首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In order to determine desiccation tolerances of bacterial strains, the survival of 58 diarrheagenic strains (18 salmonellae, 35 Shiga toxin-producing Escherichia coli [STEC], and 5 shigellae) and of 15 nonpathogenic E. coli strains was determined after drying at 35°C for 24 h in paper disks. At an inoculum level of 107 CFU/disk, most of the salmonellae (14/18) and the STEC strains (31/35) survived with a population of 103 to 104 CFU/disk, whereas all of the shigellae (5/5) and the majority of the nonpathogenic E. coli strains (9/15) did not survive (the population was decreased to less than the detection limit of 102 CFU/disk). After 22 to 24 months of subsequent storage at 4°C, all of the selected salmonellae (4/4) and most of the selected STEC strains (12/15) survived, keeping the original populations (103 to 104 CFU/disk). In contrast to the case for storage at 4°C, all of 15 selected strains (5 strains each of Salmonella spp., STEC O157, and STEC O26) died after 35 to 70 days of storage at 25°C and 35°C. The survival rates of all of these 15 strains in paper disks after the 24 h of drying were substantially increased (10 to 79 times) by the presence of sucrose (12% to 36%). All of these 15 desiccated strains in paper disks survived after exposure to 70°C for 5 h. The populations of these 15 strains inoculated in dried foods containing sucrose and/or fat (e.g., chocolate) were 100 times higher than those in the dried paper disks after drying for 24 h at 25°C.  相似文献   

2.
A 2-gram fresh weight inoculum of bromegrass (Bromus inermis Leyss. culture BG970) cell suspension culture treated with 7.5 × 10−5 molar abscisic acid (ABA) for 7 days at 25°C survived slow cooling to −60°C. Over 80% of the cells in ABA treated cultures survived immersion in liquid N2 after slow cooling to −40 or −60°C. In contrast, a 6-gram fresh weight inoculum only attained a hardiness level of −28°C after 5 days of ABA treatment. Ethanol (2 × 10−2 molar) added to the culture medium at the time of ABA addition, inhibited the freezing tolerance of bromegrass cells by 25°C. A 6-gram inoculum of both control and ABA treated bromegrass cells altered the pH of the medium more than a 2-gram inoculum. ABA inhibited the increase in fresh weight of bromegrass by 20% after 4 days. Both control and ABA (10−4 molar) treated alfalfa cells (Medicago sativa L.) grown at 25°C hardened from an initial LT50 of −5°C to an LT50 of −23°C by the third to fifth day after subculture. Thereafter, the cells dehardened but the ABA treated cells did not deharden to the same level as the control cells. ABA inhibited the increase in fresh weight of alfalfa by 50% after 5 days.  相似文献   

3.
Vegetative cells of three strains of Clostridium perfringens were used as inoculum for bread and onion stuffing for eight lightweight and eight heavyweight turkeys. When stuffed turkeys were refrigerated (5 ± 1 C for 24 ± 2 hr), a mean count of 580 vegetative cells of C. perfringens per gram of stuffing was reduced to undetectable levels (<6 per gram) in six of the eight. An inoculum of spores of the three strains used in a second series survived refrigerated holding with no change in numbers. During cooking of the stuffed turkeys in an oven at 94 C, numbers of vegetative cells fell steadily and numbers of spores remained constant or increased slightly (2 of 16 stuffings), until the temperature of the stuffing rose above that permitting growth. Viable C. perfringens cells were recovered from the stuffings at the end of cooking plus 1 hr for the group inoculated with the spore suspension. Storage of these stuffings resulted in marked reductions in numbers after 6 days at 5 ± 1 C and in increases after 24 ± 2 hr at 23 ± 1 C. Cells of a strain which produces spores not considered heat-resistant survived in stuffing in birds cooked to doneness in ovens at 94, 163, and 232 C. In accepted methods of cooking stuffed turkeys, C. perfringens contaminants may survive and create a hazard if subsequent storage is in a temperature range which permits their multiplication.  相似文献   

4.
Mineral Soils as Carriers for Rhizobium Inoculants   总被引:5,自引:3,他引:2       下载免费PDF全文
Mineral soil-based inoculants of Rhizobium meliloti and Rhizobium phaseoli survived better at 4°C than at higher temperatures, but ca. 15% of the cells were viable at 37°C after 27 days. Soil-based inoculants of R. meliloti, R. phaseoli, Rhizobium japonicum, and a cowpea Rhizobium sp. applied to seeds of their host legumes also survived better at low temperatures, but the percent survival of such inoculants was higher than peat-based inoculants at 35°C. Survival of R. phaseoli, R. japonicum, and cowpea rhizobia was not markedly improved when the cells were suspended in sugar solutions before drying them in soil. Nodulation was abundant on Phaseolus vulgaris derived from seeds that had been coated with a soil-based inoculant and stored for 165 days at 25°C. The increase in yield and nitrogen content of Phaseolus angularis grown in the greenhouse was the same with soil-and peat-based inoculants. We suggest that certain mineral soils can be useful and readily available carriers for legume inoculants containing desiccation-resistant Rhizobium strains.  相似文献   

5.
Radiation Resistance and Injury of Yersinia enterocolitica   总被引:5,自引:5,他引:0       下载免费PDF全文
The D values of Yersinia enterocolitica strains IP134, IP107, and WA, irradiated at 25°C in Trypticase soy broth, ranged from 9.7 to 11.8 krad. When irradiated in ground beef at 25 and −30°C, the D value of strain IP107 was 19.5 and 38.8 krad, respectively. Cells suspended in Trypticase soy broth were more sensitive to storage at −20°C than those mixed in ground beef. The percentages of inactivation and of injury (inability to form colonies in the presence of 3.0% NaCl) of cells stored in ground beef for 10 days at −20°C were 70 and 23%, respectively. Prior irradiation did not alter the cell's sensitivity to storage at −20°C, nor did storage at −20°C alter the cell's resistance to irradiation at 25°C. Added NaCl concentrations of up to 4.0% in Trypticase soy agar (TSA) (which contains 0.5% NaCl) had little effect on colony formation at 36°C of unirradiated Y. enterocolitica. With added 4.0% NaCl, 79% of the cells formed colonies at 36°C; with 5.0% NaCl added, no colonies were formed. Although 2.5% NaCl added to ground beef did not sensitize Y. enterocolitica cells to irradiation, when added to TSA it reduced the number of apparent radiation survivors. Cells uninjured by irradiation formed colonies on TSA when incubated at either 36 or 5°C. More survivors of an exposure to 60 krad were capable of recovery and forming colonies on TSA when incubated at 36°C for 1 day than at 5°C for 14 days. This difference in count was considered a manifestation of injury to certain survivors of irradiation.  相似文献   

6.
An apparatus consisting of a Dewar flask and a relay system controlling the flow of liquid nitrogen permitted the irradiation of samples in tin cans or Pyrex tubes at temperatures ranging from 0 ± 1.5 C to -194 ± 2 C. An inoculated pack comprising 320 cans of ground beef containing 5 × 104 spores of Clostridium botulinum 33A per can (10 cans per radiation dose) was irradiated with Co60 at 0 and -196 C. Incubation was carried out at 30 C for 6 months. Approximately 0.9 Mrad more radiation was required to inactivate the spores at -196 C than at 0 C. Cans irradiated at -196 C showed partial spoilage at 3.6 Mrad and no spoilage at 3.9 Mrad; the corresponding spoilage-no spoilage doses at 0 C were 2.7 and 3.0, respectively. The majority of positive cans swelled in 2 to 14 days; occasional swelling occurred as late as 20 days. At progressively higher doses, swelling was delayed proportionally to the radiation dose received. The remaining nonswollen cans had no toxin after 6 months of storage, although occasional cans contained very low numbers of viable spores comprising on the average 0.1% of the original spore inoculum. The D10 values in phosphate buffer were 0.290 Mrad for 0 C and 0.396 Mrad for -196 C; in ground beef, the corresponding D10 values were 0.463 Mrad and 0.680 Mrad, respectively. These D10 values indicate that the lethal effect of γ rays decreased at -196 C as compared with 0 C by 13.5% in phosphate buffer, and by 47% in ground beef.  相似文献   

7.
Rhizosphere population dynamics of seven Pseudomonas fluorescens and Pseudomonas putida strains isolated from rhizospheres of various agricultural plants were studied on potato (Solanum tuberosum L.) in field soil under controlled environmental conditions. Rhizosphere populations of two strains (B10 and B4) were quantitatively related to initial seed piece inoculum levels when plants were grown at −0.3 bar matric potential. At a given inoculum level, rhizosphere populations of strain B4 were consistently greater than those of strain B10. In vivo growth curves on 4-cm root tip-proximal segments indicated that both strains grew at similar rates in the potato rhizosphere, but large populations of strain B10 were not maintained at 24°C after 7 h, whereas those of strain B4 were maintained for at least 40 h. Although both strains grew more rapidly in the rhizosphere at 24°C than at 12°C, their rhizosphere populations after seed piece inoculation were generally greater at 12 or 18°C, indicating that in vivo growth did not solely determine rhizosphere populations in these studies. In vitro osmotolerance of seven Pseudomonas strains (including strains B4 and B10) was correlated with their abilities to establish stable populations in the rhizosphere of potato. Stability of rhizosphere populations of the Pseudomonas strains studied here was maximized at low (i.e., 12°C) soil temperatures. These results indicate that Pseudomonas strains differ in their capacity to maintain stable rhizosphere populations in association with potato. This capacity, distinct from the ability to grow in the rhizosphere, may limit the establishment of rhizosphere populations under some environmental conditions.  相似文献   

8.
Acidified cupric acetate soaks were tested for eradication of Xanthomonas campestris from naturally infected crucifer seeds. The pathogen was eradicated from seeds by soaking in 0.5% cupric acetate dissolved in 0.005 N acetic acid for 20 min at 35, 40, 45, and 50°C but not 25°C. Moreover, normal bacterial flora of crucifer seeds and the seed-borne Phoma lingam and Alternaria spp. were reduced by 95, 92, and 81%, respectively, after the cupric acetate treatment at 40°C. The seed germination percentage was generally reduced, but the amount of reduction depended upon the treatment temperature and plant cultivar. At 50°C, less than 50% of the seed of all 12 cultivars tested germinated, whereas at 40°C more than 50% of the seeds of most cultivars germinated. Treating seeds in cupric acetate at 40°C should prove useful for eradicating X. campestris from seeds of breeding lines and stock seed used for hybrid seed production. Furthermore, a significant reduction in total bacterial flora and seed-borne fungi suggests the usefulness of the treatment for other microorganisms associated with other seeds or foodstuffs.  相似文献   

9.
Whey, a by-product of the dairy industry, has been found to protect the rhizobia cells during freezing and thawing. Cells of rhizobia grown on whey sustained freezing better at −18°C than did cells grown on mannitol or sucrose. Suspensions of cells grown on whey or mannitol that were suspended in whey performed equally well at −18 and −80°C, with 94 and 100% survival, respectively. Whey-grown rhizobia in pellets withstood desiccation better than did their mannitol-grown equivalents. Rhizobia that were grown on whey and then inoculated onto commercial peat showed a survival rate of 100% after 23 weeks at −4°C. Whey-grown cells in peat performed better at various temperatures during storage, even when they were exposed to desiccation, than did mannitol-grown cells in peat. Whey, therefore, offers interesting possibilities as a Rhizobium protectant for the inoculum industry.  相似文献   

10.
A potential may exist for survival of and resistance development by Escherichia coli O157:H7 in environmental niches of meat plants applying carcass decontamination interventions. This study evaluated (i) survival or growth of acid-adapted and nonadapted E. coli O157:H7 strain ATCC 43895 in acetic acid (pH 3.6 ± 0.1) or in water (pH 7.2 ± 0.2) fresh beef decontamination runoff fluids (washings) stored at 4, 10, 15, or 25°C and (ii) resistance of cells recovered from the washings after 2 or 7 days of storage to a subsequent lactic acid (pH 3.5) stress. Corresponding cultures in sterile saline or in heat-sterilized water washings were used as controls. In acetic acid washings, acid-adapted cultures survived better than nonadapted cultures, with survival being greatest at 4°C and lowest at 25°C. The pathogen survived without growth in water washings at 4 and 10°C, while it grew by 0.8 to 2.7 log cycles at 15 and 25°C, and more in the absence of natural flora. E. coli O157:H7 cells habituated without growth in water washings at 4 or 10°C were the most sensitive to pH 3.5, while cells grown in water washings at 15 or 25°C were relatively the most resistant, irrespective of previous acid adaptation. Resistance to pH 3.5 of E. coli O157:H7 cells habituated in acetic acid washings for 7 days increased in the order 15°C > 10°C > 4°C, while at 25°C cells died off. These results indicate that growth inhibition by storage at low temperatures may be more important than competition by natural flora in inducing acid sensitization of E. coli O157:H7 in fresh meat environments. At ambient temperatures in meat plants, E. coli O157:H7 may grow to restore acid resistance, unless acid interventions are applied to inhibit growth and minimize survival of the pathogen. Acid-habituated E. coli O157:H7 at 10 to 15°C may maintain a higher acid resistance than when acid habituated at 4°C. These responses should be evaluated with fresh meat and may be useful for the optimization of decontamination programs and postdecontamination conditions of meat handling.  相似文献   

11.
The utilization of gels, which are used for fluid drilling of seeds, as carriers of Bradyrhizobium japonicum for soybean (Glycine max (L.) Merr.) inoculation was studied. Gels of various chemical composition (magnesium silicate, potassium acrylate-acrylamide, grafted starch, and hydroxyethyl cellulose) were used, although the hydroxyethyl cellulose gels were more extensively investigated. Gel inocula were prepared by mixing gel powder with liquid cultures of B. japonicum (2% [wt/vol]). The population of B. japonicum USDA 110 did not change in each gel type during 8 days of incubation at 28°C. These fluid gels were prepared with late-exponential-growth-phase cells that were washed and suspended in physiological saline. Mid-exponential-growth-phase B. japonicum USDA 110, 123, and 138 grew in cellulose gels prepared with yeast extract-mannitol broth as well as or better than in yeast extract-mannitol broth alone for the first 10 days at 28°C. Populations in these cellulose gels after 35 days were as large as when the gels had originally been prepared, and survival occurred for at least 70 days. Soybeans grown in sand in the greenhouse had greater nodule numbers, nodule weights, and top weights with gel inoculants compared with a peat inoculant. In soil containing 103 indigenous B. japonicum per g of soil, inoculation resulted in increased soybean nodule numbers, nodule weights, and top weights, but only nodule numbers were greater with gel than with peat inoculation. The gel-treated seeds carried 102 to 103 more bacteria per seed (107 to 108) than did the peat-treated seeds.  相似文献   

12.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

13.
14.
Entomopathogenic nematode species differ in their optimum storage temperature; therefore, we conducted a study on the survival and infectivity of the recently described Steinernema innovationi from South Africa at five storage temperatures (5°C, 10°C, 15°C, 20°C, and 25°C) over 84 d using 20,000 infective juveniles (IJ) in 25 ml aqueous suspension containing 0.1% formalin. Our results showed that survival was highest and most stable at 15°C, ranging from 84% to 88% after 84 d. Infectivity of IJ against Galleria mellonella larvae was >90% for all temperatures except for 5°C at which survival decreased to 10% after 84 d. In addition, we stored 2.5 million IJ on a sponge formulation in 15 ml of 0.1% formalin solution for 84 d at the optimum 15°C followed by 2 wk storage at 25°C. Storage of the IJ on a sponge formulation for 14 d at 25°C post 15°C storage for 84 d did not have a detrimental effect on IJ survival (87%) or infectivity to G. mellonella (95%).  相似文献   

15.
Experiments were undertaken to test whether peat-based legume seed inoculants, which are prepared with liquid cultures that have been deliberately diluted, can attain and sustain acceptable numbers of viable rhizobia. Liquid cultures of Rhizobium japonicum and Rhizobium phaseoli were diluted to give 108, 107, or 106 cells per ml, using either deionized water, quarter-strength yeast-mannitol broth, yeast-sucrose broth, or yeast-water. The variously diluted cultures were incorporated into gamma-irradiated peat, and the numbers of viable rhizobia were determined at intervals. In all of the inoculant formulations, the numbers of rhizobia reached similarly high ceiling values by 1 week after incorporation, irrespective not only of the number of cells added initially but also of the nature of the diluent. During week 1 of growth, similar multiplication patterns of the diluted liquid cultures were observed in two different peats. Numbers of rhizobia surviving in the various inoculant formulations were not markedly different after 6 months of storage at 28°C. The method of inoculant preparation did not affect the nitrogen fixation effectiveness of the Rhizobium strains.  相似文献   

16.
Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range.  相似文献   

17.
Viable bacteria were found to coexist with developing embryos in egg capsules (cocoons) of the earthworm Eisenia fetida. Earthworms were reared under standardized conditions, and bacterial densities were measured in distinct batches of cocoons collected weekly for 10 weeks. Cocoons weighing 12 mg contained a mean viable bacterial population of approximately 108 CFU/g of cocoons. No difference was found in viable counts obtained from cocoons incubated at 15°C and cocoons incubated at 24°C. Viable bacterial numbers increased with cocoon age, while acridine orange direct counts of microbial cells were stable at approximately 109 cells per g of cocoons. Bacteria isolated from cocoons were used to develop antisera in rabbits for the production of strain-specific fluorescent antibodies. Fluorescent antibody and selective plating techniques were used to monitor populations of these bacteria in earthworm bedding and to determine whether cocoons acquire bacteria from the environment in which they are formed. Cocoon isolates were readily recovered from cocoons formed in inoculated bedding at densities of 108 CFU/g of cocoons. Bradyrhizobium japonicum USDA 110 and UMR 161 added to bedding were also recovered from cocoons, but at lower densities than cocoon isolates. Escherichia coli K-12(pJP4) inoculum was recovered from bedding but not from cocoons. The bacterial complement of Eisenia fetida cocoons is affected by inoculation of selected bacterial isolates in the worm growth environment.  相似文献   

18.
The U.S. Food and Drug Administration (FDA) recently mandated a warning statement on packaged fruit juices not treated to reduce target pathogen populations by 5 log10 units. This study describes combinations of intervention treatments that reduced concentrations of mixtures of Escherichia coli O157:H7 (strains ATCC 43895, C7927, and USDA-FSIS-380-94) or Salmonella typhimurium DT104 (DT104b, U302, and DT104) by 5 log10 units in apple cider with a pH of 3.3, 3.7, and 4.1. Treatments used were short-term storage at 4, 25, or 35°C and/or freeze-thawing (48 h at −20°C; 4 h at 4°C) of cider with or without added organic acids (0.1% lactic acid, sorbic acid [SA], or propionic acid). Treatments more severe than those for S. typhimurium DT104 were always required to destroy E. coli O157:H7. In pH 3.3 apple cider, a 5-log10-unit reduction in E. coli O157:H7 cell numbers was achieved by freeze-thawing or 6-h 35°C treatments. In pH 3.7 cider the 5-log10-unit reduction followed freeze-thawing combined with either 6 h at 4°C, 2 h at 25°C, or 1 h at 35°C or 6 h at 35°C alone. A 5-log10-unit reduction occurred in pH 4.1 cider after the following treatments: 6 h at 35°C plus freeze-thawing, SA plus 12 h at 25°C plus freeze-thawing, SA plus 6 h at 35°C, and SA plus 4 h at 35°C plus freeze-thawing. Yeast and mold counts did not increase significantly (P < 0.05) during the 6-h storage at 35°C. Cider with no added organic acids treated with either 6 h at 35°C, freeze-thawing or their combination was always preferred by consumers over pasteurized cider (P < 0.05). The simple, inexpensive intervention treatments described in the present work could produce safe apple cider without pasteurization and would not require the FDA-mandated warning statement.  相似文献   

19.
Cattle are an important reservoir of Shiga toxin-producing Escherichia coli (STEC) O26, O111, and O157. The fate of these pathogens in bovine feces at 5, 15, and 25°C was examined. The feces of a cow naturally infected with STEC O26:H11 and two STEC-free cows were studied. STEC O26, O111, and O157 were inoculated into bovine feces at 101, 103, and 105 CFU/g. All three pathogens survived at 5 and 25°C for 1 to 4 weeks and at 15°C for 1 to 8 weeks when inoculated at the low concentration. On samples inoculated with the middle and high concentrations, O26, O111, and O157 survived at 25°C for 3 to 12 weeks, at 15°C for 1 to 18 weeks, and at 5°C for 2 to 14 weeks, respectively. Therefore, these pathogens can survive in feces for a long time, especially at 15°C. The surprising long-term survival of STEC O26, O111, and O157 in bovine feces shows that such feces are a potential vehicle for transmitting not only O157 but also O26 and O111 to cattle, food, and the environment. Appropriate handling of bovine feces is emphasized.  相似文献   

20.
The relationship between the survival of enteric viral pathogens and their indicators (coliform bacteria and coliphages) is not well understood. We compared the survival rates of feline calicivirus (FCV), Escherichia coli, and a male-specific RNA coliphage MS2 at 4, 25, and 37°C for up to 28 days in dechlorinated water. The survival rates of E. coli and FCV, a surrogate of noroviruses (NV), had a high degree of correlation at 4 and 25°C, while MS2 phage survived significantly longer (P < 0.05) at these two temperatures. At 37°C, the survival rates for all three organisms were highly correlated. Decimal reduction values indicating the number of days needed for 90% reduction in titer (D values) decreased for all three organisms as storage temperatures increased. FCV had the shortest D value among all three organisms at all temperatures investigated. These findings indicate that F-specific RNA phages may be useful indicators of NV in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号