首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While several recent studies have described changes in microbial communities associated with exotic plant invasion, how arbuscular mycorrhizal fungi (AMF) communities respond to exotic plant invasion is not well known, despite the salient role of this group in plant interactions. Here, we use molecular methods (terminal restriction fragment length polymorphism analyses based on the large subunit of the rRNA gene) to examine AMF community structure in sites dominated by the invasive mycorrhizal forb, Centaurea maculosa Lam. (spotted knapweed), and in adjacent native grassland sites. Our results indicate that significant AMF community alteration occurs following C. maculosa invasion. Moreover, a significant reduction in the number of restriction fragment sizes was found for samples collected in C. maculosa-dominated areas, suggesting reduced AMF diversity. Extraradical hyphal lengths exhibited a significant, on average 24%, reduction in C. maculosa-versus native grass-dominated sites. As both AMF community composition and abundance were altered by C.maculosa invasion, these data are strongly suggestive of potential impacts on AMF-mediated ecosystem processes. Given that the composition of AMF communities has the potential to differentially influence different plant species, our results may have important implications for site restoration after weed invasion.  相似文献   

2.
Symbiotic arbuscular mycorrhizal fungi (AMF) have been shown to influence both the diversity and productivity of grassland plant communities. These effects have been postulated to depend on the differential effects of individual mycorrhizal taxa on different plant species; however, so far there are few detailed studies of the dynamics of AMF colonization of different plant species. In this study, we characterized the communities of AMF colonizing the roots of two plant species, Prunella vulgaris and Antennaria dioica, in a Swedish seminatural grassland at different times of the year. The AMF small subunit rRNA genes were subjected to PCR, cloning, sequencing, and phylogenetic analysis. Nineteen discrete sequence types belonging to Glomus groups A and B and to the genus Acaulospora were distinguished. No significant seasonal changes in the species compositions of the AMF communities as a whole were observed. However, the two plant species hosted significantly different AMF communities. P. vulgaris hosted a rich AMF community throughout the entire growing season. The presence of AMF in A. dioica decreased dramatically in autumn, while an increased presence of Ascomycetes species was detected.  相似文献   

3.
  • Increasing nitrogen deposition and more frequent drought events are likely to change plant interactions in natural grasslands. Both factors may also influence the interactions between hemiparasitic plants, regarded as keystone species in many grasslands, and their host species.
  • We grew a combination of three suitable hosts, a grass, a forb and a legume, with and without the hemiparasite Rhinanthus alectorolophus at three levels of nitrogen (N) and two levels of water availability in a factorial design.
  • Biomass of the hemiparasite and host community increased with N level and was reduced by drought to a similar degree. Larger plants in fertilised pots started to wilt earlier, and the presence of a hemiparasite further increased drought sensitivity. The hemiparasite strongly reduced biomass of the host community and overall productivity, and affected the competitive balance among host plants because it particularly reduced biomass of the dominant grass. These effects were the opposite of those of high N. The hemiparasite increased the root mass fraction of the hosts at all levels of N and water availability, indicating that the effect of the hemiparasite on the hosts was mainly due to loss of belowground resources.
  • Our results indicate that hemiparasites will not always respond more strongly to increased N availability and drought than autotrophic plants, and that hemiparasites can have similarly strong effects on grassland communities as soil fertility and drought. By preferentially attacking dominant species the hemiparasites might alleviate the negative effects of nutrient enrichment on grassland diversity.
  相似文献   

4.
Arbuscular mycorrhizal fungal (AMF) spore communities were surveyed in a long-term field fertilization experiment in Switzerland, where different amounts of phosphorus (P) were applied to soil. Plots receiving no P as well as plots systematically fertilized in excess to plant needs for 31 years were used to test the hypothesis that application of P fertilizer changes the composition and diversity of AMF communities. AMF spores were isolated from the field soil, identified, and counted so as to quantify the effect of P fertilization on AMF spore density, composition, and diversity. Trap cultures were established from field soil with four host plants (sunflower, leek, maize, and Crotalaria grahamiana), and the spore communities were then analyzed in substrate samples from the pots. Altogether, nine AMF species were detected in the soil. No evidence has been acquired for effect of P fertilization on spore density, composition, and diversity of AMF in both the field soil and in trap cultures. On the other hand, we observed strong effect of crop plant species on spore densities in the soil, the values being lowest under rapeseed and highest under Phacelia tanacetifolia covercrop. The identity of plant species in trap pots also significantly affected composition and diversity of associated AMF communities, probably due to preferential establishment of symbiosis between certain plant and AMF species. AMF spore communities under mycorrhizal host plants (wheat and Phacelia in the fields and four host plant species in trap pots) were dominated by a single AMF species, Glomus intraradices. This resulted in exceptionally low AMF spore diversity that seems to be linked to high clay content of the soil.Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
Soil biota could have a significant impact on plant productivity and diversity through benefiting plants and mediating plant–plant interaction. However, it is poorly understood how soil biotic factors interaction with abiotic environments affect plant community diversity and composition. Here, we investigate the community‐level consequences of arbuscular mycorrhizal fungi (AMF) interactions with multiple nutrients and their ecological stoichiometry. We conducted a greenhouse experiment manipulating nitrogen (N) and phosphorus (P) to create soil nutrient availability and N:P gradients for microcosm communities with and without AMF. We found that AMF suppressed plant diversity at low P levels, whereas it did not alter the diversity at high P levels because of trade‐offs in the abundance of the dominant and subordinate species. AMF reduced plant diversity at the intermediate N:P ratios, while AMF did not affect the diversity at low and high N:P ratios. P addition decreased the mycorrhizal contribution to community productivity, whereas N addition reduced the negative effects of AMF on productivity at high P levels. AMF decreased community productivity at low N:P ratios but increased it at high N:P ratios. AMF increased the stoichiometric homoeostasis of plant communities, which was positively correlated with the stability of productivity under variations in soil N:P ratios. Our study demonstrates that both resource availability and stoichiometry influence the effect of AMF on plant community productivity and diversity and suggests that AMF may increase the stability of plant communities under variations in the soil nutrients by increasing the stoichiometric homoeostasis of the plant community.  相似文献   

6.
AM真菌物种多样性:生态功能、影响因素及维持机制   总被引:1,自引:0,他引:1  
杨海水  熊艳琴  王琪  郭伊  戴亚军  许明敏 《生态学报》2016,36(10):2826-2832
AM真菌物种多样性是土壤生态系统生物多样性的重要组分之一。尽管对AM真菌多样性已有多年研究,但是,已有研究绝大多数仅停留在对AM真菌群落种属解析层面上,对AM真菌物种多样性生态功能及维持机制方面的认识较浅。从生态功能、影响因素及维持机制3个方面系统地综述了近年来AM真菌多样性领域的研究进展。认为AM真菌多样性对植物群落生产力的调控机制及结合理论与实践解析AM真菌多样性维持机制是该领域未来的重点研究方向。  相似文献   

7.
Symbiotic arbuscular mycorrhizal fungi (AMF) have been shown to influence both the diversity and productivity of grassland plant communities. These effects have been postulated to depend on the differential effects of individual mycorrhizal taxa on different plant species; however, so far there are few detailed studies of the dynamics of AMF colonization of different plant species. In this study, we characterized the communities of AMF colonizing the roots of two plant species, Prunella vulgaris and Antennaria dioica, in a Swedish seminatural grassland at different times of the year. The AMF small subunit rRNA genes were subjected to PCR, cloning, sequencing, and phylogenetic analysis. Nineteen discrete sequence types belonging to Glomus groups A and B and to the genus Acaulospora were distinguished. No significant seasonal changes in the species compositions of the AMF communities as a whole were observed. However, the two plant species hosted significantly different AMF communities. P. vulgaris hosted a rich AMF community throughout the entire growing season. The presence of AMF in A. dioica decreased dramatically in autumn, while an increased presence of Ascomycetes species was detected.  相似文献   

8.
Aims In nature, plant communities are affected simultaneously by a variety of functionally dissimilar organisms both above and below the ground. However, there is a gap of knowledge on interactive effects of functionally dissimilar organisms on plant communities that is needed to be filled to better understand and predict the general impact of biotic factors on plant communities.Methods We conducted a full-factorial mesocosm study to investigate the individual and combined impacts of above- and belowground functionally dissimilar organisms on a grassland plant community. We studied the effects of aboveground herbivores (Helix aspersa, Gastropoda), arbuscular mycorrhizal fungi (AMF; Glomus spp., Glomeromycota) and endogeic earthworms (Aporrectodea spp., Lumbricidae) on the diversity, structure and productivity of an experimental grassland plant community and each other.Important findings Aboveground herbivory by snails decreased, AMF increased and earthworms had no effects on the diversity of the grassland plant community, while their combined effects were additive. The biomass of the plant community was negatively affected by snails and AMF, while no effects of earthworms or interaction effects were found. The plant species were differently affected by snails and AMF. No effects of the above- and belowground organisms on each other's performance were detected. Since the effects of the functionally dissimilar organisms on the grassland plant community were mainly independent, the results indicate that their combined effects may be predicted by knowing the individual effects, at least under the conditions used in the present mesocosm study.  相似文献   

9.
Wood betony, Orobanchaceae (Pedicularis canadensis) and bastard toadflax, Santalaceae (Comandra umbellata) are two root‐hemiparasitic plant species found in tallgrass prairie communities. Natural resource managers are interested in utilizing these species as “pseudograzers” in grasslands to reduce competitively dominant grasses and thereby increase ecological diversity and quality in prairie restorations and urban plantings. We performed an observational field study at 5 tallgrass prairie sites to investigate the association of hemiparasite abundance with metrics of phylogenetic and ecological diversity, as well as floristic quality. Although no reduction in C4 grasses was detected, there was a significant association between hemiparasite abundance and increased floristic quality at all 5 sites. Hemiparasite abundance and species richness were positively correlated at one restoration site. In a greenhouse mesocosm experiment, we investigated response to parasitism by P. canadensis in 6 species representing different plant functional groups of the tallgrass prairie. The annual legume partridge pea, Fabaceae (Chamaecrista fasciculata) had the greatest significant dry biomass reduction among 6 host species, but the C4 grass big bluestem, Poaceae (Andropogon gerardii) had significantly greater aboveground biomass when grown with the hemiparasite. Overall, host species biomass as a total community was significantly reduced in mesocosms, consistent with other investigations that demonstrate influence on community structure by hemiparasitic plant species. Although hemiparasites were not acting as pseudograzers, they have the potential to influence community structure in grassland restorations and remnants.  相似文献   

10.
Scale-dependent niche axes of arbuscular mycorrhizal fungi   总被引:1,自引:0,他引:1  
Arbuscular mycorrhizal fungi (AMF) are mutualistic with most species of plants and are known to influence plant community diversity and composition. To better understand natural plant communities and the ecological processes they control it is important to understand what determines the distribution and diversity of AMF. We tested three putative niche axes: plant species composition, disturbance history, and soil chemistry against AMF species composition to determine which axis correlated most strongly with a changing AMF community. Due to a scale dependency we were not able to absolutely rank their importance, but we did find that each correlated significantly with AMF community change at our site. Among soil properties, pH and NO3 were found to be especially good predictors of AMF community change. In a similar analysis of the plant community we found that time since disturbance had by far the largest impact on community composition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four‐species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long‐lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.  相似文献   

12.
Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2)). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that belowground-aboveground linkages involving earthworms and AMF are important mediators of the diversity, structure and functioning of plant communities.  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) have a significant influence on plant productivity and diversity in non-grazing grassland. However, the interactive effects between grazing intensity and AMF on plant community composition in natural grassland communities are not well known. We conducted a field experiment that manipulated AMF colonization and grazing intensity to study the impact of AMF suppression on plant community composition and nutrient status over 2 years (2015–2016) with contrasting rainfall levels. We found that AMF root colonization was significantly reduced by the application of the fungicide benomyl as a soil drench. Grazing intensity regulated plant community composition and aboveground biomass mainly by reducing the growth of Leymus chinensis over 2 years. AMF suppression increased the growth of Chenopodium glaucum, but it did not alter other plant species across all grazing intensities. The effects of AMF suppression on plant community composition changed along a grazing gradient considerably between years: AMF suppression increased the biomass of C. glaucum across all grazing intensities in 2015, but slightly increased it in 2016. Interactions between AMF suppression and grazing intensity altered the phosphorus concentration of Stipa grandis and Cleistogenes squarrosa in 2015 but not in 2016. AMF suppression decreased the shoot phosphorus content of L. chinensis but increased that of C. glaucum across all grazing intensities. Our results indicate that grazing intensity substantially alters aboveground community biomass and affects growth of dominant species; AMF by itself have limited effects on plant communities along a grazing gradient in typical steppe.  相似文献   

14.
Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi (AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites remain untested. In view of the contrasting nutritional effects of AMF and root hemiparasites on host plants, we tested the hypothesis that fertilization may not show strong suppressive effects on AMF when a plant community was infested by abundant hemiparasitic plants. Plants and soil samples were collected from experimental field plots in Bayanbulak Grassland, where N and P fertilizers had been applied for three continuous years for control against a spreading root hemiparasite, Pedicularis kansuensis. Shoot and root biomass of each plant functional group were determined. Root AMF colonization levels, soil spore abundance, and extraradical hyphae length density were measured for three soil depths (0-10 cm, 10-20 cm, 20-30 cm). Partial 18S rRNA gene sequencing was used to detect AMF diversity and community composition. In addition, we analyzed the relationship between relative abundance of different AMF genera and environmental factors using Spearman's correlation method. In contrast to suppressive effects reported by many previous studies, fertilization showed no significant effects on AMF root colonization or AMF species diversity in the soil. Instead, a marked increase in soil spore abundance and extraradical hyphae length density were observed. However, fertilization altered relative abundance and AMF composition in the soil. Our results support the hypothesis that fertilization does not significantly influence the abundance and diversity of AMF in a plant community infested by P. kansuensis.  相似文献   

15.
We studied the diversity of arbuscular mycorrhizal fungi (AMF) in semiarid grassland and the effect of long-term nitrogen (N) fertilization on this fungal community. Root samples of Bouteloua gracilis were collected at the Sevilleta National Wildlife Refuge (New Mexico, USA) from control and N-amended plots that have been fertilized since 1995. Small subunit rDNA was amplified using AMF specific primers NS31 and AM1. The diversity of AMF was low in comparison with other ecosystems, only seven operational taxonomic units (OTU) were found in B. gracilis and all belong to the genus Glomus. The dominant OTU was closely related to the ubiquitous G. intraradices/G. fasciculatum group. N-amended plots showed a reduction in the abundance of the dominant OTU and an increase in AMF diversity. The greater AMF diversity in roots from N-amended plots may have been the result of displacement of the dominant OTU, which facilitated detection of uncommon AMF. The long-term implications of AMF responses to N enrichment for plant carbon allocation and plant community structure remain unclear.  相似文献   

16.
Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can mediate plant interactions, thereby affecting plant community structure. Little is known, however, about whether the presence of different AMF species leads to differences in plant community structure or invasion success by introduced species. To investigate the effects of AMF species on community structure and invasion, we created replicate microcosms containing soil inoculated with one of three different AMF species (Glomus spurcum Pfeiffer, Walker & Bloss, Scutellospora erythropa (Koske & Walker) Walker & Sanders, or Scutellospora verrucosa (Koske & Walker) Walker & Sanders) or a mixture of all three AMF species. Seeds of seven naturally co‐occurring plant species (Ageratum conyzoides L., Cyperus compressus L., Chamaecrista nictitans (L.), Crotalaria incana L., Hyptis pectinata (L.) Poit., Sida rhombifolia L., Melinis repens (Willd.) Zizka) in Hawai‘i were sown equally into these microcosms, which were placed on outdoor benches. Plant community development was monitored over a season. Mid‐way through the experiment, an invader (Bidens pilosa L.) was added to the established communities to determine whether mycorrhizal species identity affected invasion success. Final aboveground and belowground phytomass were used to assess plant community differences among treatments. Although the identity of the dominant plant species (Melinis repens) remained the same in all treatments, community dominance, community productivity, plant species richness, Shannon index of diversity, and invasion success all varied with AMF species identity. Invasion success was not inversely related to species richness or diversity. Instead, increased richness, diversity, and invasion success all appeared to be related to decreased dominance by M. repens in the presence of certain AMF species. These results indicate that the composition of the AMF community belowground can influence the structure of the plant community aboveground, and may play a role in facilitating or repelling invasion.  相似文献   

17.
Most plant communities support a diverse assemblage of arbuscular mycorrhizal fungi (AMF). AMF communities have the potential to affect plant community structure and vice versa. We examined AMF sporulation in a 4.5‐ha reconstructed prairie in Eau Claire County, Wisconsin. In fall 2003, the site was planted with varied numbers and combinations of native prairie species from four functional guilds: C3 grasses/sedges, C4 grasses, legume, and nonleguminous forbs. We hypothesized that more diverse plant seeding mixtures would promote AMF diversity. To examine the interaction between plant and fungal communities, plots were divided and subplots treated with the fungicide chlorothalonil to suppress AMF, enriched with ammonium nitrate fertilizer, treated with both fungicide and nitrogen, or remained untreated (control). Soil samples were collected during the summers of 2004, 2006, and 2007 from each subplot. Spores of AMF were extracted, identified to species, and enumerated. Initial plant seeding diversity did not significantly influence spore abundance, fungal diversity, plant productivity, or plant richness 4 years after establishment. Fungal species richness was positively, but weakly, correlated with plant productivity (r2 = 0.11) and plant richness (r2 = 0.09). Fungal community composition changed significantly over time; nitrogen addition, fungicide application, and site characteristics also shaped community composition. After 4 years of treatment, nitrogen and fungicide reduced AMF richness, changed sporulation patterns among AMF taxa, and reduced diversity and productivity in plant communities. Divergence in AMF community is being mirrored by changes in the plant community independent of initial seeding treatments, though causation could not be determined.  相似文献   

18.
Maize, genetically modified with the insect toxin genes of Bacillus thuringiensis (Bt), is widely cultivated, yet its impacts on soil organisms are poorly understood. Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and may be uniquely sensitive to genetic changes within a plant host. In this field study, the effects of nine different lines of Bt maize and their corresponding non‐Bt parental isolines were evaluated on AMF colonization and community diversity in plant roots. Plants were harvested 60 days after sowing, and data were collected on plant growth and per cent AMF colonization of roots. AMF community composition in roots was assessed using 454 pyrosequencing of the 28S rRNA genes, and spatial variation in mycorrhizal communities within replicated experimental field plots was examined. Growth responses, per cent AMF colonization of roots and AMF community diversity in roots did not differ between Bt and non‐Bt maize, but root and shoot biomass and per cent colonization by arbuscules varied by maize cultivar. Plot identity had the most significant effect on plant growth, AMF colonization and AMF community composition in roots, indicating spatial heterogeneity in the field. Mycorrhizal fungal communities in maize roots were autocorrelated within approximately 1 m, but at greater distances, AMF community composition of roots differed between plants. Our findings indicate that spatial variation and heterogeneity in the field has a greater effect on the structure of AMF communities than host plant cultivar or modification by Bt toxin genes.  相似文献   

19.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

20.
A fundamental goal of restoration is the re-establishment of plant diversity representative of native vegetation. However, many prairie restorations or Conservation Reserve Program sites have been seeded with warm-season grasses, leading to grass-dominated, low-diversity restorations not representative of native grasslands. These dominant grasses are strongly mycotrophic, while many subordinate forb species appear to be less dependent on mycorrhizal symbiosis. Therefore, manipulating arbuscular mycorrhizal fungi (AMF) may be useful in promoting establishment and growth of forb species in grass-dominated prairie restorations. To assess the potential role of mycorrhizae in affecting the productivity and community composition of restored tallgrass prairie, we conducted a 4-year field experiment on an 8-year-old grassland restoration at the Konza Prairie in northeastern Kansas, USA. At the initiation of our study, seeds of 12 forb species varying in degree of mycorrhizal dependence were added to established grass-dominated plots. Replicate plots were treated bi-weekly with a soil drench of fungicide (Topsin-M®) over four growing seasons and compared to non-treated control plots to assess the role of AMF in affecting plant species composition, productivity, leaf tissue quality, and diversity in restored tallgrass prairie. Topsin applications successfully reduced mycorrhizal colonization of grass roots to approximately 60–80% relative to roots in control plots. Four years of mycorrhizal suppression reduced productivity of the dominant grasses and increased plant species richness and diversity. These results highlight the importance of mycorrhizae as mediators of plant productivity and community dynamics in restored tallgrass prairie and indicate that temporarily suppressing AMF decreases productivity of the dominant C4 grasses and allows for establishment of seeded forb species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号