首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transport of proteins across the plasma membrane in bacteria requires a channel formed from the SecY complex, which cooperates with either a translating ribosome in cotranslational translocation or the SecA ATPase in post-translational translocation. Whether translocation requires oligomers of the SecY complex is an important but controversial issue: it determines channel size, how the permeation of small molecules is prevented, and how the channel interacts with the ribosome and SecA. Here, we probe in vivo the oligomeric state of SecY by cross-linking, using defined co- and post-translational translocation intermediates in intact Escherichia coli cells. We show that nontranslocating SecY associated transiently through different interaction surfaces with other SecY molecules inside the membrane. These interactions were significantly reduced when a translocating polypeptide inserted into the SecY channel co- or post-translationally. Mutations that abolish the interaction between SecY molecules still supported viability of E. coli. These results show that a single SecY molecule is sufficient for protein translocation.  相似文献   

2.
The SecYEG complex constitutes a protein conducting channel across the bacterial cytoplasmic membrane. It binds the peripheral ATPase SecA to form the translocase. When isoleucine 278 in transmembrane segment 7 of the SecY subunit was replaced by a unique cysteine, SecYEG supported an increased preprotein translocation and SecA translocation ATPase activity, and allowed translocation of a preprotein with a defective signal sequence. SecY(I278C)EG binds SecA with a higher affinity than normal SecYEG, in particular in the presence of ATP. The increased translocation activity of SecY(I278C)EG was confirmed in a purified system consisting of SecYEG proteoliposomes, while immunoprecipitation in detergent solution reveal that translocase-preprotein complexes are more stable with SecY(I278C) than with normal SecY. These data imply an important role for SecY transmembrane segment 7 in SecA binding. As improved SecA binding to SecY was also observed with the prlA4 suppressor mutation, it may be a general mechanism underlying signal sequence suppression.  相似文献   

3.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

4.
G Matsumoto  T Yoshihisa    K Ito 《The EMBO journal》1997,16(21):6384-6393
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction. We identified a secY mutation (secY205), affecting the most carboxyterminal cytoplasmic domain, that did not allow ATP and preprotein-dependent productive SecA insertion, while allowing idling insertion without the preprotein. Thus, the secY205 mutation might affect the SecYEG 'channel' structure in accepting the preprotein-SecA complex or its opening by the complex. We isolated secA mutations that allele-specifically suppressed the secY205 translocation defect in vivo. One mutant protein, SecA36, with an amino acid alteration near the high-affinity ATP-binding site, was purified and suppressed the in vitro translocation defect of the inverted membrane vesicles carrying the SecY205 protein. The SecA36 protein could also insert into the mutant membrane vesicles in vitro. These results provide genetic evidence that SecA and SecY specifically interact, and show that SecY plays an essential role in insertion of SecA in response to a preprotein and ATP and suggest that SecA drives protein translocation by inserting into the membrane in vivo.  相似文献   

5.
Preprotein translocation in Escherichia coli is mediated by translocase, a multimeric membrane protein complex with SecA as the peripheral ATPase and SecYEG as the translocation pore. Unique cysteines were introduced into transmembrane segment (TMS) 2 of SecY and TMS 3 of SecE to probe possible sites of interaction between the integral membrane subunits. The SecY and SecE single-Cys mutants were cloned individually and in pairs into a secYEG expression vector and functionally overexpressed. Oxidation of the single-Cys pairs revealed periodic contacts between SecY and SecE that are confined to a specific alpha-helical face of TMS 2 and 3, respectively. A Cys at the opposite alpha-helical face of TMS 3 of SecE was found to interact with a neighboring SecE molecule. Formation of this SecE dimer did not affect the high-affinity binding of SecA to SecYEG and ATP hydrolysis, but blocked preprotein translocation and thus uncouples the SecA ATPase activity from translocation. Conditions that prevent membrane deinsertion of SecA markedly stimulated the interhelical contact between the SecE molecules. The latter demonstrates a SecA-mediated modulation of the protein translocation channel that is sensed by SecE.  相似文献   

6.
The fifth and the sixth cytoplasmic regions (C5 and C6) of SecY are important for the SecA-driven preprotein translocation reaction. A cold-sensitive mutation, secY205 (Tyr-429 --> Asp), in C6 impairs the ATP- and precursor-dependent SecA insertion into the membrane. We now identified second site mutations that suppressed the defect. Cis-placement of these mutations proved to suppress mutations at another essential residue (Arg-357) of SecY as well. Thus, they tolerate the otherwise defective SecY alterations in the same molecule. Two alterations (Ile-195 to Ser in TM5 region and Ile-408 to Leu in TM10 region) were found to make the translocation channel more active, because it enabled cells to survive with reduced content of the SecYE complex. These mutations only very weakly suppressed a signal sequence defect of the lambda receptor protein. The mutant SecYEG translocase exhibited higher than normal activity in vitro, being accompanied by striking independence of the proton motive force as well as by stabilization of a bound and active SecA species against urea treatment. These results have been interpreted in terms of balance shifts between channel closing and channel opening alterations in the SecYEG translocase.  相似文献   

7.
We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles. We now report the isolation of the SecY/E protein, the integral membrane protein component of the E. coli preprotein translocase. The SecY/E protein, reconstituted into proteoliposomes, acts together with SecA protein to support translocation of proOmpA, the precursor form of outer membrane protein A. This translocation requires ATP and is strongly stimulated by the protonmotive force. The initial rates and the extents of translocation into either native membrane vesicles or proteoliposomes with pure SecY/E are comparable. The SecY/E protein consists of SecY, SecE, and an additional polypeptide. Antiserum against SecY immunoprecipitates all three components of the SecY/E protein.  相似文献   

8.
The secY205 mutant is cold-sensitive for protein export, with an in vitro defect in supporting ATP- and preprotein-dependent insertion of SecA into the membrane. We characterized SecA81 with a Gly516 to Asp substitution near the minor ATP-binding region, which suppresses the secY205 defect at low temperature and exhibits an allele-specific synthetic defect with the same SecY alteration at 42 degrees C. The overproduced SecA81 aggregated in vivo at temperatures above 37 degrees C. Purified SecA81 exhibited markedly enhanced intrinsic and membrane ATPase activities at 30 degrees C, while it was totally inactive at 42 degrees C. The trypsin digestion patterns indicated that SecA81 has some disorder in the central region of SecA, which encompasses residues 421-575. This conformational abnormality may result in unregulated ATPase at low temperature as well as the thermosensitivity of the mutant protein. In the presence of both proOmpA and the wild-type membrane vesicles, however, the thermosensitivity was alleviated, and SecA81 was able to catalyze significant levels of proOmpA-stimulated ATP hydrolysis as well as proOmpA translocation at 42 degrees C. While SecA81 was able to overcome the SecY205 defect at low temperature, the SecY205 membrane vesicles could not significantly support the translocation ATPase or the proOmpA translocation activity of SecA81 at 42 degrees C. The inactivated SecA81 molecules seemed to jam the translocase since it interfered with translocase functions at 42 degrees C. Based on these results, we propose that under preprotein-translocating conditions, the SecYEG channel can stabilize and activate SecA, and that this aspect is defective for the SecA81-SecY205 combination. The data also suggest that the conformation of the central region of SecA is important for the regulation of ATP hydrolysis and for the productive interaction of SecA with SecY.  相似文献   

9.
In bacteria most secretory proteins are transported across the plasma membrane by the interplay of the ATPase SecA with the translocation channel formed by the SecY complex; SecA uses cycles of ATP hydrolysis to "push" consecutive segments of a polypeptide substrate through the channel. Here we have addressed the mechanism of this process by following the fate of stalled translocation intermediates. These were generated by using a polypeptide substrate containing a bulky disulfide-bonded loop, thus preventing the final residues from passing through the channel. Protease protection experiments showed that the intermediates were stable in the presence of ATP and could complete translocation once the block was removed. The translocation intermediate was also stable when SecA associated with ATPgammaS, a poorly hydrolyzable ATP analog, or ADP plus AlF(4), which mimics the transition state during ATP hydrolysis. In contrast, when SecA was in its ADP-bound state, the translocating polypeptide moved back into the cytosol, as indicated by the disappearance of the protected fragment. Backsliding was not significantly altered by deletion of the plug domain, a short helix in the center of the SecY channel, but it was slowed down when changes were introduced into the pore ring, the constriction of the hourglass-shaped channel. In all cases, backsliding was significantly slower than forward translocation. Together, these data suggest that SecA binds the polypeptide chain in its ATP state and releases it in the ADP state. The channel itself does not bind the polypeptide chain but provides "friction" that minimizes backsliding when ADP-bound SecA resets to "grab" the next segment of the substrate.  相似文献   

10.
The Escherichia coli SecYEG complex forms a transmembrane channel for both protein export and membrane protein insertion. Secretory proteins and large periplasmic domains of membrane proteins require for translocation in addition the SecA ATPase. The conserved arginine 357 of SecY is essential for a yet unidentified step in the SecA catalytic cycle. To further dissect its role, we have analysed the requirement for R357 in membrane protein insertion. Although R357 substitutions abolish post-translational translocation, they allow the translocation of periplasmic domains targeted co-translationally by an N-terminal transmembrane segment. We propose that R357 is essential for the initiation of SecA-dependent translocation only.  相似文献   

11.
In bacteria, the SecYEG protein translocation complex employs the cytosolic ATPase SecA to couple the energy of ATP binding and hydrolysis to the mechanical force required to push polypeptides through the membrane. The molecular basis of this energy transducing reaction is not well understood. A peptide-binding array has been employed to identify sites on SecYEG that interact with SecA. These results along with fluorescence spectroscopy have been exploited to characterise a long-distance conformational change that connects the nucleotide-binding fold of SecA to the transmembrane polypeptide channel in SecY. These movements are driven by binding of non-hydrolysable ATP analogues to a monomer of SecA in association with the SecYEG complex. We also determine that interaction with SecYEG simultaneously decreases the affinity of SecA for ATP and inhibitory magnesium, favouring a previously identified active state of the ATPase. Mutants of SecA capable of binding but not hydrolysing ATP do not elicit this conformationally active state, implicating residues of the Walker B motif in the early chain of events that couple ATP binding to the mobility of the channel.  相似文献   

12.
The preprotein translocase of Escherichia coli is a multisubunit enzyme with two domains, the peripheral membrane protein SecA and the membrane-embedded SecY/E protein. SecY/E has been isolated as a complex of three polypeptides, SecY, SecE, and band 1. We now present four lines of evidence that the active species of SecY/E is composed of a tightly associated complex of these three subunits: 1) antibodies to SecY efficiently precipitate SecY/E activity as well as all three polypeptides; 2) the proportions of SecY, SecE, and band 1 in the immunoprecipitates are the same as in the starting fraction; 3) the immunoprecipitable complex is not disrupted by treatment with either high salt or urea but is disrupted by brief incubation at 20 degrees C, and the kinetics of dissociation of both band 1 and SecE from SecY at 20 degrees C parallel the loss of translocation ATPase activity; 4) upon immunoprecipitation of similar units of activity of translocase from detergent solutions from either wild-type membranes or a SecY and SecE overproducer strain, the SecE and band 1 subunits are recovered in the same proportions. These data establish that the subunits of SecY/E are firmly associated and that it is the associated complex which is active for translocation.  相似文献   

13.
Chiba K  Mori H  Ito K 《Journal of bacteriology》2002,184(8):2243-2250
SecY, a central component of the membrane-embedded sector of protein translocase, contains six cytosolic domains. Here, we examined the importance of the C-terminal cytosolic region of SecY by systematically shortening the C-terminal end and examining the functional consequences of these mutations in vivo and in vitro. It was indicated that the C-terminal five residues are dispensable without any appreciable functional defects in SecY. Mutants missing the C-terminal six to seven residues were partially compromised, especially at low temperature or in the absence of SecG. In vitro analyses indicated that the initial phase of the translocation reaction, in which the signal sequence region of the preprotein is inserted into the membrane, was affected by the lack of the C-terminal residues. SecA binding was normal, but SecA insertion in response to ATP and a preprotein was impaired. It is suggested that the C-terminal SecY residues are required for SecA-dependent translocation initiation.  相似文献   

14.
The motor protein SecA drives the translocation of (pre-)proteins across the SecYEG channel in the bacterial cytoplasmic membrane by nucleotide-dependent cycles of conformational changes often referred to as membrane insertion/de-insertion. Despite structural data on SecA and an archaeal homolog of SecYEG, the identity of the sites of interaction between SecA and SecYEG are unknown. Here, we show that SecA can be cross-linked to several residues in cytoplasmic loop 5 (C5) of SecY, and that SecA directly interacts with a part of transmembrane segment 4 (TMS4) of SecY that is buried in the membrane region of SecYEG. Mutagenesis of either the conserved Arg357 in C5 or Glu176 in TMS4 interferes with the catalytic activity of SecA but not with binding of SecA to SecYEG. Our data explain how conformational changes in SecA could be directly coupled to the previously proposed opening mechanism of the SecYEG channel.  相似文献   

15.
The translocation of proteins across the bacterial cell membrane is carried out by highly conserved components of the Sec system. Most bacterial species have a single copy of the genes encoding SecA and SecY, which are essential for viability. However, Streptococcus gordonii strain M99 encodes SecA and SecY homologues that are not required for viability or for the translocation of most exported proteins. The genes (secA2 and secY2) reside in a region of the chromosome required for the export of GspB, a 286 kDa cell wall-anchored protein. Loss of GspB surface expression is associated with a significant reduction in the binding of M99 to human platelets, suggesting that it may be an adhesin. Genetic analyses indicate that M99 has a second, canonical SecA homologue that is essential for viability. At least two other Gram-positive species, Streptococcus pneumoniae and Staphylococcus aureus, encode two sets of SecA and SecY homologues. One set is more similar to SecA and SecY of Escherichia coli, whereas the other set is more similar to SecA2 and SecY2 of strain M99. The conserved organization of genes in the secY2-secA2 loci suggests that, in each of these Gram-positive species, SecA2 and SecY2 may constitute a specialized system for the transport of a very large serine-rich repeat protein.  相似文献   

16.
The export of many E. coli proteins such as proOmpA requires the cytosolic chaperone SecB and the membrane-bound preprotein translocase. Translocase is a multisubunit enzyme with the SecA protein as its peripheral membrane domain and the SecY/E protein as its integral domain. SecB, by binding to proOmpA in the cytosol, prevents its aggregation or association with membranes at nonproductive sites. The SecA receptor binds the proOmpA-SecB complex (Kd approximately 6 x 10(-8) M) through direct recognition of both the SecB (Kd approximately 2 x 10(-7) M) as well as the leader and mature domains of the precursor protein. SecB has a dual function in stabilizing the precursor and in passing it on to membrane-bound SecA, the next step in the pathway. SecA itself is bound to the membrane by its affinity (Kd approximately 4 x 10(-8) M) for SecY/E and for acidic lipids. The functions of SecB and SecA as a two-stage receptor system are linked by their affinity for each other.  相似文献   

17.
Translocation of preproteins across the Escherichia coli inner membrane requires acidic phospholipids. We have studied the translocation of the precursor protein proOmpA across inverted inner membrane vesicles prepared from cells depleted of phosphatidylglycerol and cardiolipin. These membranes support neither translocation nor the translocation ATPase activity of the SecA subunit of preprotein translocase. We now report that inner membrane vesicles which are depleted of acidic phospholipids are unable to bind SecA protein with high affinity. These membranes can be restored to translocation competence by fusion with liposomes containing phosphatidylglycerol, suggesting that the defect in SecA binding is a direct effect of phospholipid depletion rather than a general derangement of inner membrane structure. Reconstitution of SecY/E, the membrane-embedded domain of translocase, into proteoliposomes containing predominantly a single synthetic acidic lipid, dioleoylphosphatidylglycerol, allows efficient catalysis of preprotein translocation.  相似文献   

18.
SecY is a component of the protein-conducting channel for protein transport across the cytoplasmic membrane of prokaryotes. It is intimately associated with a second integral membrane protein, SecE, and together with SecA forms the minimal core of the preprotein translocase. A chloroplast homologue of SecY (cpSecY) has previously been identified and determined to be localized to the thylakoid membrane. In the present work, we demonstrate that a SecE homologue is localized to the thylakoid membrane, where it forms a complex with cpSecY. Digitonin solubilization of thylakoid membranes releases the SecY/E complex in a 180-kDa form, indicating that other components are present and/or the complex is a higher order oligomer of the cpSecY/E dimer. To test whether cpSecY forms the protein-conducting channel of the thylakoid membrane, translocation assays were conducted with the SecA-dependent substrate OE33 and the SecA-independent substrate OE23, in the presence and absence of antibodies raised against cpSecY. The antibodies inhibited translocation of OE33 but not OE23, indicating that cpSecY comprises the protein-conducting channel used in the SecA-dependent pathway, whereas a distinct protein conducting channel is used to translocate OE23.  相似文献   

19.
The Sec complex forms the core of a conserved machinery coordinating the passage of proteins across or into biological membranes. The bacterial complex SecYEG interacts with the ATPase SecA or translating ribosomes to translocate secretory and membrane proteins accordingly. A truncated preprotein competes with the physiological full-length substrate and primes the protein-channel complex for transport. We have employed electron cryomicroscopy of two-dimensional crystals to determine the structure of the complex unlocked by the preprotein. Its visualization in the native environment of the membrane preserves the active arrangement of SecYEG dimers, in which only one of the two channels is occupied by the polypeptide substrate. The signal sequence could be identified along with the corresponding conformational changes in SecY, including relocation of transmembrane segments 2b and 7 as well as the plug, which presumably then promote channel opening. Therefore, we propose that the structure describes the translocon unlocked by preprotein and poised for protein translocation.  相似文献   

20.
Y B Yang  J Lian    P C Tai 《Journal of bacteriology》1997,179(23):7386-7393
SecY, a component of the protein translocation system in Escherichia coli, was depleted at a nonpermissive temperature in a strain which had a temperature-sensitive polar effect on the expression of its secY. Membrane vesicles prepared from these cells, when grown at the nonpermissive temperature, contained about 5% SecY and similarly low levels of SecG. As expected, translocation of alkaline phosphatase precursors across these SecY-deficient membranes was severely impaired and appeared to be directly related to the decrease of SecY amounts. However, despite such a dramatic reduction in SecY and SecG levels, these membranes exhibited 50 to 70% of the wild-type translocation activity, including the processing of the signal peptide, of OmpA precursor (proOmpA). This translocation activity in SecY-deficient membranes was still SecA and ATP dependent and was not unique to proOmpA, as lipoprotein and lambda receptor protein precursors were also transported efficiently. Membranes that were reconstituted from these SecY-depleted membranes contained undetectable amounts of SecY yet were also shown to possess substantial translocation activity for proOmpA. These results indicate that the requirement of SecY for translocation is not obligatory for all secretory proteins and may depend on the nature of precursors. Consequently, it is unlikely that SecY is the essential core channel through which all precursors traverse across membranes; rather, SecY probably contributes to efficiency and specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号