首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In the double fertilization of angiosperms, one sperm cell fertilizes an egg cell to produce a zygote, whereas the other sperm cell fertilizes a central cell to give rise to an endosperm. There is little information on gamete membrane dynamics during double fertilization even though the cell surface structure is critical for male and female gamete interactions. In a recent study, we analyzed gamete membrane behavior during double fertilization by live-cell imaging with Arabidopsis gamete membrane marker lines. We observed that the sperm membrane signals occasionally remained at the boundary of the female gametes after gamete fusion. In addition, sperm membrane signals entering the fertilized female gametes were detected. These findings suggested that plasma membrane fusion between male and female gametes occurred with the sperm internal membrane components entering the female gametes, and this was followed by plasmogamy.  相似文献   

2.
Double fertilization is a flowering plant mechanism whereby two immotile sperm cells fertilize two different female gametes. One of the two sperm cells fertilizes the egg cell to produce the embryo and the other fertilizes the central cell to produce the endosperm. Despite the biological and agricultural significance of double fertilization, the mechanism remains largely unknown owing to difficulties associated with the embedded structure of female gametes in the maternal tissue. However, molecular genetic approaches combined with novel live-cell imaging techniques have begun to clarify the actual behavior of the sperm cells, which is different from that described by previous hypotheses. In this review article, we discuss the mechanism of double fertilization based on the dynamics of the two sperm cells in Arabidopsis.  相似文献   

3.
The double fertilization process in angiosperms is based on the delivery of a pair of sperm cells by the pollen tube (the male gametophyte), which elongates towards an embryo sac (the female gametophyte) enclosing an egg and a central cell. Several studies have described the mechanisms of gametophyte interaction, and also the fertilization process - from pollination to pollen tube acceptance. However, the mechanisms of gamete interaction are not fully understood. Cytological studies have shown that male gametes possess distinct cell-surface structures and genes specific to male gametes have been detected in cDNA libraries. Thus, studies of isolated gametes may offer clues to understanding the sperm-egg interaction. In this study, we identified a novel protein, designated GCS1 (GENERATIVE CELL SPECIFIC 1), using generative cells isolated from Lilium longiflorum pollen. GCS1 possesses a carboxy-terminal transmembrane domain, and homologues are present in various species, including non-angiosperms. Immunological assays indicate that GCS1 is accumulated during late gametogenesis and is localized on the plasma membrane of generative cells. In addition, Arabidopsis thaliana GCS1 mutant gametes fail to fuse, resulting in male sterility and suggesting that GCS1 is a critical fertilization factor in angiosperms.  相似文献   

4.
Barriers to polyspermy (fertilization of a female gamete by more than one sperm) are essential to successful reproduction in a wide range of organisms including mammals, echinoderms, fish, molluscs, and algae. In animals and fucoid algae, polyspermy results in early death of the zygote due to transmission of extra centrioles from the sperm and consequent disruptions to the mitotic spindle. Accordingly, a variety of mechanisms have evolved to prevent penetration of an egg by more than one sperm, or more than one sperm nucleus from fusing with an egg nucleus. The evolution of internal fertilization has also provided an opportunity to limit the number of sperm that gain access to each egg, as occurs in the mammalian female reproductive tract. Polyspermy and polyspermy barriers in plants have received much less attention. Plants lack centrioles and therefore, polyspermy would not be expected to cause lethal aberrant spindle organization. However, we find evidence from cytological, genetic and in vitro fertilization studies for polyspermy barriers in plants. Angiosperms, like mammals, are internally fertilized, and exert a high level of control over the number of sperm that have access to each female gamete. In particular, regulation of pollen tube growth ensures that in general only two sperm enter each embryo sac, where one fertilizes the egg and the other the central cell. Despite this 1:1 ratio of sperm to gametes within the embryo sac, angiosperms still require a mechanism to ensure that each female gamete is fertilized by one and only one sperm. Here, we present evidence suggesting that a polyspermy block on the egg may be part of the mechanism that promotes faithful double fertilization.  相似文献   

5.
One major player known to be essential for successful gamete interactions during double fertilization in Arabidopsis thaliana is the recently identified family of egg cell-secreted EC1 proteins. Both gamete fusion events are affected in EC1-deficient female gametophytes. Here, we show that the number of ovules with unfused sperm cells is considerably higher than the number of undeveloped seeds in the same ec1-RNAi knockdown lines. We found that some sperm cells are able to fuse with the female gametes even 2 to 3 days after pollination, as reflected by delayed embryo and endosperm development, and by polytubey. We propose that the egg cell secretes EC1 proteins upon sperm arrival to promote rapid sperm activation, thereby accelerating gamete fusion and preventing polytubey.  相似文献   

6.
Sexual reproduction requires the fusion of sperm cell and oocyte during fertilization to produce the diploid zygote. In mammals complex changes in the plasma membrane of the sperm cell are involved in this process. Sperm cells have unusual membranes compared to those of somatic cells. After leaving the testes, sperm cells cease plasma membrane lipid and protein synthesis, and vesicle mediated transport. Biophysical studies reveal that lipids and proteins are organized into lateral regions of the sperm head surface. A delicate reorientation and modification of plasma membrane molecules take place in the female tract when sperm cells are activated by so-called capacitation factors. These surface changes enable the sperm cell to bind to the extra cellular matrix of the egg (zona pellucida, ZP). The ZP primes the sperm cell to initiate the acrosome reaction, which is an exocytotic process that makes available the enzymatic machinery required for sperm penetration through the ZP. After complete penetration the sperm cell meets the plasma membrane of the egg cell (oolemma). A specific set of molecules is involved in a disintegrin-integrin type of anchoring of the two gametes which is completed by fusion of the two gamete plasma membranes. The fertilized egg is activated and zygote formation preludes the development of a new living organism. In this review we focus on the involvement of processes that occur at the sperm plasma membrane in the sequence of events that lead to successful fertilization. For this purpose, dynamics in adhesive and fusion properties, molecular composition and architecture of the sperm plasma membrane, as well as membrane derived signalling are reviewed.  相似文献   

7.
采用显微分光光度法测定了烟草(Nieotiana tabacum)精细胞和卵细胞的DNA含量。烟草是二胞花粉,花粉萌发后生殖细胞在花粉管中分裂形成精细胞。授粉后45h花粉管到达子房,在花粉管内的精细胞DNA含量为1C。当花粉管在退化助细胞中破裂,释放出的两个精细胞开始合成DNA。在与卵细胞融合前,两个精细胞DNA含量接近2C。随着精细胞的到达及合成DNA,卵细胞也开始合成DNA,融合前的卵细胞DNA含量也接近2C。精、卵细胞融合后,合子DNA含量为4C。烟草雌、雄配子是在细胞周期的G2期发生融合,属于G2型。  相似文献   

8.
Flowering plants have evolved a unique reproductive process called double fertilization, whereby two dimorphic female gametes are fertilized by two immotile sperm cells conveyed by the pollen tube. The two sperm cells are arranged in tandem with a leading pollen tube nucleus to form the male germ unit and are placed under the same genetic controls. Genes controlling double fertilization have been identified, but whether each sperm cell is able to fertilize either female gamete is still unclear. The dynamics of individual sperm cells after their release in the female tissue remain largely unknown. In this study, we photolabeled individual isomorphic sperm cells before their release and analyzed their fate during double fertilization in Arabidopsis thaliana. We found that sperm delivery was composed of three steps. Sperm cells were projected together to the boundary between the two female gametes. After a long period of immobility, each sperm cell fused with either female gamete in no particular order, and no preference was observed for either female gamete. Our results suggest that the two sperm cells at the front and back of the male germ unit are functionally equivalent and suggest unexpected cell-cell communications required for sperm cells to coordinate double fertilization of the two female gametes.  相似文献   

9.
Sex-possessing organisms perform sexual reproduction, in which gametes from different sexes fuse to produce offspring. In most eukaryotes, one or both sex gametes are motile, and gametes actively approach each other to fuse. However, in flowering plants, the gametes of both sexes lack motility. Two sperm cells (male gametes) that are contained in a pollen grain are recessively delivered via pollen tube elongation. After the pollen tube bursts, sperm cells are released toward the egg and central cells (female gametes) within an ovule (Fig. 1). The precise mechanism of sperm cell movement after the pollen tube bursts remains unknown. Ultimately, one sperm cell fuses with the egg cell and the other one fuses with the central cell, producing an embryo and an endosperm, respectively. Fertilization in which 2 sets of gamete fusion events occur, called double fertilization, has been known for over 100 y. The fact that each morphologically identical sperm cell precisely recognizes its fusion partner strongly suggests that an accurate gamete interaction system(s) exists in flowering plants.Open in a separate windowFigure 1.Illustration of the fertilization process in flowering plants. First, each pollen tube accesses an ovule containing egg and central cells. Next, the 2 sperm cells face the female gametes in the ovule after the pollen tube bursts. Finally, each sperm cell simultaneously fuses with either egg or central cell.  相似文献   

10.
A review on the double fertilization in angiosperm is addressed at its centennial discovery by S.G. Nawaschen. Studies in the first 50 years mainly by light microscopy had defined this process of double fertilization as a general characteristic in angiosperms. In the later 50 years research works in this field have been greatly advanced on account of the developing new techniques especially the electron-microscopy. The topics in this review include: (1) The growth of pollen tube entering the embryo sac: role of the synergid in the pollen tube receiption and signals from the degenerated synergid. (2) The arrival of male gametes to female gametes: structure and function of the male germ unit, the function of cytoskeleton in the delivery of sperm cells. (3) Gametic fusion: the structure and function of the female germ unit, gametic membrane fusion, karyogamy, DNA contents in sperm and egg nuclei, the relationship between the karyogamy and cell cycle, sperm dimorphism and preferential fertilization, and spermegg recognition. Future directions for the research of double fertilization are also recommended.  相似文献   

11.
采用显微分光光度法测定了烟草( Nicotiana tabacum) 精细胞和卵细胞的DNA 含量。烟草是二胞花粉, 花粉萌发后生殖细胞在花粉管中分裂形成精细胞。授粉后45 h 花粉管到达子房, 在花粉管内的精细胞DNA 含量为1C。当花粉管在退化助细胞中破裂, 释放出的两个精细胞开始合成DNA。在与卵细胞融合前,两个精细胞DNA 含量接近2C。随着精细胞的到达及合成DNA, 卵细胞也开始合成DNA, 融合前的卵细胞DNA 含量也接近2C。精、卵细胞融合后, 合子DNA 含量为4C。烟草雌、雄配子是在细胞周期的G2 期发生融合, 属于G2 型。  相似文献   

12.
In double fertilization, a reproductive system unique to flowering plants, two immotile sperm are delivered to an ovule by a pollen tube. One sperm fuses with the egg to generate a zygote, the other with the central cell to produce endosperm. A mechanism preventing multiple pollen tubes from entering an ovule would ensure that only two sperm are delivered to female gametes. We use live-cell imaging and a novel mixed-pollination assay that can detect multiple pollen tubes and multiple sets of sperm within a single ovule to show that Arabidopsis efficiently prevents multiple pollen tubes from entering an ovule. However, when gamete-fusion defective hap2(gcs1) or duo1 sperm are delivered to ovules, as many as three additional pollen tubes are attracted. When gamete fusion fails, one of two pollen tube-attracting synergid cells persists, enabling the ovule to attract more pollen tubes for successful fertilization. This mechanism prevents the delivery of more than one pair of sperm to an ovule, provides a means of salvaging fertilization in ovules that have received defective sperm, and ensures maximum reproductive success by distributing pollen tubes to all ovules.  相似文献   

13.
Although the discovery of double fertilization in flowering plants took place at the end of the nineteenth century little progress had been made in understanding the cellular and molecular mechanisms involved until the end of the twentieth century. After attempts to study fertilization with isolated male and female gametes, researchers turned to Arabidopsis thaliana as a model for genetic analysis and in vivo imaging. The development of confocal imaging and fluorescent proteins, coupled with new molecular insights into cell fate specification of plant gametes, allowed the development of robust markers for cells participating in double fertilization. These markers enabled the imaging of double fertilization in vivo in Arabidopsis. These studies have been coupled with the identification and molecular characterization of genes controlling fertilization in Arabidopsis. Live imaging has already provided new insights on sperm cell delivery, the equivalence of the fate of the sperm cells, gamete fusion, and re-initiation of the zygotic life. This review covers these topics and outlines many important aspects of double fertilization that remain unknown.  相似文献   

14.
被子植物受精机制的研究进展   总被引:1,自引:0,他引:1  
被子植物的受精是一个复杂而精巧的过程。花粉管到达子房,通过退化助细胞进入胚囊,释放出两个精细胞。原来在花粉管中相互联结的两个精细胞在退化助细胞中分开,一个与卵细胞融合,另一个与中央细胞融合,完成双受精。目前对双受精过程中有关雌、雄配子识别的机制还知之甚少。本文介绍了目前被子植物精、卵细胞融合前后的细胞周期变化、退化助细胞的功能、精细胞在退化助细胞中迁移的研究动态、精细胞的倾向受精和卵细胞的激活等被子植物受精生物学领域中的一些新的研究成果和发展趋势。  相似文献   

15.
In vitro double fertilization in tobacco was carried out with attention to fusion behavior and gamete interaction. Structural and cytological events indicating possible reaction to the fusion of sperm-egg and especially sperm-central cell were recorded by video-enhanced microscopy. Generative cells were fused with the egg cell or central cell as a control system to better understand gamete interaction. As early as adherence of the male cell, the female cell showed response by means of cytoplasm strand formation. After gamete fusion, cytoplasm activation in the egg cell was observed as long distance movement of organelles. In fertilized central cells, however, fusion did not result in notable cytological change within 30 min. Male nuclear movement recorded in the female cell illustrated two different patterns of movement which showed similarity to organelle movement. The dynamics of male and female nuclear fusion after in vitro fertilization was also recorded in the central cell. It revealed that the fusion process requires only a few seconds and is similar to that of gamete fusion in vitro. This may offer a new clue for understanding how female and male nuclei attract, adhere and finally fuse each other. Received: 13 October 1999 / Revision accepted: 6 December 1999  相似文献   

16.
In eutherian mammals billions of sperm are deposited at ejaculation in the female reproductive tract, but only a few thousand enter the oviduct. A few reach the ampulla at the time of fertilization and only one sperm fertilizes the egg. In most mammalian species the lower isthmus of the fallopian tubes has taken over the function of a reservoir in which sperm are stored under conditions that save sperm energy by suppressing motility and increase viability. Close to the time when the egg is ovulated into the ampulla, the sperm undergo a complex sequence of processes, named capacitation. Capacitation is a prerequisite for fertilization, enabling the sperm to recognize the egg and to respond to the egg signals in the appropriate manner. Sperm bind to the egg extracellular matrix, the zona pellucida, and upon binding undergo the acrosome reaction, followed by the passage of the zona pellucida and binding to and fusion with the egg oolemma, thus triggering the embryonic developmental program. The oviduct and the egg itself appear to coordinate sperm function to ensure that two functional competent gametes will meet, leading to fertilization. For the communication between sperm and somatic cells as well as between both gametes the information potential of carbohydrates is utilized, and this event probably prepares the next level of interactions, e.g., capacitation, acrosome reaction, egg binding, and fusion. The current perspective focuses on the role of molecules possibly implicated in sperm-oviduct and sperm-egg interactions. J. Exp. Zool. (Mol. Dev. Evol.) 285:259-266, 1999.  相似文献   

17.
In flowering plants, two male gametes from a single pollen grain fuse with two female gametes, the egg and central cells, to form the embryo and endosperm, respectively. The question then arises whether the two male gametes fuse randomly with the egg and central cells. We investigated this question using two nearly isogenic maize lines with supernumerary B chromosomes (TB10L18) or without (r-tester). B chromosomes regularly undergo non-disjunction at the second pollen mitosis, producing one sperm cell with zero B chromosomes and one with two. We first confirmed earlier studies showing an excess of transmission of the B chromosomes to the embryo rather than to the endosperm. We then tested the possibility of a directed fertilization. For TB10L18 pollen, we could demonstrate the existence of a size dimorphism between the two sperm cells, correlated to the content in B chromosomes, as detected by fluorescence in situ hybridization (FISH). However, no directed fusion of B chromosome containing sperm to egg cells could be detected when using in vitro fertilization. The absence of directed fusion in vitro could also be demonstrated for control lines. We conclude that both male gametes have the capacity to fuse with the egg cell in maize, although sexual reproduction results in a preferential transmission of supernumerary B chromosomes.  相似文献   

18.
The interactions between sea urchin spermatozoa and ova duringfertilization usually exhibit a high degree of species specificity.Under natural conditions and reasonable gamete concentrations,most interspecific inseminations fail to yield zygotes. Macromoleculeson the external surfaces of the apposing gametes must surelybe responsible for successful gamete recognition, adhesion andfusion. Species specific recognition between surface componentsof sperm and egg could occur during at least three events comprisingthe fertilization process. The first event is the interactionof the sperm plasma membrane with the egg jelly coat. This inducesthe sperm acrosome reaction resulting in the exocytosis of the"bindin" -containing acrosome granule and also the extrusionof the acrosome process from the anterior tip of the sperm.The second event is the adhesion of the bindin-coated acrosomeprocess to glycoprotein "bindin receptors" on the external surfaceof the egg vitelline layer. The third event is the penetrationof the vitelline layer and the fusion of sperm and egg plasmamembranes. With the isolations of the component of egg jellywhich induces the acrosome reaction, sperm bindin from the acrosomevesicle and the egg surface bindin receptor from the vitellinelayer, there is hope of discovering the molecular basis of thismost interesting intercellular interaction which results inthe activation of embryonic development.  相似文献   

19.
Fertilization is defined as the process of union of two gametes, eggs and sperm. When mammalian eggs and sperm come into contact in the female oviduct, a series of steps is set in motion that can lead to fertilization and ultimately to development of new individuals. The pathway begins with species-specific binding of sperm to eggs and ends a relatively short time later with fusion of a single sperm with each egg. Although this process has been investigated extensively, only recently have the molecular components of egg and sperm that participate in the mammalian fertilization pathway been identified. Some of these components may participate in gamete adhesion and exocytosis, whereas others may be involved in gamete fusion. Here we describe selected aspects of mammalian fertilization and address some of the latest experimental evidence that bears on this important area of research.  相似文献   

20.
A novel in vitro system for gamete fusion in maize   总被引:1,自引:0,他引:1  
Peng XB  Sun MX  Yang HY 《Cell research》2005,15(9):734-738
Various systems by using electric pulse, calcium, or polyethylene glycol have been developed in the past decade for the in vitro fusion of plant gametes. These in vitro systems provide a new way to study the fertilization mechanisms of plants. In this study, we developed a bovine serum albumin (BSA)-mediated fusion system for the in vitro fusion of maize gametes. The in vitro fusion of the isolated single egg cell and sperm cell of maize was observed microscopically in the BSA solution and the fertilized egg cell showed normal cell wall regeneration and nuclear division. The effects of the BSA concentration, pH value and calcium level on the efficiency of the maize gamete fusion were also assessed. BSA concentration and pH value did significantly affect the efficiency of the gamete fusion. Calcium was not necessary for the gamete fusion when BSA was present. The optimal solution for the gamete fusion contained 0.1% BSA, pH 6.0. The fusion frequency was as high as 96.7% in that optimal solution. This new in vitro fertilization system offers an alternative tool for the in vitro study of fertilization mechanisms with much simpler manipulating procedure than PEG system, and it will be especially useful for the in vitro study of the calcium dynamics during plant fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号