首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P value < 0.05). Iodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.KEY WORDS: iodide, microemulsion, skin permeation, transdermal  相似文献   

2.
The physicochemical properties of the optimized microemulsion and the permeating ability of oxyresveratrol in microemulsion were evaluated, and the efficacy of oxyresveratrol microemulsion in cutaneous herpes simplex virus type 1 (HSV-1) infection in mice was examined. The optimized microemulsion was composed of 10% w/w of isopropyl myristate, 35% w/w of Tween 80, 35% w/w of isopropyl alcohol, and 20% w/w of water. The mean particle diameter was 9.67 ± 0.58 nm, and the solubility of oxyresveratrol in the microemulsion was 196.34 ± 0.80 mg/ml. After accelerated and long-term stability testing, the microemulsion base and oxyresveratrol-loaded microemulsion were stable. The cumulative amount of oxyresveratrol permeating through shed snake skin from microemulsion at 6 h was 93.04 times compared to that of oxyresveratrol from Vaseline, determined at 20% w/w concentration. In cutaneous HSV-1 infection in mice, oxyresveratrol microemulsion at 20%, 25%, and 30% w/w, topically applied five times daily for 7 days after infection, was significantly effective in delaying the development of skin lesions and protecting from death (p < 0.05) compared with the untreated control. Oxyresveratrol microemulsion at 25% and 30% w/w was significantly more effective than that of 30% w/w of oxyresveratrol in Vaseline (p < 0.05) and was as effective as 5% w/w of acyclovir cream, topically applied five times daily (p > 0.05). These results demonstrated that topical oxyresveratrol microemulsion at 20–30% w/w was suitable for cutaneous HSV-1 mouse infection.KEY WORDS: cutaneous infection in mice, herpes simplex virus, microemulsion, oxyresveratrol, therapeutic efficacy  相似文献   

3.
The present investigation aims at developing microemulsion-based formulations for topical delivery of acyclovir. Various microemulsions were developed using isopropyl myristate/Captex 355/Labrafac as an oil phase, Tween 20 as surfactant, Span 20 as cosurfactant, and water/dimethylsulfoxide (1:3) as an aqueous phase. Transcutol, eucalyptus oil, and peppermint oil were used as permeation enhancers. In vitro permeation studies through laca mice skin were performed using Franz diffusion cells. The optimum formulation containing 2.5% Transcutol as the penetration enhancer showed 1.7-fold enhancement in flux and permeation coefficient as compared to marketed cream and ointment formulation. In vivo antiviral studies were performed in female Balb/c mice against induced herpes simplex virus I infection. A single application of microemulsion formulation containing 2.5% Transcutol given 24 h post-injection resulted in complete suppression of development of herpetic skin lesions.  相似文献   

4.
The objective of the present investigation was to develop and evaluate microemulsion-based gel for the vaginal delivery of clotrimazole (CMZ). The solubility of CMZ in oils and surfactants was evaluated to identify components of the microemulsion. The ternary diagram was plotted to identify the area of microemulsion existence. Various gelling agents were evaluated for their potential to gel the CMZ microemulsion without affecting its structure. The bioadhesive potential and antifungal activity of the CMZ microemulsion-based gel (CMZ-MBG) was determined in comparison to the marketed clotrimazole gel (Candid-V® gel) by in vitro methods. The chemical stability of CMZ in CMZ-MBG was determined as per the International Conference on Harmonization guidelines. The CMZ microemulsion exhibited globule size of 48.4 nm and polydispersity index of 0.75. Carbopol® ETD 2020 could successfully gel the CMZ microemulsion without disturbing the structure. The CMZ-MBG showed significantly higher (P < 0.05) in vitro bioadhesion and antifungal activity as compared to that of Candid-V® gel. The stability studies indicated that CMZ undergoes acidic pH-catalyzed degradation at all the storage conditions at the end of 3 months.Key words: clotrimazole, microemulsion, microemulsion-based vaginal gel, stability studies, vaginal delivery  相似文献   

5.
The present study aimed at development of capsular dosage form of surface-adsorbed nanoemulsion (NE) of olmesartan medoxomil (OLM) so as to overcome the limitations associated with handling of liquid NEs without affecting their pharmaceutical efficacy. Selection of oil, surfactant, and cosurfactant for construction of pseudoternary phase diagrams was made on the basis of solubility of drug in these excipients. Rationally selected NE formulations were evaluated for percentage transmittance, viscosity, refractive index, globule size, zeta potential, and polydispersity index (PDI). Formulation (F3) comprising of Capmul MCM® (10% v/v), Tween 80® (11.25% v/v), polyethylene glycol 400 (3.75% v/v), and double-distilled water (75% v/v) displayed highest percentage cumulative drug release (%CDR; 96.69 ± 1.841), least globule size (17.51 ± 5.87 nm), low PDI (0.203 ± 0.032), high zeta potential (−58.93 ± 0.98 mV), and hence was selected as the optimized formulation. F3 was adsorbed over colloidal silicon dioxide (2 ml/400 mg) to produce free-flowing solid surface-adsorbed NE that presented a ready-to-fill capsule composition. Conversion of NE to surface-adsorbed NE and its reconstitution to NE did not affect the in vitro release profile of OLM as the similarity factor with respect to NE was found to be 66% and 73% respectively. The %CDR after 12 h for optimized NE, surface-adsorbed NE, and reconstituted NE was found to be 96.69 ± 0.54, 96.07 ± 1.76, and 94.78 ± 1.57, respectively (p > 0.05). The present study established capsulated surface-adsorbed NE as a viable delivery system with the potential to overcome the handling limitations of NE.KEY WORDS: bioavailability, nanoemulsion, olmesartan medoxomil, oral  相似文献   

6.
The present study was aimed at synthesizing an imidazole-based ionic liquid 1-butyl-3-methylimidazolium bromide (BMIMBr) and subsequent development of a novel ionic liquid-in-oil (IL/o) microemulsion (ME) system for dermal delivery of a poorly permeating drug 5-fluorouracil (5-FU). A significant enhancement in the solubility of 5-FU was observed in BMIMBr. IL/o MEs of 5-FU were prepared using isopropyl myristate, Tween 80/Span 20, and BMIMBr. Results of ex vivo skin permeation studies through mice skin indicated that the selected IL/o ME exhibited 4-fold enhancement in percent drug permeation as compared to aqueous solution, 2.3-fold as compared to hydrophilic ointment, and 1.6-fold greater permeation than water in oil (w/o) ME. The results of in vivo studies against dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mice skin carcinogenesis demonstrated that the IL/o ME could effectively treat skin cancer in 4 weeks. In addition, the side effects such as erythema and irritation associated with the conventional formulations were not observed. Histopathological studies showed that the use of IL/o ME caused no anatomic and pathological changes in the skin structure of mice. These studies suggest that the use of IL-based ME system can efficiently enhance the solubility and permeability of 5-FU and hence its therapeutic efficacy.  相似文献   

7.
The present research work focused on the comparative assessment of porous versus nonporous films in order to develop a suitable buccoadhesive device for the delivery of glibenclamide. Both films were prepared by solvent casting technique using the 32 full factorial design, developing nine formulations (F1–F9). The films were evaluated for ex vivo mucoadhesive force, ex vivo mucoadhesion time, in vitro drug release (using a modified flow-through drug release apparatus), and ex vivo drug permeation. The mucoadhesive force, mucoadhesion time, swelling index, and tensile strength were observed to be directly proportional to the content of HPMC K4M. The optimized porous film (F4) showed an in vitro drug release of 84.47 ± 0.98%, ex vivo mucoadhesive force of 0.24 ± 0.04 N, and ex vivo mucoadhesion time of 539.11 ± 3.05 min, while the nonporous film (NF4) with the same polymer composition showed a release of 62.66 ± 0.87%, mucoadhesive force of 0.20 ± 0.05 N, and mucoadhesive time of 510 ± 2.00 min. The porous film showed significant differences for drug release and mucoadhesion time (p < 0.05) versus the nonporous film. The mechanism of drug release was observed to follow non-Fickian diffusion (0.1 < n < 0.5) for both porous and nonporous films. Ex vivo permeation studies through chicken buccal mucosa indicated improved drug permeation in porous films versus nonporous films. The present investigation established porous films to be a cost-effective buccoadhesive delivery system of glibenclamide.KEY WORDS: buccoadhesive drug delivery, glibenclamide, in vitro release and ex vivo permeation, porous film  相似文献   

8.
Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects.Key words: bioavailability, controlled release, Ethocel®, olanzapine  相似文献   

9.
Controlled-release (CR) matrix tablet of 4 mg risperidone was developed using flow bound dry granulation–slugging method to improve its safety profile and compliance. Model formulations F1, F2, and F3, consisting of distinct blends of Methocel® K100 LV-CR and Ethocel® standard 7FP premium, were slugged. Each batch of granules (250–1,000 μm), obtained by crushing the slugs, was divided into three portions after lubrication and then compressed to 9-, 12-, and 15-kg hard tablets. In vitro drug release studies were carried out in 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) using a paddle dissolution apparatus run at 50 rpm. The CR test tablet, containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness, exhibited pH-independent zero-order release kinetics for 24 h. The drug release rate was inversely proportional to the content of Ethocel®, while the gel layer formed of Methocel® helped in maintaining the integrity of the matrix. Changes in the hardness of tablet did not affect the release kinetics. The tablets were reproducible and stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. Risperidone and its active metabolite, 9-hydroxyrisperidone, present in the pooled rabbit’s serum, were analyzed with HPLC-UV at λmax 280 nm. The CR test tablet exhibited bioequivalence to reference conventional tablet in addition to the significantly (p < 0.05) optimized peak concentration, Cmax, and extended peak time, Tmax, of the active moiety. There was a good association between drug absorption in vivo and drug release in vitro (R2 = 0.7293). The successfully developed CR test tablet may be used for better therapeutic outcomes of risperidone.KEY WORDS: controlled release, dry granulation slugging method, risperidone  相似文献   

10.
Liposomes (LIP), nanoparticles (NP), dendrimers (DEN), and carbon nanotubes (CNTs), represent eminent classes of drug delivery devices. A study was carried out herewith by employing docetaxel (DTX) as model drug to assess their comparative drug delivery potentials. Under optimized conditions, highest entrapment of DTX was observed in CNT-based formulation (DTX-CNTs, 74.70 ± 4.9%) followed by nanoparticles (DTX-NP, 62.34 ± 1.5%), liposome (49.2 ± 1.51%), and dendrimers (28.26 ± 1.74%). All the formulations were found to be of nanometric size. In vitro release studies were carried out in PBS (pH 7.0 and 4.0), wherein all the formulations showed biphasic release pattern. Cytotoxicity assay in human cervical cancer SiHa cells inferred lowest IC50 value of 1,235.09 ± 41.93 nM with DTX-CNTs, followed by DTX-DEN, DTX-LIP, DTX-NP with IC50 values of 1,571.22 ± 151.27, 1,653.98 ± 72.89, 1,922.75 ± 75.15 nM, respectively. Plain DTX showed higher hemolytic toxicity of 22.48 ± 0.94%, however loading of DTX inside nanocarriers drastically reduced its hemolytic toxicity (DTX-DEN, 17.22 ± 0.48%; DTX-LIP, 4.13 ± 0.19%; DTX-NP, 6.43 ± 0.44%; DTX-CNTs, 14.87 ± 1.69%).KEY WORDS: carbon nanotubes, dendrimer, drug delivery, liposomes, nanoparticles, nanotechnology  相似文献   

11.
The objective of the present study was to formulate and evaluate microemulsion systems for topical delivery of clotrimazole (CTM). The solubility of CTM in various oils was determined to select the oil phase of the microemulsion systems. Pseudoternary phase diagrams were constructed to identify the area of microemulsion existence. Five CTM microemulsion formulations (M1–M5) were prepared and evaluated for their thermodynamic stability, pH, refractive index, droplet size, viscosity, and in vitro release across cellulose membrane. Among the prepared microemulsion formulations, M3 (lemon oil/Tween 80/n-butanol/water) and M4 (isopropyl myristate/Tween 80/n-butanol/water) microemulsion systems were found to be promising according to their physical properties and CTM cumulative percentage release. Gel form of M3 and M4 were prepared using 1% Carbopol 940 as the hydrogel matrix. Both formulations were evaluated in the liquid and gel forms for drug retention in the skin in comparison to the marketed CTM topical cream and their stability examined after storage at 40°C for 6 months. Microemulsion formulations achieved significantly higher skin retention for CTM over the CTM cream. Stability studies showed that M4 preparations were more stable than M3. The in vitro anti-fungal activity of M4 against Candida albicans was higher than that of the conventional cream. Moreover, clinical evaluation proved the efficacy and tolerability of this preparation in the treatment of various topical fungal infections.  相似文献   

12.
The aim of this study was to investigate the effects of formulation and process variables on the properties of niosomes formed from Span 40 as nonionic surfactant. A variety of formulations encapsulating Paclitaxel, a hydrophobic model drug, were prepared using different dicetyl phosphate (DCP) and Span 40-cholesterol (1:1) amounts. Formulations were optimized by multiple regression analysis to evaluate the changes on niosome characteristics such as entrapment efficiency, particle size, polydispersity index, zeta potential and in vitro drug release. Multiple regression analysis revealed that as Span 40-cholesterol amounts in the formulations were increased, zeta potential and percent of drug released at 24th hour were decreased. Besides, DCP was found to be effective on increasing niosome size. As a process variable, the effect of sonication was observed and findings revealed an irreversible size reduction on Span 40 niosomes after probe sonication. Monodisperse small sized (133 ± 6.01 nm) Span 40 niosomes entrapping 98.2% of Paclitaxel with a weight percentage of 3.64% were successfully prepared. The drug–excipient interactions in niosomes were observed by differential scanning calorimetry and X-ray powder diffraction analysis. Both techniques suggest the conversion of PCTs’ crystal structure to amorphous form. The thermal analyses demonstrate the high interaction between drug and surfactant that explains high entrapment efficiency. After 3-month storage, niosomes preserved their stability in terms of drug amount and particle size. Overall, this study showed that Span 40 niosomes with desired properties can be prepared by changing the content and production variables.Key words: drug delivery systems, drug release, multiple regression, niosomes, paclitaxel  相似文献   

13.
The purpose of this study was to prepare sublingual tablets, containing the antiasthmatic drug ketotifen fumarate which suffers an extensive first-pass effect, using the fast-melt granulation technique. The powder mixtures containing the drug were agglomerated using a blend of polyethylene glycol 400 and 6000 as meltable hydrophilic binders. Granular mannitol or granular mannitol/sucrose mixture were used as fillers. A mechanical mixer was used to prepare the granules at 40°C. The method involved no water or organic solvents, which are used in conventional granulation, and hence no drying step was included, which saved time. Twelve formulations were prepared and characterized using official and non official tests. Three formulations showed the best results and were subjected to an ex vivo permeation study using excised chicken cheek pouches. The formulation F4I possessed the highest permeation coefficient due to the presence of the permeation enhancer (polyethylene glycol) in an amount which allowed maximum drug permeation, and was subjected to a pharmacokinetic study using rabbits as an animal model. The bioavailability of F4I was significantly higher than that of a commercially available dosage form (Zaditen® solution-Novartis Pharma-Egypt) (p > 0.05). Thus, fast-melt granulation allowed for rapid tablet disintegration and an enhanced permeation of the drug through the sublingual mucosa, resulting in increased bioavailabililty.Key words: chicken pouches, fast-melt granulation, ketotifen fumarate, permeation, sublingual tablet, Zaditen®  相似文献   

14.
Hydrogen sulfide (H2S) is having many potential pharmacological and physiological actions which reported that therapeutically useful concentration is low (100–160 μM) and a higher concentration could be toxic. Most of its donors produce it on coming into contact with water. All of these problems could be solved by a controlled-release delivery system which does not utilize water in any of its development steps. Therefore, 12 sustained release formulations were prepared by dissolving sodium hydrogen sulfide (NaHS)—a model H2S donor—in polymer solutions, prepared by dissolving polymers (consisted of either polylactide (PLA) or polylactide co-glycolide (PLGA), containing free carboxylic acid or capped allyl ester end group) in a mixture of benzyl benzoate (BB) and benzyl alcohol (BA). The formulation was injected in simulated tear fluid (STF) from which samples were withdrawn at specified times and assayed for NaHS content. We found decrease in burst and overall release with increase in polymer concentration from 10 to 20% w/v. The formulations containing free end group showed significant (p < 0.05) reduction of burst release (11% vs 21%). However, the overall release or the average amount released per hour was found to be significantly (p < 0.05) increased for formulations containing polymers with free end group than those with capped end group. A sustained level of H2S was found to be maintained for 72 h which should be further increased to a month to make it a viable H2S donor delivery system in addition to investigating toxicity profile specifically for the purpose of subconjunctival ocular delivery.KEY WORDS: controlled release, hydrogen sulfide, hydrogen sulfide donor, in situ gel forming, phase sensitive, smart polymer  相似文献   

15.

Background

Few works have evaluated the effect of statins on left ventricular dysfunction in patients with chronic heart failure (CHF), by using tissue Doppler imaging (TDI). We therefore aimed to investigate whether atorvastatin treatment may influence prognosis and myocardial performance evaluated by TDI in subjects with CHF.

Methods

Five hundred thirty-two consecutive CHF outpatients enrolled in a local registry, the Daunia Heart Failure Registry, were prospectively analysed. 195 patients with CHF and left ventricular ejection fraction (LVEF) ≤40 %, either in treatment with atorvastatin (N: 114) or without statins (N: 81), underwent TDI examination. Adverse events were evaluated during follow-up.

Results

The atorvastatin group showed a lower incidence of adverse events (cardiac death: 0 % vs 7 %, p < 0.01), and better TDI performance (E/E’ 15 ± 5.7 vs 18 ± 8.3, p < 001) than controls. Ischaemic CHF patients in treatment with atorvastatin also showed a lower incidence of adverse events (death: 10 % vs 26 %, p < 0.05; sustained ventricular arrhythmias: 5 % vs 19 %, p < 0.05, cardiac death: 0 vs 8 %, p < 0.05) and better TDI performance (E/E’ ratio: 15.00 ± 5.68 vs 19.72 ± 9.14, p < 0.01; St: 353.70 ± 48.96 vs 303.33 ± 68.52 msec, p < 0.01) than controls. The association between atorvastatin and lower rates of cardiac death remained statistically significant even after correction in a multivariable analysis (RR 0.83, 95 % CI 0.71–0.96, p < 0.05 in CHF with LVEF ≤40 %; RR 0.77, 95 % CI 0.62–0.95, p < 0.05 in ischaemic CHF with LVEF ≤40 %).

Conclusions

Treatment with atorvastatin in outpatients with systolic CHF is associated with fewer cardiac deaths, and a better left ventricular performance, as assessed by TDI.  相似文献   

16.
The purpose of this work was to evaluate the potential of grewia gum (GG) as a suspending agent in pharmaceutical oral formulation using ibuprofen as model drug. Ibuprofen pediatric suspension (25 mg/5 mL) was formulated with grewia gum (0.5% w/v) as the suspending agent. Similar suspensions of Ibuprofen containing either sodium carboxymethylcellulose (Na-CMC) or hydroxymethylpropylcellulose (HPMC) were also produced. The suspensions were evaluated for ease of redispersion, sedimentation, rheological properties, and the effect of aging on the rheological properties at 25°C. The particle size and particle size distributions of the dispersed solute were determined. The redispersion time was 19, 11, and 0.5 min, respectively, for formulation containing Na-CMC, HPMC, and GG .The sedimentation volumes were 0.05, 0.05, and 0.125 mL, respectively, for Na-CMC, HPMC, and GG . Viscosities of suspensions at spindle speed of 25 rpm were of the order: GG > HPMC > Na-CMC when freshly prepared and of the order: HPMC > GG > Na-CMC within 6 months of storage. The particles size was 72.72, 73.82, 81.93, and 83.41 μm, respectively, for suspensions containing Na-CMC, ibuprofen alone, HPMC, and GG. Greatest hysteresis was observed in formulation containing HPMC. All the formulations were stable. It was our conclusion that the difference in the physicochemical properties of ibuprofen pediatric formulations was influenced more by the suspending agent used in the formulations than the drug. GG combined better redispersion with minimal changes in viscosity on storage compared to Na-CMC and HPMC as suspending agent. Thus GG may serve as a good suspending agent requiring no further aid in suspension redispersibility.KEY WORDS: grewia gum, oral pharmaceutical formulations, physicochemical properties, potential suspending agent  相似文献   

17.
Song W  Cun D  Xi H  Fang L 《AAPS PharmSciTech》2012,13(3):811-815
A moderate drug permeating rate (flux) is desirable for long-acting transdermal patches. In this work, a novel simple method of controlling bisoprolol (BSP) flux by ion-pair strategy was initiated. Different ion-pair complexes including bisoprolol maleate (BSP-M), bisoprolol tartarate, bisoprolol besilate, and bisoprolol fumarate were prepared and their fluxes through rabbit abdominal skin were determined separately in vitro. Furthermore, permeation behavior from isopropyl myristate, solubility index in pressure-sensitive adhesives, determined by DSC, and n-octanol/water partition coefficient (log P) were investigated to illustrate the mechanism of drug permeation rate controlling. The results showed that compared to free BSP (J = 25.98 ± 2.34 μg/cm2/h), all BSP ion-pair complexes displayed lower and controllable flux in the range of 0.11 to 4.19 μg/cm2/h. After forming ion-pair complexes, the capability of BSP to penetrate through skin was weakened due to the lowered log P and increased molecule weight. Accordingly, this study has demonstrated that the flux of BSP could be controlled by ion-pair strategy, and among all complexes investigated, BSP-M was the most promising candidate for long-acting transdermal patches.Key words: bisoprolol, flux, ion-pair, transdermal  相似文献   

18.
The aim of this study was to formulate salbutamol sulfate (SS), a model drug, as mucoadhesive in situ gelling inserts having a high potential as nasal drug delivery system bypassing the first-pass metabolism. In situ gelling inserts, each containing 1.4% SS and 2% gel-forming polymer, hydroxypropyl methylcellulose (HPMC), carboxymethylcellulose sodium (CMC Na), sodium alginate (AL), and chitosan (CH) were prepared. The inserts were investigated for their different physicochemical properties. The weight of inserts was 16–27 mg, drug content was 3.9–4.2 mg, thickness ranged between 15 and 28 μm and surface pH was 5–7. Cumulative drug released from the inserts exhibited extended release for more than 10 h following the decreasing order: CH > AL > CMC Na > HPMC. The drug release from CMC Na and AL inserts followed zero-order kinetics while HPMC and CH inserts exhibited non-Fickian diffusion mechanism. The inserts exhibited different water uptake (7–23%) with the smallest values for CH. Differential scanning calorimetry study pointed out possible interaction of SS and oppositely charged anionic polymers (CMC Na and AL). The mucoadhesive in situ gelling inserts exhibited satisfactory mucoadhesive and extended drug release characteristics. The inserts could be used for nasal delivery of SS over about 12 h; bypassing the hepatic first-pass metabolism without potential irritation.KEY WORDS: in situ gelling inserts, mucoadhesion, nasal delivery, salbutamol sulfate  相似文献   

19.
Limited aqueous solubility of exemestane leads to high variability in absorption after oral administration. To improve the solubility and bioavailability of exemestane, the self-microemulsifying drug delivery system (SMEDDS) was developed. SMEDDS comprises of isotropic mixture of natural or synthetic oil, surfactant, and cosurfactant, which, upon dilution with aqueous media, spontaneously form fine o/w microemulsion with less than 100 nm in droplet size. Solubility of exemestane were determined in various vehicles. Ternary phase diagrams were plotted to identify the efficient self-emulsification region. Dilution studies, droplet size, and zeta potential of the formulations were investigated. The release of exemestane from SMEDDS capsules was studied using USP dissolution apparatus in different dissolution media and compared the release of exemestane from a conventional tablet. Oral pharmacokinetic study was performed in female Wistar rats (n = 8) at the dose of 30 mg kg−1. The absorption of exemestane from SMEDDS form resulted in about 2.9-fold increase in bioavailability compared with the suspension. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as exemestane by the oral route.Key words: bioavailability enhancement, exemestane, microemulsion, SMEDDS  相似文献   

20.
Peroxiredoxins, a group of antioxidant protein enzymes (PRDX1 to 6), are reported as antiatherogenic factors in animals; however, human studies are lacking. The present work aims to provide baseline data regarding the phenotype of PRDX1, 2, 4, and 6 in diabetic patients with peripheral atherosclerosis disease (PAD) and their relation to endothelial dysfunction (ED) and disease severity. Plasma levels of PRDX1, 2, 4, and 6 and markers of endothelial dysfunction (ICAM-1 and VCAM-1) were measured using ELISA in 55 type 2 diabetic patients having PAD and 25 healthy subjects. Ankle–brachial index (ABI), body mass index (BMI), triglycerides (TG), total cholesterol, HbA1c, and insulin resistance (HOMA IR) were measured. PRDX1, 2, 4, and 6 levels were significantly higher in patients compared to controls (PRDX1 21.9 ± 5.71 vs 16.8 ± 3.9 ng/ml, P < 0.001, PRDX2 36.5 ± 14.83 vs 20.4 ± 8.61 ng/ml, P < 0.001, PRDX4 3,840 ± 1,440 vs 2,696 ± 1,972 pg/ml, P < 0.005, PRDX6 311 ± 110 vs 287.9 ± 114 pg/ml, P < 0.05). PRDX1 and PRDX4 correlated negatively with ABI (r = −0.273, P < 0.05 and r = −0.28, P < 0.05, respectively), while PRDX1 and PRDX2 correlated positively with HOMA/IR and TG (r = 0.276, P < 0.01 and r = 0.295, P < 0.01, respectively). ICAM-1 was associated with PRDX2 and log PRDX6 (r = 0.345, P = 0.0037 and r = 0.344, P = 0.0038). Our results provide strong links among PRDXs, ED, and severity of PAD in diabetic patients which warrants further evaluation to clarify whether high circulating levels of PRDXs are a consequence of chronic atherosclerotic disease or a predisposing factor for later cardiovascular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号