首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landraces and old, obsolete cultivars are a rich source of diversity and could become important and easy‐to‐use germplasm resources for breeding. They are characterised by yield stability, broad adaptation, tolerance to diseases and a greater competitiveness in the presence of weeds. The main objective of this study was to estimate and compare the genetic diversity among and within landraces, old cultivars and modern cultivars of common oat. Inter simple sequence repeats were used to study the genetic diversity of 12 modern Polish cultivars, 23 old Polish cultivars, 19 native landraces and 5 contemporary European cultivars. The results indicated a low amount of diversity among Polish modern cultivars, but an even lower diversity among old Polish cultivars, as well as large differences between these two gene pools. As expected, the landraces were the most diverse group and showed the highest internal variation. The landraces and old cultivars might serve as sources of useful alleles that have never been used in breeding. Additionally, it was possible to identify errors and inconsistencies in the passport data of gene‐bank accessions. These results can be applied to the maintenance and management of gene‐bank collections.  相似文献   

2.
This study evaluates putative changes of genetic diversity and relationships of barley in the Nordic and Baltic countries that might have taken place during the last century as a result of commercial breeding. Four ISSR primers were used to analyse 227 accessions, yielding a total of 47 polymorphic loci. Shannon-Weaver diversity values for each locus ranged from 0.012 to 0.693. Overall, there were no significant changes of genetic diversity observed over time. A significant decrease of diversity was, however, observed in material from the southern parts of the Nordic and Baltic countries. In material from the northern parts no decrease of diversity was observed. The genetic diversity of six-rowed barley bred in the middle of the 20th century was low, but there was no significant difference between modern accessions and landraces or old cultivars. The magnitude in changes of genetic diversity differed also in material from different countries of origin. A cluster analysis clearly separated the material into two groups. The first cluster included 86.5% of all six-rowed accessions, whereas the second cluster contained 97.4% of all two-rowed accessions.  相似文献   

3.
Black‐coloured eggplants (Solanum melongena) represent the commercially most important group of eggplants in Europe and North America. Most of the modern varieties of black eggplants correspond to F1 hybrids, which at the same time constitute an elite gene pool for the development of new varieties. However, there are many black landraces and old varieties, which could be useful as sources of variation for black eggplant breeding programmes as well as for the broadening of the genetic diversity of the breeders’ gene pool. We have studied the morphological and molecular [amplified fragment length polymorphism and simple sequence repeat (SSR)] diversity in a collection of 38 black eggplant accessions, including commercial (modern F1 hybrid and old nonhybrid) varieties and landraces as well as in six nonblack control eggplants, from different origins. The results show that black eggplants contain a considerable morphological and molecular diversity, but commercial varieties, and in particular F1 hybrids, display a reduced morphological and molecular diversity when compared with landraces. The principal components analysis morphological and principal coordinates analysis molecular analyses show that commercial F1 hybrids group together, indicating that they share a common and narrow gene pool. Commercial F1 hybrids present a series of productive advantages, like early production, intense black colour (low L*, a* and b*) values and absence of fruit calyx prickles. However, several of the landraces and old nonhybrid varieties studied present a high yield as well as other traits of interest for eggplant breeding. Furthermore, given the low genetic diversity of F1 hybrids and the moderate level of SSR heterozygosity found in these materials (0.382), introduction of black landraces and old varieties in the present breeding programmes could contribute to broadening the gene pool used by breeders and this could help increase the heterosis for yield of F1 hybrids, which is greatly favoured by high heterozygosity levels.  相似文献   

4.

Key message

High-throughput genotyping of Swiss bread wheat and spelt accessions revealed differences in their gene pools and identified bread wheat landraces that were not used in breeding.

Abstract

Genebanks play a pivotal role in preserving the genetic diversity present among old landraces and wild progenitors of modern crops and they represent sources of agriculturally important genes that were lost during domestication and in modern breeding. However, undesirable genes that negatively affect crop performance are often co-introduced when landraces and wild crop progenitors are crossed with elite cultivars, which often limit the use of genebank material in modern breeding programs. A detailed genetic characterization is an important prerequisite to solve this problem and to make genebank material more accessible to breeding. Here, we genotyped 502 bread wheat and 293 spelt accessions held in the Swiss National Genebank using a 15K wheat SNP array. The material included both spring and winter wheats and consisted of old landraces and modern cultivars. Genome- and sub-genome-wide analyses revealed that spelt and bread wheat form two distinct gene pools. In addition, we identified bread wheat landraces that were genetically distinct from modern cultivars. Such accessions were possibly missed in the early Swiss wheat breeding program and are promising targets for the identification of novel genes. The genetic information obtained in this study is appropriate to perform genome-wide association studies, which will facilitate the identification and transfer of agriculturally important genes from the genebank into modern cultivars through marker-assisted selection.
  相似文献   

5.
A highly polymorphic core collection of bread wheat and a more narrow-based breeding material, gathered from pedigrees of seven modern cultivars, was analysed in order to compare genetic diversity indices and linkage disequilibrium (LD) patterns along the chromosome 3B with microsatellite (SSR) and Diversity Arrays Technology markers. Five ancestral gene pools could be identified within the core collection, indicating a strong geographical structure (Northwest Europe, Southeast Europe, CIMMYT–ICARDA group, Asia, Nepal). The breeding material showed a temporal structure, corresponding to different periods of breeding programmes [old varieties (from old landraces to 1919), semi-modern varieties (1920–1959), modern varieties (1960–2006)]. Basic statistics showed a higher genetic diversity in the core collection than in the breeding material, indicating a stronger selection pressure in this latter material. More generally, the chromosome 3B had a lower diversity than the whole B-genome. LD was weak in all studied materials. Amongst geographical groups, the CIMMYT–ICARDA pool presented the longest ranged LD in contrast to Asian accessions. In the breeding material, LD increased from old cultivars to modern varieties. Genitors of seven modern cultivars were found to be different; most marker pairs in significant LD were observed amongst genitors of Alexandre and Koreli varieties, indicating an important inbreeding effect. At low genetic distances (0–5 cM), the breeding material had higher LD than the core collection, but globally the two materials had similar values in all classes. Marker pairs in significant LD are generally observed around the centromere in both arms and at distal position on the short arm of the chromosome 3B.  相似文献   

6.
In this study, genetic diversity among 177 oat (Avena sativa L.) accessions including both white and red oat landraces and 36 commercial cultivars was studied for simple sequence repeat (SSR) loci. Thirty-one genomic and expressed sequence tags (EST)-derived primer pairs were selected according to high polymorphism from an initial 66 SSR batch. Markers revealed a high level of polymorphism, detecting a total of 454 alleles. The average gene diversity for the whole sample was 0.29. Genetic similarity, calculated using the Dice coefficient, was used for cluster analysis, and principal component analysis was also applied. In addition, population structure using a Bayesian clustering approach identified discrete subpopulation based on allele frequency and showed similar clustering of oat genotypes in four groups. Accessions could be classified into four main clusters that clearly separated the commercial cultivars, the red oat landraces and two clusters of white oat landraces. Cultivars showed less diversity than the landraces indicating a reduction of genetic diversity during breeding, whereas white oat landraces showed higher diversity than red ones. The average polymorphic information content of 0.80 for the SSR loci indicated the usefulness of many of the SSR for genotype identification. In particular, two markers, MAMA5 and AM04, with a total of 50 alleles and a high discrimination power (>0.90), were sufficient to discriminate among all commercial cultivars studied highlighting their potential use for variety identification.  相似文献   

7.
Genetic diversity among 49 Indian accessions of rice (Oryza sativa subsp. indica), including 29 landraces from Jeypore, 12 modern cultivars, and 8 traditional cultivars from Tamil Nadu, was investigated using AFLP markers. In total, nine primer combinations revealed 664 AFLPs, 408 of which were found to be polymorphic. The percentage of polymorphic AFLPs was approximately the same within the cultivars and landraces. Similar results were obtained when genetic diversity values were estimated using the Shannon-Weiner index of diversity. Genetic diversity was slightly higher in the modern cultivars than in the traditional cultivars from Tamil Nadu. Among the landraces from Jeypore, the lowland landraces showed the highest diversity. The present study showed that the process of breeding modern cultivars did not appear to cause significant genetic erosion in rice. Cluster analysis and the first component of principle component analysis (PCA) both showed a clear demarcation between the cultivars and landraces as separate groups, although the genetic distance between them was narrow. The modern cultivars were positioned between the landraces from Jeypore and the traditional cultivars from Tamil Nadu. The second component of PCA further separated medium and upland landraces from lowland landraces, with the lowland landraces found closest to the traditional and modern cultivars.  相似文献   

8.
The primary aim of this study was to estimate genetic diversity among Secale cereale L. accessions using 22 previously published simple sequence repeat (SSR) markers. The plant material included 367 rye accessions comprising historical and contemporary cultivars, cultivated materials, landraces, and breeding strains from the Polish breeding company Danko. The studied accessions represented a wide geographical diversity. Several methods were employed to analyze genetic diversity among the Secale cereale L. accessions and to determine population structure: principal coordinate analysis (PCoA), neighbor-joining (NJ), and Bayesian clustering. We also defined a core collection of 25 rye accessions representing over 93 % of SSR alleles. The results of these analyses showed that accessions from the rye gene bank are clearly divergent in comparison with materials received directly from European breeding companies. Our findings suggest also that the genetic pool of current rye cultivars is becoming narrower during breeding processes. The selected panel of SSR markers performed well in detection of genetic diversity patterns and can be recommended for future germplasm characterization studies in rye.  相似文献   

9.
Using genealogy analysis, we studied genetic diversity of 340 cultivars of spring bread wheat that were released on the territory of Russia in 1929-2003. Trends in the temporal change of genetic diversity were inferred from analysis of a set of n x m matrices, where n is the number of the released cultivars and m is the number of original ancestors. The pool of original ancestors of the spring bread wheat cultivars for the total period of study included 255 landraces, of which 88 were from the former USSR and modern Russia. The original ancestors showed great differences in their presence in the cultivar sets examined and, consequently, in their importance for the gene pool of Russian spring wheats. The distributions of contributions of dominant original ancestors to cultivar diversity were significantly different in different regions, indicating that the ancestors were specific for the cultivation conditions. During the last 75 years, the genetic diversity of the spring bread wheat cultivars has been increasing owing to the wide use of foreign material in Russian breeding programs. However, our analysis showed that about 60 landraces, including the Russian ones, were lost during the studied time period. The lost part makes up 35% of the gene pool of the Russian original ancestors. It is reasonable to assume that the lost landraces carried a gene complex f or adaptation to specific Russian environments. Specificity of the contributions of the original ancestors in the sets of cultivars produced in different breeding centers was established. A comparative analysis of genetic similarity of cultivars was carried out using coefficients of parentage. Significant differences in this parameter between breeding institutes and regions of cultivation were revealed.  相似文献   

10.
Using genealogy analysis, we studied genetic diversity of 340 cultivars of spring bread wheat that were released on the territory of Russia in 1929–2003. Trends in the temporal change of genetic diversity were inferred from analysis of a set of n × m matrices, where n is the number of the released cultivars and m is the number of original ancestors. The pool of original ancestors of the spring bread wheat cultivars for the total period of study included 255 landraces, of which 88 were from the former USSR and modern Russia. The original ancestors showed great differences in their presence in the cultivar sets examined and, consequently, in their importance for the gene pool of Russian spring wheats. The distributions of contributions of dominant original ancestors to cultivar diversity were significantly different in different regions, indicating that the ancestors were specific for the cultivation conditions. During the last 75 years, the genetic diversity of the spring bread wheat cultivars has been increasing owing to the wide use of foreign material in Russian breeding programs. However, our analysis showed that about 60 landraces, including the Russian ones, were lost during the studied time period. The lost part makes up 35% of the gene pool of the Russian original ancestors. It is reasonable to assume that the lost landraces carried a gene complex f or adaptation to specific Russian environments. Specificity of the contributions of the original ancestors in the sets of cultivars produced in different breeding centers was established. A comparative analysis of genetic similarity of cultivars was carried out using coefficients of parentage. Significant differences in this parameter between breeding institutes and regions of cultivation were revealed.  相似文献   

11.
Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70?C100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics.  相似文献   

12.
The dynamics of genetic transformations at gliadin-coding loci in the winter common wheat cultivars produced in Serbia and Italy over 40 years of scientific breeding was studied. It was demonstrated that a number of alleles unique for the wheat cultivars of each country were substituted with the alleles of a limited number of donor cultivars, in particular, cultivar Bezostaya 1 and its derivatives. On the background of preserved heterogeneity values during various time periods of breeding in each country, the genetic diversity in the total region decreased, as demonstrated by similarity in the sets of alleles of gliadin loci and their frequencies in the modern cultivars of these two Southern European countries. This decrease in the genetic diversity is an erosion of genetic resources within the region, which results in a loss of unique coadapted gene complexes.  相似文献   

13.
Plant breeding may lead to narrowing genetic diversity of cultivatedcrops, thereby affecting sustained selection gains in crop improvement. A totalof 47 microsatellite primer pairs (mapped to the 21 wheat genetic linkagegroups) were assessed in 75 Nordic spring wheat cultivars bred during the20th century to determine the variation of genetic diversity in thisgermplasm throughout this period. The number of alleles ranged from one toseven, with an average of 3.6 alleles per microsatellite marker. A dendrogramresulting from analysis of the matrix of dissimilarities using the unweightedpair-group method with arithmetic average discriminated all cultivars andrevealed clusters of accessions released both from some geographical area inthe Nordic Region and the breeding era, i.e. before and after World War II. Geneticdiversity in this wheat material increased from 1900 to 1940 and again from1960 onwards. In between these two periods there was a loss of diversity, whichcould not be explained by changes in a single genome or in one or few chromosomesets. Effects of different selection within countries are revealed by cleardifferences in frequency of some microsatellite alleles. In adition somemicrosatellite alleles were lost during the first quarter of the century whileseveral new alleles were introduced in the Nordic spring wheat material duringthe second half of the century. These results suggest that genetic diversity inNordic spring wheat was enhanced by plant breeding in the first quarter of the20th century and following a decrease during the second quarter wasincreased again by plant breeding.  相似文献   

14.
The genetic diversity of 255 taro (Colocasia esculenta) accessions from Vietnam, Thailand, Malaysia, Indonesia, the Philippines, Papua New Guinea and Vanuatu was studied using AFLPs. Three AFLP primer combinations generated a total of 465 scorable amplification products. The 255 accessions were grouped according to their country of origin, to their ploidy level (diploid or triploid) and to their habitat—cultivated or wild. Gene diversity within these groups and the genetic distance between these groups were computed. Dendrograms were constructed using UPGMA cluster analysis. In each country, the gene diversity within the groups of wild genotypes was the highest compared to the diploid and triploid cultivars groups. The highest gene diversity was observed for the wild group from Thailand (0.19), the lowest for the diploid cultivars group from Thailand (0.007). In Malaysia there was hardly any difference between the gene diversity of the cultivars and wild groups, 0.07 and 0.08, respectively. The genetic distances between the diploid cultivars groups ranges from 0.02 to 0.10, with the distance between the diploid accessions from Thailand and Malaysia being the highest. The genetic distances between the wild groups range from 0.05 to 0.07. First, a dendrogram was constructed with only the diploids cultivars from all countries. The accessions formed clusters largely according to the country from which they originated. Two major groups of clusters were revealed, one group assembling accessions from Asian countries and the other assembling accessions from the Pacific. Surprisingly, the group of diploid cultivars from Thailand clustered among the Pacific countries. Secondly, a dendrogram was constructed with diploid cultivated, triploid cultivated and wild accessions. Again the division of the accessions into an Asian and a Pacific gene pool is obvious. The presence of two gene pools for cultivated diploid taro has major implications for the breeding and conservation of germplasm.  相似文献   

15.
The archipelago of Indonesia has a long history of rice production across a broad range of rice-growing environments resulting in a diverse array of local Indonesian rice varieties. Although some have been incorporated into modern breeding programs, the vast majority of these landraces remain untapped. To better understand this rich source of genetic diversity we have characterized 330 rice accessions, including 246 Indonesian landraces and 63 Indonesian improved cultivars, using 30 fluorescently-labeled microsatellite markers. The landraces were selected across 21 provinces and include representatives of the classical subpopulations of cere, bulu, and gundil rices. A total of 394 alleles were detected at the 30 simple sequence repeat loci, with an average number of 13 alleles per locus across all accessions, and an average polymorphism information content value of 0.66. Genetic diversity analysis characterized the Indonesian landraces as 68% indica and 32% tropical japonica, with an indica gene diversity of 0.53 and a tropical japonica gene diversity of 0.56, and a Fst of 0.38 between the two groups. All of the improved varieties sampled were indica, and had an average gene diversity of 0.46. A set of high quality Indonesian varieties, including Rojolele, formed a separate cluster within the tropical japonicas. This germplasm presents a valuable source of diversity for future breeding and association mapping efforts.  相似文献   

16.
During the last 90 years, the breeding of rice has delivered cultivars with improved agronomic and economic characteristics. Crossing of different lines and successive artificial selection of progeny based on their phenotypes have changed the chromosomal constitution of the ancestors of modern rice; however, the nature of these changes is unclear. The recent accumulation of data for genome-wide single-nucleotide polymorphisms (SNPs) in rice has allowed us to investigate the change in haplotype structure and composition. To assess the impact of these changes during modern breeding, we studied 177 Japanese rice accessions, which were categorized into three groups: landraces, improved cultivars developed from 1931 to 1974 (the early breeding phase), and improved cultivars developed from 1975 to 2005 (the late breeding phase). Phylogenetic tree and structure analysis indicated genetic differentiation between non-irrigated (upland) and irrigated (lowland) rice groups as well as genetic structuring within the irrigated rice group that corresponded to the existence of three subgroups. Pedigree analysis revealed that a limited number of landraces and cultivars was used for breeding at the beginning of the period of systematic breeding and that 11 landraces accounted for 70% of the ancestors of the modern improved cultivars. The values for linkage disequilibrium estimated from SNP alleles and the haplotype diversity determined from consecutive alleles in five-SNP windows indicated that haplotype blocks became less diverse over time as a result of the breeding process. A decrease in haplotype diversity, caused by a reduced number of polymorphisms in the haplotype blocks, was observed in several chromosomal regions. However, our results also indicate that new haplotype polymorphisms have been generated across the genome during the breeding process. These findings will facilitate our understanding of the association between particular haplotypes and desirable phenotypes in modern Japanese rice cultivars.  相似文献   

17.
Based on genealogical analysis, the genetic diversity of 78 spring durum wheat cultivars released in Russia in 1929-2004 have been examined. The temporal trends of change in diversity were studied using series of n x m matrices (where n is the number of the cultivars and m is the number of original ancestors) and calculating coefficients of parentage in sets of cultivars released in particular years. The pool of original ancestors of spring durum wheat cultivars includes 90 landraces and old varieties, more than a half (57%) of which originate from European countries, including Russia and Ukraine (45%). The original ancestors strongly differ in the frequency of presence in the cultivar pedigrees. Landraces Beloturka, Sivouska, Kubanka (T. durum Desf.), Transbaikalian emmer, Yaroslav emmer (T. dicoccum Schuebl.), Poltavka (T. aestivum L.), and the original ancestors of cultivars Kharkov 46, Narodnaya, and Melanopus 1932 enter in the pedigrees of more than half of cultivars created within the framework of various breeding programs. At that, their distribution by cultivars from different breeding centers strongly varies. Analysis of temporal dynamics of genetic diversity, based on genetic profiles and coefficients of parentage, has shown that the genetic diversity of Russian durum wheats increased during the period examined. Nevertheless, genetic erosion of the local material-a loss of approximately 20% of the pool of Russian original ancestors-has been found. The contribution of the original ancestors to the pedigrees of different cultivars, constructed in different breeding centers and recommended for cultivation in different regions, has been estimated. The variation of the released cultivars was highest in the Lower Volga region and lowest in the Ural region. In all, the lower threshold of genetic diversity in all regions does not reach the critical level, corresponding to the similarity of half-sibs. The set of modern cultivars included in the Russian Official List 2004 has a cluster structure.  相似文献   

18.
东北春大豆样本的代表性及其SSR位点的遗传多样性分析   总被引:9,自引:0,他引:9  
从3226份东北春大豆总体中选择283份春大豆种质,用质量性状和数量性状进行检测,对总体的代表性为80%.利用筛选出61对SSR核心引物对具代表性的东北春大豆样本进行分析,共检测到534个等位变异,平均每个位点的等位变异为8.75个,变幅为2~16个;遗传多样性指数变化范围在0.406~0.886,平均为0.704;东北春大豆样本在大多数位点上有优势等位变异,从而降低了其遗传多样性.其中35份种质具有特异等位变异,分布在29个位点上;各个位点上分化系数均较小,遗传多样性分化程度较低.东北春大豆中3个省种质的共有等位变异较多,以吉林省和辽宁省种质的遗传多样性表现较为一致,均高于黑龙江省种质的遗传多样性.地方品种的遗传多样性高于育成品种.东北春大豆种质资源的遗传多样性分布特点为有目的选择杂交亲本拓宽遗传基础以培育新品种提供了理论依据.  相似文献   

19.
Persson K  Díaz O  von Bothmer R 《Hereditas》2001,134(3):237-243
Little is known about the extent and patterns of distribution of RAPD diversity in outcrossing species. This study is the first step in using RAPD markers to quantify the amount and distribution of genetic variation within and between accessions of 9 landraces and 3 cultivars of cultivated rye from Northern Europe. A high level of RAPD variation was detected, demonstrating the utility of RAPDs for genetic characterisation in rye. The results show that: (1) landraces and improved cultivars maintain roughly the same high levels of RAPD variation, (2) landraces from Norway, Germany and Finland showed the lowest level of variation, probably because of a small amount of seeds from the original samples, (3) most of the RAPD variation was found within rather than between the accessions, which is consistent with the pattern expected for a cross pollinated crop. Both the cluster and the principal coordinates analyses displayed the same pattern of genetic relationship among the accessions studied.  相似文献   

20.
Progress in bean breeding programs requires the exploitation of genetic variation that is present among races or through introgression across gene pools of Phaseolus vulgaris L. Of the two major common bean gene pools, the Andean gene pool seems to have a narrow genetic base, with about 10% of the accessions in the CIAT core collection presenting evidence of introgression. The objective of this study was to quantify the degree of spontaneous introgression in a sample of common bean landraces from the Andean gene pool. The effects of introgression on morphological, economic and nutritional attributes were also investigated. Homogeneity analysis was performed on molecular marker data from 426 Andean-type accessions from the primary centres of origin of the CIAT common bean core collection and two check varieties. Quantitative attribute diversity for 15 traits was studied based on the groups found from the cluster analysis of marker prevalence indices computed for each accession. The two-group summary consisted of one group of 58 accessions (14%) with low prevalence indices and another group of 370 accessions (86%) with high prevalence indices. The smaller group occupied the outlying area of points displayed from homogeneity analysis, yet their geographic origin was widely distributed over the Andean region. This group was regarded as introgressed, since its accessions displayed traits that are associated with the Middle American gene pool: high resistance to Andean disease isolates but low resistance to Middle American disease isolates, low seed weight and high scores for all nutrient elements. Genotypes generated by spontaneous introgression can be helpful for breeders to overcome the difficulties in transferring traits between gene pools.Communicated by H.C. Becker  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号