首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Michalski SG  Durka W 《Molecular ecology》2007,16(22):4715-4727
The mating system of a plant is the prime determinant of its population genetic structure. However, mating system effects may be modified by postzygotic mechanisms like inbreeding depression. Furthermore, historical as well as contemporary ecological factors and population characteristics, like the location within the species range can contribute to genetic variability. Using microsatellite markers we assessed the population genetic structure of the wind-pollinated Juncus atratus in 16 populations from peripheral and nearly central areas of the distribution range and studied the mating system of the species. In three peripheral populations, outcrossing rates at seeds stage were low (mean t(m) = 5.6%), suggesting a highly autogamous mating system. Despite this fact, on adult stage both individual heterozygosity (mean H(O) = 0.48) and gene diversity (mean H(E) = 0.58) were high even in small populations. Inbreeding coefficients were consistently low among all populations (mean F(IS) = 0.15). Within the three peripheral populations indirect estimates of lifetime inbreeding depression were surprisingly high (delta(eq) = 0.96) and inbreeding depression could be shown to act mostly on early seedling establishment. Similar conditions of autogamy combined with high inbreeding depression are typical for plants with a large lifetime genomic mutation rate that cannot avoid selfing by geitonogamy. However, the results presented here are unexpected for small-statured, herbaceous plants. Substantial genetic differentiation among all populations was found (mean F(ST) = 0.24). An isolation-by-distance pattern was apparent on large scale but not on local scale suggesting that the overall pattern was largely influenced by historical factors, e.g. colonization, whereas locally genetic drift was of greater importance than gene flow. Peripheral populations exhibited lower genetic diversity and higher inbreeding coefficients when compared with subcentral populations.  相似文献   

2.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

3.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.  相似文献   

4.
We analysed mating system in an annual and colonizing plant, Crepis sancta, that occupies different successional stages in the French Mediterranean region. Based on a previous experiment, we hypothesized that low inbreeding depression measured in young successional stages should select for selfing whereas higher inbreeding depression in old stages should select for outcrossing. Nine populations of C. sancta (Asteraceae) from contrasting successional stages were used to analyse (1) Seed set after autonomous and enforced selfing in controlled conditions and (2) outcrossing rates in natural conditions using allozymes (progeny array analysis). We found that C. sancta possesses a pseudo‐self‐incompatibility system and that mating system varies among populations. Allozymes revealed that the population multilocus outcrossing rates vary from 0.77 to 0.99. The lowest outcrossing rates occur in the youngest successional stages and complete outcrossing is found in old stages. The data partially agree with the predictions we made and the results are more generally discussed in the light of factors changing during succession. We did not find any evidence of reproductive assurance in the nine populations, contrary to what is often assumed as a major factor governing mating system evolution in colonizing species. We propose that mating system variation can be interpreted as the result of the balance between the cost of outcrossing and inbreeding depression in a metapopulation context.  相似文献   

5.
The evolution of mating systems and that of life history have usually been modeled separately. However, they may be to some extent coupled in natural situations because they rely on the same phenotypic traits. Here, we focus on one of these traits, the age at first reproduction, in a species able to self- and cross-fertilize. When inbreeding depression is strong, self-fertile species preferentially cross-fertilize. However, outcrossing is not always possible when the availability of sexual partners is limited. The optimal reproductive strategy in this case would be to wait for a sexual partner for a certain period of time (the waiting time) and then switch to selfing if no mates have been encountered (reproductive assurance strategy). We predict the evolution of an optimal waiting time depending on the efficiency of resource reallocation to late fecundity, on the inbreeding depression, and on the instantaneous probability of encountering a partner versus dying. As a consequence of reduced mate availability, intermediate selfing rates can be generated in preferentially outcrossing populations, but they are lowered by the existence of a waiting time. Our model may thus explain low selfing rates observed in natural populations of many self-fertile, preferentially outcrossing plants or animal species.  相似文献   

6.
Experimental analysis of biparental inbreeding in a self-fertilizing plant   总被引:2,自引:0,他引:2  
Abstract.— Localized dispersal and mating may genetically structure plant populations, resulting in matings among related individuals. This biparental inbreeding has significant consequences for the evolution of mating systems, yet is difficult to estimate in natural populations. We estimated biparental inbreeding in two populations of the largely self-fertilizing plant Aquilegia canadensis using standard inference as well as a novel experiment comparing apparent selfing between plants that were randomly relocated within populations to experimental control plants. Using two allozyme markers, biparental inbreeding ( b ) inferred from the difference between single-locus and multilocus estimates of selfing ( b = ss – sm ) was low. Less than 3% of matings involved close relatives (mean b = 0.029). In contrast, randomly relocating plants greatly reduced apparent selfing (mean ss = 0.674) compared to control plants that had been dug up and replanted in their original locations ( ss = 0.953, P = 0.002). Based on this difference in ss , we estimated that approximately 30% of all matings involved close relatives (mean b = 0.279, 95% CL = 0.072–0.428). Inference from ss – sm underestimated b in these populations by more than an order of magnitude. Biparental inbreeding is thought to influence the evolution of self-fertilization primarily through reducing the genetic cost of outcrossing. This is unlikely to be of much significance in A. canadensis because inbreeding depression (a major cost of selfing) is much stronger than the cost of outcrossing. However, biparental inbreeding combined with strong inbreeding depression may influence selection on dispersal.  相似文献   

7.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

8.
夏枯草交配系统对花特征和访花频率差异的影响 植物花特征和传粉者的访问次数与交配系统类型密切相关。唇形科植物夏枯草(Prunella vulgaris)存 在两种植株类型,分别为柱头伸出花冠和柱头在花冠内部的植株,而且两种植株的比例在不同种群中存在差异。本研究选择柱头伸出花冠外植株占绝大多数、柱头伸出花冠外植株占多数和柱头在花冠内部植株占多数的3个种群,通过比较每个种群中两种植株类型的开花物候、花形态特征、昆虫访问频率、自交能力、传粉者对结实的贡献以及近交衰退的水平,以检验花特征和传粉者访问次数与交配系统类型的关系。研究结果表明,与柱头在花冠内部的植株相比,柱头伸出花冠外的植株具有更大和更多的花,产生更多的花粉和花蜜,具有更高的访花频率,并主要通过异交产生种子。在种群水平,柱头伸出花冠外的植株占多数种群的访花频率显著高于柱头在花冠内部植株占多数的访花频率。柱头在花冠内部的植株比柱头伸出花冠外的植株具有更强的自动自交能力,在传粉者缺乏时为其提供了繁殖保障,但繁殖保障和异交率在不同种群中差异不显著,表明较低的昆虫访问能够满足夏枯草的授粉需求以产生种子,这可能与夏枯草较少的胚珠数量(每朵花仅有4个胚珠)有关。柱头在花冠内部植株的近交衰退水平低于柱头伸出花冠外植株的近交衰退水平,但两种植株类型的近交衰退水平均低于0.5,说明近交衰退不足以阻止该物种中自交的进化。综上所述,柱头在花冠内部的植株能够通过自交为夏枯草提供繁殖保障,而柱头伸出花冠外的植株能够利用昆虫传粉确保异交,表明混合交配系统在该物种中是一个稳定的状态。  相似文献   

9.
Inbreeding depression is the reduction in offspring fitness associated with inbreeding and is thought to be one of the primary forces selecting against the evolution of self-fertilization. Studies suggest that most inbreeding depression is caused by the expression of recessive deleterious alleles in homozygotes whose frequency increases as a result of self-fertilization or mating among relatives. This process leads to the selective elimination of deleterious alleles such that highly selfing species may show remarkably little inbreeding depression. Genome duplication (polyploidy) has also been hypothesized to influence levels of inbreeding depression, with polyploids expected to exhibit less inbreeding depression than diploids. We studied levels of inbreeding depression in allotetraploid and diploid species of Clarkia (Onagraceae) that vary in mating system (each cytotype was represented by an outcrossing and a selfing species). The outcrossing species exhibited more inbreeding depression than the selfing species for most fitness components and for two different measures of cumulative fitness. In contrast, though inbreeding depression was generally lower for the polyploid species than for the diploid species, the difference was statistically significant only for flower number and one of the two measures of cumulative fitness. Further, we detected no significant interaction between mating system and ploidy in determining inbreeding depression. In sum, our results suggest that a taxon's current mating system is more important than ploidy in influencing levels of inbreeding depression in natural populations of these annual plants.  相似文献   

10.
Seed production in many plants is pollen limited, likely because of unpredictable variation in the pollinator environment. One way for plants to escape the consequences of pollinator variability is to evolve mating systems, such as autonomous selfing, that assure reproduction without relying on pollinators. We explore this hypothesis through the construction and analysis of heuristic models of plant population dynamics in seed- or site-limited populations. Our analysis suggests several important points: the familiar rule that inbreeding depression greater than 0.5 maintains outcrossing significantly underestimates the threshold required under pollen limited conditions with prior selfing; variability in the pollination environment erodes the ability of inbreeding depression to maintain outcrossing; and variable pollination environments can result in stable intermediate rates of prior selfing. The results reflect the importance of geometric mean fitness (which in a variable environment is less than the arithmetic mean) in the face of temporal variation.  相似文献   

11.
BACKGROUND AND AIMS: Inbreeding depression is thought to play a central role in the evolution and maintenance of cross-fertilization. Theory indicates that inbreeding depression can be purged with self-fertilization, resulting in positive feedback for the selection of selfing. Variation among populations of Leptosiphon jepsonii in the timing and rate of self-fertilization provides an opportunity to study the evolution of inbreeding depression and mating systems. In addition, the hypothesis that differences in inbreeding depression for male and female fitness can stabilize mixed mating in L. jepsonii is tested. METHODS: In a growth room experiment, inbreeding depression was measured in three populations with mean outcrossing rates ranging from 0.06 to 0.69. The performance of selfed and outcrossed progeny is compared at five life history stages. To distinguish between self-incompatibility and early inbreeding depression, aborted seeds and unfertilized ovules were counted in selfed and outcrossed fruits. In one population, pollen and ovule production was quantified to estimate inbreeding depression for male and female fitness. KEY RESULTS: Both prezygotic barriers and inbreeding depression limited self seed set in the most outcrossing population. Cumulative inbreeding depression ranged from 0.297 to 0.501, with the lowest value found in the most selfing population. Significant inbreeding depression for early life stages was found only in the more outcrossing populations. Inbreeding depression was not significant for pollen or ovule production. CONCLUSIONS: The results provide modest support for the hypothesized relationship between inbreeding depression and mating systems. The absence of early inbreeding depression in the more selfing populations is consistent with theory on purging. Differences in male and female expression of inbreeding depression do not appear to stabilize mixed mating in L. jepsonii. The current estimates of inbreeding depression for L. jepsonii differ from those of previous studies, underscoring the effects of environmental variation on its expression.  相似文献   

12.
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression.  相似文献   

13.
Genome duplication resulting in polyploidy can have significant consequences for the evolution of mating systems. Most theory predicts that self‐fertilization will be selectively favored in polyploids; however, many autopolyploids are outcrossing or mixed‐mating. Here, we examine the hypothesis that the evolution of selfing is restricted in autopolyploids because the genetic cost of selfing (i.e., inbreeding depression) increases monotonically with successive generations of inbreeding. Using the herbaceous, autotetraploid plant Chamerion angustifolium, we generated populations with different inbreeding coefficients (F= 0, 0.17 and 0.36) through three consecutive generations of selfing and compared their magnitudes of inbreeding depression in a common environment. Mating system estimates for four natural populations confirmed that tetraploid selfing rates (sm= 0.25, SE = 0.02) are similar to those of diploids (sm= 0.12, SE = 0.12; F1,2= 1.34, P= 0.37) indicating that both cytotypes are predominantly outcrossing. Compared to an outbred control line, mean inbreeding depression for seed production, survival, and height (vegetative and total) in the inbred line differed among generations (inbreeding coefficients). Across all stages, inbreeding depression (relative to control) was positively related to generation (inbreeding coefficient). Although the initial costs of inbreeding in extant and newly synthesized polyploids may be low compared to diploids, the monotonic increase in inbreeding depression with repeated inbreeding may limit the extent to which selfing variants are favored.  相似文献   

14.
Hermaphroditic plants can potentially self‐fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self‐progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self‐incompatible, with a low frequency of self‐compatible plants. However, a few populations have become fixed for self‐compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self‐incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding‐depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self‐incompatibility to produce selfed seed might leave residual effects of self‐incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.  相似文献   

15.
Inbreeding depression is common among plants and may distort mating system estimates. Mating system studies traditionally ignore this effect, nonetheless an assessment of inbreeding depression that may have occurred before progeny evaluation could be necessary. In the neotropical Pinus chiapensis inbreeding depression was evaluated using regression analysis relating progeny F-values with seed germinability, the mating system was analysed in three populations with contrasting size, using isozymes, obtained a corrected outcrossing rate. Selfing decreased seed viability by 19%, relative to an outcrossed plant. Multilocus outcrossing rates, t(m), varied widely among populations. In the two smallest populations t(m) congruent with 1. Therefore, inbreeding depression did not affect the estimates, but overestimated t(m) by 10% in the third population, which has a true mixed mating system (selfing was the major source of inbreeding), and an unusually low t(m) for pines (t(m) = 0.54, uncorrected, t(m) = 0.49, corrected). Inbreeding depression may be an uneven source of bias for outcrossing estimates even at the infraspecific level. Accuracy [corrected] but not precision [corrected] may be gained by including inbreeding depression in outcrossing estimates. Therefore, caution should be taken when comparing t(m) among species or even populations within the same species.  相似文献   

16.
S. T. Schultz  J. H. Willis 《Genetics》1995,141(3):1209-1223
We use mutation-selection recursion models to evaluate the relative contributions of mutation and inbreeding history to variation among individuals in inbreeding depression and the ability of experiments to detect associations between individual inbreeding depression and mating system genotypes within populations. Poisson mutation to deleterious additive or recessive alleles generally produces far more variation among individuals in inbreeding depression than variation in history of inbreeding, regardless of selfing rate. Moreover, variation in inbreeding depression can be higher in a completely outcrossing or selfing population than in a mixed-mating population. In an initially random mating population, the spread of a dominant selfing modifier with no pleiotropic effects on male outcross success causes a measurable increase in inbreeding depression variation if its selfing rate is large and inbreeding depression is caused by recessive lethals. This increase is observable during a short period as the modifier spreads rapidly to fixation. If the modifier alters selfing rate only slightly, it fails to spread or causes no measurable increase in inbreeding depression variance. These results suggest that genetic associations between mating loci and inbreeding depression loci could be difficult to demonstrate within populations and observable only transiently during rapid evolution to a substantially new selfing rate.  相似文献   

17.
  • One of the most fundamental, although controversial, questions related to the evolution of plant mating systems is the distribution of outcrossing rates. Self‐compatibility, and especially autonomous self‐pollination, can become particularly beneficial in anthropogenically degraded habitats with impoverished pollinator assemblages and increased pollen limitation.
  • In a hand‐pollination experiment with 46 meadow plants from the ?elezné hory Mts., Czech Republic, we evaluated the species' ability to adopt different mating systems. For a subset of the species, we also tested seed germination for inbreeding depression. Subsequently, we analysed relationships between the species' mating systems and 12 floral and life‐history traits.
  • We found a relatively discrete distribution of the studied species into four groups. Fully and partially self‐incompatible species formed the largest group, followed by self‐compatible non‐selfers and mixed mating species. The germination experiment showed an absence of inbreeding depression in 19 out of 22 examined species. Nectar sugar per flower, nectar sugar per shoot and dichogamy were significant associated with the mating system.
  • Spontaneous selfing ability and self‐incompatibility in species of the meadow communities had a discrete distribution, conforming to the general distribution of mating and breeding systems in angiosperms. The low frequency of spontaneous selfers and the lack of inbreeding depression at germination suggest the existence of a selection against selfing at the later ontogenetic stages. Some floral traits, such as the level of dichogamy and amount of nectar reward, may strongly impact the balance between selfing and outcrossing rates in the self‐compatible species and thus shape the evolution of mating systems.
  相似文献   

18.
Mutational variability at microsatellite loci is shaped by both population history and the mating system. In turn, alternate mating systems in flowering plants can resolve aspects of microsatellite loci evolution. Five species of yellow monkeyflowers (Mimulus sect. Simiolis) differing for historical rates of inbreeding were surveyed for variation at six microsatellite loci. High levels of diversity at these loci were found in both outcrossing and selfing taxa. In line with allozyme studies, inbreeders showed more partitioning of diversity among populations, and diversity in selfing taxa was lower than expected from reductions in effective population size due to selfing alone, suggesting the presence of either population bottlenecks or background selection in selfers. Evaluation of the stepwise mutation model (a model of DNA replication slippage) suggests that these loci evolve in a stepwise fashion. Inferred coalescent times of microsatellite alleles indicate that past bottlenecks of population size or colonization events were important in reducing diversity in the inbreeding taxon.   相似文献   

19.
A bimodal distribution of outcrossing rates was observed for natural plant populations, with more primarily selfing and primarily outcrossing species, and fewer species with intermediate outcrossing rate than expected by chance. We suggest that this distribution results from selection for the maintenance of outcrossing in historically large, outcrossing populations with substantial inbreeding depression, and from selection for selfing when increased inbreeding, due to pollinator failure or population bottlenecks, reduces the level of inbreeding depression. Few species or populations are fixed at complete selfing or complete outcrossing. A low level of selfing in primarily outcrossing species is unlikely to be selectively advantageous, but will not reduce inbreeding depression to the level where selfing is selectively favored, particularly if accompanied by reproductive compensation. Similarly, occasional outcrossing in primarily selfing species is unlikely to regularly provide sufficient heterosis to maintain selection for outcrossing through individual selection. Genetic, morphological and ecological constraints may limit the potential for outcrossing rates in selfers to be reduced below some minimum level.  相似文献   

20.
Hermaphroditic individuals can produce both selfed and outcrossed progeny, termed mixed mating. General theory predicts that mixed-mating populations should evolve quickly toward high rates of selfing, driven by rapid purging of genetic load and loss of inbreeding depression (ID), but the substantial number of mixed-mating species observed in nature calls this prediction into question. Lower average ID reported for selfing than for outcrossing populations is consistent with purging and suggests that mixed-mating taxa in evolutionary transition will have intermediate ID. We compared the magnitude of ID from published estimates for highly selfing (r > 0.8), mixed-mating (0.2 ≤ r ≥ 0.8), and highly outcrossing (r < 0.2) plant populations across 58 species. We found that mixed-mating and outcrossing taxa have equally high average lifetime ID (δ= 0.58 and 0.54, respectively) and similar ID at each of four life-cycle stages. These results are not consistent with evolution toward selfing in most mixed-mating taxa. We suggest that prevention of purging by selective interference could explain stable mixed mating in many natural populations. We identify critical gaps in the empirical data on ID and outline key approaches to filling them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号