferi suggest that recA is not involved in the repair of UV-induced damage in B. burgdorferi. The primary role of RecA in B. burgdorferi is likely to be a role in some aspect of recombination.  相似文献   

5.
6.
Expression of recA in Deinococcus radiodurans.   总被引:6,自引:2,他引:4       下载免费PDF全文
Deinococcus (formerly Micrococcus) radiodurans is remarkable for its extraordinary resistance to ionizing and UV irradiation and many other agents that damage DNA. This organism can repair > 100 double-strand breaks per chromosome induced by ionizing radiation without lethality or mutagenesis. We have previously observed that expression of D. radiodurans recA in Escherichia coli appears lethal. We now find that the RecA protein of D. radiodurans is ot detectable in D. radiodurans except in the setting of DNA damage and that termination of its synthesis is associated with the onset of deinococcal growth. The synthesis of Shigella flexneri RecA (protein sequence identical to that of E. coli RecA) in recA-defective D. radiodurans is described. Despite a large accumulation of the S. flexneri RecA in D. radiodurans, there is no complementation of any D. radiodurans recA phenotype, including DNA damage sensitivity, inhibition of natural transformation, or inability to support a plasmid that requires RecA for replication. To ensure that the cloned S. flexneri recA gene was not inactivated, it was rescued from D. radiodurans and was shown to function normally in E. coli. We conclude that neither D. radiodurans nor S. flexneri RecA is functional in the other species, nor are the kinetics of induction and suppression similar to each other, indicating a difference between these two proteins in their modes of action.  相似文献   

7.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

8.
A recombinant plasmid carrying the recA gene of Leptospira biflexa serovar patoc was isolated from a cosmid library of genomic DNA by complementation of an Escherichia coli recA mutation. The cloned serovar patoc recA gene efficiently restored resistance to UV radiation and methyl methanesulfonate. Recombination proficiency was also restored, as measured by the formation of Lac+ recombinants from duplicated mutant lacZ genes. Additionally, the cloned recA gene increased the spontaneous and mitomycin C-induced production of lambda phage in lysogens of an E. coli recA mutant. The product of the cloned recA gene was identified in maxicells as a polypeptide with an Mr of 43,000. Antibodies prepared against the E. coli RecA protein cross-reacted with the serovar patoc RecA protein, indicating structural conservation. Southern hybridization data showed that the serovar patoc recA gene has diverged from the recA gene of L. interrogans, Leptonema illini, and E. coli. With the exception of the RecA protein of L. interrogans serovar hardjo, the RecA protein of the Leptospira serovars and L. illini were synthesized at elevated levels following treatment of cells with nalidixic acid. The level of detectable RecA correlated with previous studies demonstrating that free-living cells of L. biflexa serovars and L. illini were considerably more resistant to DNA-damaging agents than were those of parasitic L. interrogans serovars. RecA protein was not detected in cells of virulent Treponema pallidum or Borrelia burgdorferi.  相似文献   

9.
Very little is known about the role of DNA repair networks in Brucella abortus and its role in pathogenesis. We investigated the roles of RecA protein, DNA repair, and SOS regulation in B. abortus. While recA mutants in most bacterial species are hypersensitive to UV damage, surprisingly a B. abortus recA null mutant conferred only modest sensitivity. We considered the presence of a second RecA protein to account for this modest UV sensitivity. Analyses of the Brucella spp. genomes and our molecular studies documented the presence of only one recA gene, suggesting a RecA-independent repair process. Searches of the available Brucella genomes revealed some homology between RecA and RadA, a protein implicated in E. coli DNA repair. We considered the possibility that B. abortus RadA might be compensating for the loss of RecA by promoting similar repair activities. We present functional analyses that demonstrated that B. abortus RadA complements a radA defect in E. coli but could not act in place of the B. abortus RecA. We show that RecA but not RadA was required for survival in macrophages. We also discovered that recA was expressed at high constitutive levels, due to constitutive LexA cleavage by RecA, with little induction following DNA damage. Higher basal levels of RecA and its SOS-regulated gene products might protect against DNA damage experienced following the oxidative burst within macrophages.  相似文献   

10.
Abstract The recA gene of Chlamydia trachomatis was isolated by complementation of an Escherichia coli recA mutant. The cloned gene restored resistance to methyl methanesulfonate in E. coli recA mutants. The DNA sequence of the chlamydial gene was determined and the deduced protein sequence compared with other RecA proteins. In E. coli recA deletion mutants, the cloned gene conferred moderate recombinational activity as assayed by Hfr matings. The chlamydial recA gene was efficient in repairing alkylated DNA but less so in repairing of UV damage when compared with the E. coli homologue. As detected by an SOS gene fusion, a small but measurable amount of LexA co-cleavage was indicated.  相似文献   

11.
A 3.8 kb PstI fragment of Mycobacterium tuberculosis was cloned in a recA-deleted Escherichia coli by selecting transformants with increased EMS resistance. The cloned fragment restored homologous recombination in Hfr crosses and conferred resistance to long wave (302 nm) but not short wave (254 nm) UV light. E. coli containing the 3.8 kb PstI fragment produced a 38-40 kDa protein which cross-reacted with antibodies raised against the E. coli RecA protein. The cloned DNA thus probably encodes a RecA homologue.  相似文献   

12.
The recA genes of Proteus vulgaris, Erwinia carotovora, Shigella flexneri and Escherichia coli B/r have been isolated and introduced into Escherichia coli K-12. All the heterologous genes restore resistance to killing by UV irradiation and the mutagen 4-nitroquinoline-1-oxide in RecA- E. coli K-12 hosts. Recombination proficiency is also restored as measured by formation of Lac+ recombinants from duplicated mutant lacZ genes and the ability to propagate phage lambda derivatives requiring host recombination functions for growth (Fec-). The cloned heterologous genes increase the spontaneous induction of lambda prophage in lysogens of a recA strain. Addition of mitomycin C stimulates phage production in cells carrying the E. coli B/r and S. flexneri recA genes, but little or no stimulation is seen in cells carrying the E. carotovora and P. vulgaris recA genes. After treatment with nalidixic acid, the heterologous RecA proteins are synthesized at elevated levels, a result consistent with their regulation by the E. coli K-12 LexA repressor. Southern hybridization and preliminary restriction analysis indicate divergence among the coding sequences, but antibodies prepared against the E. coli K-12 RecA protein cross-react with the heterologous enzymes, indicating structural conservation among these proteins.  相似文献   

13.
The nucleotide sequence of the recA gene of Thiobacillus ferrooxidans has been determined. No SOS box characteristic of LexA-regulated promoters could be identified in the 196-bp region upstream from the coding region. The cloned T. ferrooxidans recA gene was expressed in Escherichia coli from both the lambda pR and lac promoters. It was not expressed from the 2.2-kb of T. ferrooxidans DNA preceding the gene. The T. ferrooxidans recA gene specifies a protein of 346 amino acids that has 66% and 69% homology to the RecA proteins of E. coli and Pseudomonas aeruginosa, respectively. Most amino acids that have been identified as being of functional importance in the E. coli RecA protein are conserved in the T. ferrooxidans RecA protein. Although some amino acids that have been associated with proteolytic activity have been substituted, the cloned protein has retained protease activity towards the lambda and E. coli LexA repressors.  相似文献   

14.
Plasmid pCspA::Km carrying a cloned mutant allele of the cspA gene for the major Escherichia coli cold-shock protein CspA with an insertion of the kanamycin resistance gene cassette from transposon Tn903 into the core region of the coding sequence causes a 2.3-fold increase in radioresistance of wild-type E. coli cells (cspA+). The radioprotective effect of this plasmid is abolished or drastically reduced in mutants recA13 and rpoH15 defective in RecA protein and in induction of the heat-shock protein regulon, respectively. Plasmid pCspA::Km causes a 1.3-fold elevation in the resistance to gamma-irradiation of E. coli mutants with an intermediate level of radioresistance (Gamr445 and KS0160) but slightly diminishes resistance of a highly radiation-resistant Gamr445 mutant. In the chromosome of E. coli with normal DNA repair systems, the cspA::Km mutation in the homozygous state enhances resistance to the lethal effect of gamma-rays and UV light 2.9 and 1.4 times, respectively. These data suggest that the system of cold-shock proteins can modulate resistance of E. coli cells to the lethal effect of gamma-rays and UV light.  相似文献   

15.
A recombinant plasmid carrying the recA gene of Vibrio cholerae was isolated from a V. cholerae genomic library, using complementation in Escherichia coli. The plasmid complements a recA mutation in E. coli for both resistance to the DNA-damaging agent methyl methanesulfonate and recombinational activity in bacteriophage P1 transductions. After determining the approximate location of the recA gene on the cloned DNA fragment, we constructed a defined recA mutation by filling in an XbaI site located within the gene. The 4-base pair insertion resulted in a truncated RecA protein as determined by minicell analysis. The mutation was spontaneously recombined onto the chromosome of a derivative of V. cholerae strain P27459 by screening for methyl methanesulfonate-sensitive variants. Southern blot analysis confirmed the presence of the inactivated XbaI site in the chromosome of DNA isolated from one of these methyl methanesulfonate-sensitive colonies. The recA V. cholerae strain was considerably more sensitive to UV light than its parent, was impaired in homologous recombination, and was deficient in induction of a temperate vibriophage upon exposure to UV light. We conclude that the V. cholerae RecA protein has activities which are analogous to those described for the RecA protein of E. coli.  相似文献   

16.
A glutamine synthetase (GS) gene, glnA, from Bacteroides fragilis was cloned on a recombinant plasmid pJS139 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. DNA homology was not detected between the B. fragilis glnA gene and the E. coli glnA gene. The cloned B fragilis glnA gene was expressed from its own promoter and was subject to nitrogen repression in E. coli, but it was not able to activate histidase activity in an E. coli glnA ntrB ntrC deletion mutant containing the Klebsiella aerogenes hut operon. The GS produced by pJS139 in E. coli was purified; it had an apparent subunit Mr of approximately 75,000, which is larger than that of any other known bacterial GS. There was very slight antigenic cross-reactivity between antibodies to the purified cloned B. fragilis GS and the GS subunit of wild-type E. coli.  相似文献   

17.
Abstract Degenerate PCR primers based on conserved RecA protein regions were used to amplify a portion of recE from Prevotella ruminicola strain 23, which was used as a probe to isolate the full-length recA gene from the P. ruminicola genomic library. The P. ruminicola recA gene encoded a protein of 340 amino acids with a molecular mass of 36.81 kDa. P. ruminicola RecA was highly similar to other RecA proteins and most closely resembled that of Bacteroides fragilis (75% identity). It alleviated the methyl methanesulfonate and mitomycin C sensitivities of Escherichia coli recA mutants, but did not restore the resistance to UV-light irradiation. Mitomycin C treatment of otherwise isogenic E. coli strains showed a higher level of prophage induction in a recA harboring lysogen.  相似文献   

18.
The purified RecA proteins encoded by the cloned genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r were compared with the RecA protein from E. coli K-12. Each of the proteins hydrolyzed ATP in the presence of single-stranded DNA, and each was covalently modified with the photoaffinity ATP analog 8-azidoadenosine 5'-triphosphate (8N3ATP). Two-dimensional tryptic maps of the four heterologous RecA proteins demonstrated considerable structural conservation among these bacterial genera. Moreover, when the [alpha-32P]8N3ATP-modified proteins were digested with trypsin and analyzed by high-performance liquid chromatography, a single peak of radioactivity was detected in each of the digests and these peptides eluted identically with the tryptic peptide T31 of the E. coli K-12 RecA protein, which was the unique site of 8N3ATP photolabeling. Each of the heterologous recA genes hybridized to oligonucleotide probes derived from the ATP-binding domain sequence of the E. coli K-12 gene. These last results demonstrate that the ATP-binding domain of the RecA protein has been strongly conserved for greater than 10(7) years.  相似文献   

19.
The rec-1 gene of Haemophilus influenzae was cloned into a shuttle vector that replicates in Escherichia coli as well as in H. influenzae. The plasmid, called pRec1, complemented the defects of a rec-1 mutant in repair of UV damage, transformation, and ability of prophage to be induced by UV radiation. Although UV resistance and recombination were caused by pRec1 in E. coli recA mutants, UV induction of lambda and UV mutagenesis were not. We suggest that the ability of the H. influenzae Rec-1 protein to cause cleavage of repressors but not the recombinase function differs from that of the E. coli RecA protein.  相似文献   

20.
Interspecific complementation of an Escherichia coli recA mutant with a Legionella pneumophila genomic library was used to identify a recombinant plasmid encoding the L. pneumophila recA gene. Recombinant E. coli strains harbouring the L. pneumophila recA gene were isolated by replica-plating bacterial colonies on medium containing methyl methanesulphonate (MMS). MMS-resistant clones were identified as encoding the L. pneumophila recA analogue by their ability to protect E. coli HB101 from UV exposure and promote homologous recombination. Subcloning of selected restriction fragments and Tn5 mutagenesis localized the recA gene to a 1.7 kb Bg/II-EcoRI fragment. Analysis of minicell preparations harbouring a 1.9 kb EcoRI fragment containing the recA coding segment revealed a single 37.5 kDa protein. Insertional inactivation of the cloned recA gene by Tn5 resulted in the disappearance of the 37.5 kDa protein, concomitant with the loss of RecA function. The L. pneumophila recA gene product did not promote induction of a lambda lysogen; instead, the presence of the heterologous recA gene caused a significant reduction in spontaneous and mitomycin-C-induced prophage induction in recA+ and recA E. coli backgrounds. Despite the lack of significant genetic homology between the L. pneumophila recA gene and the E. coli counterpart, the L. pneumophila RecA protein was nearly identical to that of E. coli in molecular mass, and the two proteins showed antigenic cross-reactivity. Western blot analysis of UV-treated L. pneumophila revealed a significant increase in RecA antigen in irradiated versus control cells, suggesting that the L. pneumophila recA gene is regulated in a manner similar to that of E. coli recA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号