首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA in the macronucleus of Stylonychia mytilus exists as discrete gene-sized fragments which are derived from micronuclear DNA through a series of well-defined developmental events. It has been proposed that each of the DNA fragments might represent a gene and its controlling elements. We have investigated this possibility using genes which code for the five histone proteins. Macronuclear DNA fragments were fractionated according to size by agarose gel electrophoresis, the fragments transferred to nitrocellulose filters using the technique of Southern, and the filter-bound DNA hybridized with labeled cloned histone genes of the sea urchin, Psammechinus miliaris. Results indicate, first, that sequences homologous to the five individual histone gene probes are present in discrete macronuclear fragments which appear as bands in the gel hybridization assay. Secondly, for each of the five individual histone gene probes the homologous DNA fragments are several in number, ranging in size from 7.6 Kb (Kilo base pairs) to 0.73 Kb. For example, the largest of six detected fragments hybridizing to the H3 gene probe contains approximately 10 times the amount of DNA required to code for a Stylonychia H3 histone. The smallest detected fragment hybridizing to the H3 probe contains enough DNA to code for approximately two copies of the histone. Finally, in general, no two histone gene probes hybridized to the same macronuclear DNA fragment. This result indicates that genes coding for the five histones in Stylonychia are not located together on the same macronuclear DNA fragments and implies that the five functionally related genes would not be transcribed together as a polycistronic unit.  相似文献   

2.
Summary Heterozygous flies with a deficiency of histone genes show a gradual increase in the number of these genes reaching 90% of the normal level during eight generations. After removing the deficient chromosome the increased histone gene number is not stably inherited and reverts to normal in the course of 5–7 generations. Males heterozygous for the deficient chromosome show extrachromosomal histone genes in the first generation and have a changed ratio of the two histone gene repeat units. The multiplication of histone genes is compared with compensation and magnification of rRNA.  相似文献   

3.
Abstract Comparison of histone gene cluster arrangements in several species has revealed a broad spectrum of histone gene patterns. To elucidate the core histone gene organization in a mollusk, we have analyzed a Mytilus edulis genomic library and have isolated eight phage clones containing core histone genes. Analysis of insert DNA revealed that the core histone genes are arranged as regular gene repeats of all four core histones. The repeats do not contain linker histone genes. The clones are distributed into two groups of dissimilar repeated units with a common size of about 5.6 kb. The genes of each core histone class in the distinct repeats encode identical histone proteins and have comparable gene arrangements in the two repeat units. However, the intergenic sequences differ significantly. The core histone genes are organized as large clusters of about 100 repeats each. Previously, we have shown that the linker histone genes in M. edulis are also organized in a cluster of repeats of solitary H1 genes. Hence, this is the first case of a separate, clustered organization of both core and linker histone genes, repectively.  相似文献   

4.
Summary We have compared copy numbers and blothybridization patterns of histone genes (H3 plus H4) between and within individuals of broad bean (Vicia faba). Copy number differences among individuals in the population of 200 individuals were as great as 27 fold, and as much as 3.2 fold among separate leaves of the same plant. Among F2 progeny from genetic crosses, up to a 5.4-fold range was seen (mean=3.5 fold), and among F1 progeny of self-pollinated plants, up to a 5.9-fold range was observed (mean=2.3 fold). Histone gene blot-hybridization patterns for EcoRI and HindIII were also variable among individuals and indicated that the genes are probably clustered in only a few chromosomal loci. The degree of variation in histone gene copy number per haploid genome (2–55 copies, or 27 fold) was similar to that found previously for ribosomal RNA genes (230–22000, or 95 fold) of V. faba. However, the two gene families change independently, since individuals with a high or low copy number for one gene can have either a high or low copy number for the other. The mechanisms(s) for rapid gene copy number change may be similar for these gene families.  相似文献   

5.
6.
SUMMARY Paralogous genes frequently show differences in patterns and rates of substitution that are typically attributed to different selection regimes, mutation rates, or local recombination rates. Here, two anciently diverged paralogous copies of the histone H3 gene in sea stars, the tandem‐repetitive early‐stage gene and a newly isolated gene with lower copy number that was termed the “putative late‐stage histone H3 gene” were analyzed in 69 species with varying mode of larval development. The two genes showed differences in relative copy number, overall substitution rates, nucleotide composition, and codon usage, but similar patterns of relative nonsynonymous substitution rates, when analyzed by the dN/dS ratio. Sea stars with a nonpelagic and nonfeeding larval type (i.e., brooding lineages) were observed to have dN/dS ratios that were larger than for nonbrooders but equal between the two paralogs. This finding suggested that demographic differences between brooding and nonbrooding lineages were responsible for the elevated dN/dS ratios observed for brooders and refuted a suggestion from a previous analysis of the early‐stage gene that the excess nonsynonymous substitutions were due to either (1) gene expression differences at the larval stage between brooders and nonbrooders or (2) the highly repetitive structure of the early‐stage histone H3 gene.  相似文献   

7.
8.
9.
Di-methylation of histone H3 lysine (K) 4, a component of the epigenetic memory, is associated with gene transactivation. In this study, we examined whether the development of diabetes induces di-methylation of histone H3 K4 on the upregulated genes. We searched for upregulated genes in mesenteric adipose tissue of insulin-resistant/diabetic db/db mice compared with non-diabetic db/m mice using microarray analysis. We also performed chromatin immunoprecipitation assays for di-methylation of histone H3 K4 in the upregulated genes in mesenteric adipose tissue of db/m and db/db mice. Di-methylation of histone H3 K4 was enhanced at the upstream and/or transcribed regions of upregulated genes including Atp6v0d2, Mmp12, Trem2 and Clec4d genes in mesenteric adipose tissue of db/db mice, as compared with db/m mice. These results suggest that di-methylation of histone H3 K4 is involved in the induction of Atp6v0d2, Mmp12, Trem2 and Clec4d in mesenteric adipose tissue in db/db mice.  相似文献   

10.
Interspersion of histone and 5S RNA genes in Artemia   总被引:4,自引:0,他引:4  
Four recombinant lambda phage containing histone genes were selected from a library of Artemia genomic DNA fragments. The histone gene organization of Artemia resembles that of other invertebrates in that all five genes are clustered and repeated in tandem with approximate repeat lengths of 8.5 kb and 9.3 kb. Each recombinant lambda phage isolate hybridizes with five histone mRNAs and unexpectedly also with 5S ribosomal RNA. Hybridization kinetics have shown the number of histone genes to be about 95-100 copies per haploid genome. An identical number of copies was determined for a hybridization probe containing the 5S gene but no histone genes. We have not found any evidence for a separate set of repeated 5S genes outside this histone + 5S block.  相似文献   

11.
12.
The MYST histone acetyltransferase (HAT) dTip60 is part of a multimeric protein complex that unites both HAT and chromatin remodeling activities. Here, we sought to gain insight into the biological functions of dTip60. Strong ubiquitous dTip60 knock-down in flies was lethal, whereas knock-down in the wing imaginal disk led to developmental defects in the wing. dTip60 localized to the nucleus in early embryos and was present in a large number of interbands on polytene chromosomes. Genome-wide expression analysis upon depletion of dTip60 in cell culture showed that it regulated a large number of genes in Drosophila, among which those with chromatin-related functions were highly enriched. Surprisingly, a significant portion of these genes were upregulated upon dTip60 loss, indicating that dTip60 has repressive as well as activating functions. dTip60 protein was directly located at promoter regions of a subset of repressed genes, suggesting a direct role in gene repression. Comparison of the gene expression signature of dTip60 downregulation with that of histone deacetylase inhibition with trichostatin A revealed a significant correlation, suggesting that the dTip60 complex recruits an HDAC-containing complex to regulate gene expression in the Drosophila genome.  相似文献   

13.
14.
The chromosomal location of the histone genes was determined in seven species of the Drosophila obscura group by in situ hybridization. Histone genes occur on more than one site per genome and on non-homologous chromosome elements. In addition, the metaphase karyotypes and the banding pattern of the polytene chromosomes were compared. Based on chromosomal characters, the cladogenesis of the D. obscura group was established. From the distribution of histone sites in different species, analysed in this paper and in previous studies, the phylogenetic history of histone gene transposition was derived. The molecular mechanisms responsible for the generation of new histone sites are discussed.  相似文献   

15.
Mutational analysis is an essential tool for understanding the functions of genes within a living organism. The budding yeastSaccharomyces cerevisiaeprovides an excellent model system for dissecting the genetics of histone function at the molecular and cellular levels. A simple gene organization, plus a wide variety of genetic strategies, makes it possible to directly manipulate a specific histone genein vitroand then examine the expression of mutant allelesin vivo.Recent methods for manipulating the yeast histone genes have been designed to facilitate both site-directed analysis of structure/function relationships and unbiased screens targeted at specific functional pathways. The conservation of histone and nucleosome structure throughout evolution means that the principles discovered through genetic studies in yeast will be broadly applicable to the chromatin of more complex eukaryotes.  相似文献   

16.
We report the nucleotide sequence of the core histone gene cluster from the Cnidarian Acropora formosa. This is the first histone gene cluster to be sequenced from a diploblastic organism and the predicted amino acid sequences most resemble those of sea urchin equivalents. Each of the Cnidarian histone genes has two conserved regions 3 of the coding sequences and these closely resemble those of the metazoan a-class histone genes. In A. formosa the core histone genes are arranged as opposed (H3/H4 and H2A/H2B) pairs, a pattern common to the nondeuterostome metazoa, and tandem repetition is the predominant pattern of organization in the Cnidarian. With the recent identification of several classes of homeobox genes in Cnidarians these features clearly align the Cnidaria with triploblastic metazoans, supporting a monophyletic origin of the metazoa.  相似文献   

17.
In the nurse cells of Drosophila, nuclear DNA is replicated many times without nuclear division. Nurse cells differ from salivary gland cells, another type of endoreplicated Drosophila cell, in that banded polytene chromosomes are not seen in large nurse cells. Cytophotometry of Feulgen stained nurse cell nuclei that have also been labeled with 3H-thymidine shows that the DNA contents between S-phases are not doublings of the diploid value. In situ hybridization of cloned probes for 28S+18S ribosomal RNA, 5S RNA, and histone genes, and for satellite, copia, and telomere sequences shows that satellite and histone sequences replicate only partially during nurse cell growth, while 5S sequences fully replicate. However, during the last nurse cell endoreplication cycle, all sequences including the previously under-replicated satellite sequences replicate fully. In situ hybridization experiments also demonstrate that the loci for the multiple copies of histone and 5S RNA genes are clustered into a small number of sites. In contrast, 28S+18S rRNA genes are dispersed. We discuss the implications of the observed distribution of sequences within nurse cell nuclei for interphase nuclear organization. — In the ovarian follicle cells, which undergo only two or three endoreplication cycles, satellite, histone and ribosomal DNA sequences are also found by in situ hybridization to be underrepresented; satellite sequences may not replicate beyond their level in 2C cells. Hence the pathways of endoreplication in three cell types, salivary gland, nurse, and follicle cells, share basic features of DNA replication, and differ primarily in the extent of association of the duplicated chromatids.  相似文献   

18.
19.
Alcohol consumption during pregnancy can cause foetal alcohol syndrome and congenital heart disease. Nonetheless, the underlying mechanism of alcohol‐induced cardiac dysplasia remains unknown. We previously reported that alcohol exposure during pregnancy can cause abnormal expression of cardiomyogenesis‐related genes, and histone H3K9me3 hypomethylation was observed in alcohol‐treated foetal mouse heart. Hence, an imbalance in histone methylation may be involved in alcohol‐induced cardiac dysplasia. In this study, we investigated the involvement of G9α histone methyltransferase in alcohol‐induced cardiac dysplasia in vivo and in vitro using heart tissues of foetal mice and primary cardiomyocytes of neonatal mice. Western blotting revealed that alcohol caused histone H3K9me3 hypomethylation by altering G9α histone methyltransferase expression in cardiomyocytes. Moreover, overexpression of cardiomyogenesis‐related genes (MEF2C, Cx43, ANP and β‐MHC) was observed in alcohol‐exposed foetal mouse heart. Additionally, we demonstrated that G9α histone methyltransferase directly interacted with histone H3K9me3 and altered its methylation. Notably, alcohol did not down‐regulate H3K9me3 methylation after G9α suppression by short hairpin RNA in primary mouse cardiomyocytes, preventing MEF2C, Cx43, ANP and β‐MHC overexpression. These findings suggest that G9α histone methyltransferase‐mediated imbalance in histone H3K9me3 methylation plays a critical role in alcohol‐induced abnormal expression cardiomyogenesis‐related genes during pregnancy. Therefore, G9α histone methyltransferase may be an intervention target for congenital heart disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号