首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial spoilage of food causes losses of up to 40% of all food grown for human consumption worldwide. Yeast growth is a major factor in the spoilage of foods and beverages that are characterized by a high sugar content, low pH, and low water activity, and it is a significant economic problem. While growth of spoilage yeasts such as Zygosaccharomyces bailii and Saccharomyces cerevisiae can usually be retarded by weak organic acid preservatives, the inhibition often requires levels of preservative that are near or greater than the legal limits. We identified a novel synergistic effect of the chemical preservative benzoic acid and nitrogen starvation: while exposure of S. cerevisiae to either benzoic acid or nitrogen starvation is cytostatic under our conditions, the combination of the two treatments is cytocidal and can therefore be used beneficially in food preservation. In yeast, as in all eukaryotic organisms, survival under nitrogen starvation conditions requires a cellular response called macroautophagy. During macroautophagy, cytosolic material is sequestered by intracellular membranes. This material is then targeted for lysosomal degradation and recycled into molecular building blocks, such as amino acids and nucleotides. Macroautophagy is thought to allow cellular physiology to continue in the absence of external resources. Our analyses of the effects of benzoic acid on intracellular membrane trafficking revealed that there was specific inhibition of macroautophagy. The data suggest that the synergism between nitrogen starvation and benzoic acid is the result of inhibition of macroautophagy by benzoic acid and that a mechanistic understanding of this inhibition should be beneficial in the development of novel food preservation technologies.  相似文献   

2.
Saccharomyces bailii grows in the presence of high concentrations of sorbic, benzoic and other short-chain monocarboxylic acids commonly used as preservatives. Starved cells concentrate these acids intracellularly, approximately as expected from the pH of the ceil and the p K a of the acid. On addition of glucose, the intracellular content of preservative is considerably reduced. The glucose effect is sensitive to metabolic inhibitors, and anaerobic respiration is stimulated by the preservatives. The ability to maintain a low intracellular concentration of any of the preservatives tested is induced by growth in the presence of sorbic or benzoic acid and less effectively by butyric or acetic acid. Both induced and uninduced cells are permeable to benzoic and butyric acids. Benzoate and sorbate are not metabolized at a rate significant with respect to the permeation rate. Resistance to these preservatives apparently results primarily from an inducible, energy requiring system which transports preservative from the cell.  相似文献   

3.
Yeasts grown in the presence of benzoic acid tolerated 40 to 100% higher benzoic acid concentrations than did those grown in the absence of weak-acid-type preservatives. They also accumulated less benzoate in the presence of glucose. In chemostat cultures, benzoic acid reduced growth yield and the rate of cell production but increased specific fermentation rates. Benzoate contents were lower than those required for equilibrium when cells were impermeable to benzoate anion. Intracellular pHs were maintained near neutrality. Between species, stimulation of fermentation was inversely related to preservation resistance but was unrelated to the maximum rate of fermentation. The results show that a major effect of benzoic acid on yeasts in the presence of an energy source is the energy requirement for the reduction in cytoplasmic benzoate concentration and maintenance of pH. This energy source is unavailable for growth, resulting in lower growth yields and rates. Resistant species may be less permeable to undissociated benzoic acid.  相似文献   

4.
Summary Benzoic acid inZ. bailii decreases cell yield and increases sugar uptake rate in a similar way as inS. cerevisiae. The final catabolic destiny of pyruvate, however, is a function of the respiratory capacity of each strain. On the other hand, benzoic acid inhibits oxidative metabolism inZ. bailii. This work was supported byEC project AIR2-CT-92-CO-2.  相似文献   

5.
Summary A study of the ammonium transport system of Zygosaccharomyces bailii was carried out using methylammonium as a non-metabolizable analogue. Benzoic acid in the growth medium decreased the capacity of the transport system from 1.46 ± 0.11 mmol.g–1.h–1 to 0.41±0.04 mmol.g–1.h–1, while the affinity for ammonium was not significatively affected. Although ammonium uptake was inhibited by benzoic acid, the ammonium transport system was still active at preservative concentrations which fully inhibited growth suggesting that inhibition of growth was not governed by the uptake of this nutrient.  相似文献   

6.
The yeasts Zygosaccharomyces bailii, Dekkera bruxellensis (anamorph, Brettanomyces bruxellensis), and Saccharomyces cerevisiae are the major spoilage agents of finished wine. A novel method using Raman spectroscopy in combination with a chemometric classification tool has been developed for the identification of these yeast species and for strain discrimination of these yeasts. Raman spectra were collected for six strains of each of the yeasts Z. bailii, B. bruxellensis, and S. cerevisiae. The yeasts were classified with high sensitivity at the species level: 93.8% for Z. bailii, 92.3% for B. bruxellensis, and 98.6% for S. cerevisiae. Furthermore, we have demonstrated that it is possible to discriminate between strains of these species. These yeasts were classified at the strain level with an overall accuracy of 81.8%.  相似文献   

7.
The aim of this study is to evaluate possible synergistic antimicrobial interactions between common cosmetic preservatives and selected essential oils or surfactants. The antimicrobial efficacy of six essential oils, three surfactants and five preservatives against Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 43387 was assessed by a broth micro-dilution assay. MICs for individual and combined antimicrobials were determined and then transformed to fractional inhibitory concentration (FIC) indexes. All essential oils exhibited antibacterial activity; among surfactants, bacteria resulted most susceptible to the cationic agent. Synergy was observed when essential oils of eucalyptus and mint were combined with methylparaben against P. aeruginosa, while essential oils of mint, oregano and sage combined with propylparaben and imidazolidinyl urea acted against S. aureus. Many binary mixtures of preservatives and surfactants produced synergistic activity with the most effective interactions involving the cationic and amphoteric compounds under study. FIC indexes demonstrated synergistic effects when preservatives were combined with either essential oils or surfactants against both bacterial strains. These results highlight the potential usefulness of essential oils and surfactants to enhance the activities of conventional biocides. This kind of study should contribute to the selection and optimization of preservative systems for cosmetic preparations.  相似文献   

8.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.  相似文献   

9.
Bioincising is a biotechnological process that aims at the improvement of wood preservative uptake in wood species with a low permeability, such as Norway spruce (Picea abies (L.) Karst). The process is based on a short-term pre-treatment with white-rot fungus Physisporinus vitreus. During incubation the membranes of bordered and half bordered pits are supposed to be degraded by fungal activity resulting in a better treatability of the wood structure for wood preservatives. In the present study, first of all the resistance of bioincised Norway spruce heartwood and untreated controls against blue-stain and wood-decay fungi (white- and brown-rot) was determined. Then, bioincised and untreated specimens were dipped or vacuum impregnated with six wood preservatives and substance uptake was assessed gravimetrically. Additionally, the penetration of 3-iodo-2-propynyl butylcarbamate (IPBC) into the wood was analyzed by high-pressure liquid chromatography (HPLC). Finally, wood resistance was assessed according to the European standards EN 152 and EN 113. Results showed no difference between bioincised wood without preservatives and the untreated wood against blue-stain discolouration. However, a significant (P < 0.05) increase in susceptibility against wood decay was recorded. In the bioincised wood samples a significantly higher uptake of all the different preservatives was determined and the HPLC-method revealed that IPBC penetrated deeper into bioincised wood than into control samples. The improved uptake of preservatives into bioincised wood resulted in a significantly higher resistance against white- and brown-rot fungi. However, only a slight protection against wood discolouration by blue-stain fungi was recorded. The results of this study show for the first time that the biotechnological process with P. vitreus can be used to improve wood durability by increasing the uptake and penetration of wood preservatives.  相似文献   

10.
Zygosaccharomyces lentus is a yeast species recently identified from its physiology and 18S ribosomal sequencing (Steels et al. 1999).The physiological characteristics of five strains of this new yeast so far isolated were investigated, particularly those of technical significance for a spoilage yeast, namely temperature range, pH range, osmotolerance, sugar fermentation, resistance to food preservatives such as sorbic acid, benzoic acid and dimethyldicarbonate (DMDC; Velcorin). Adaptation to benzoic acid, and growth in shaking and static culture were also investigated. Zygosaccharomyces lentus strains grew over a wide range of temperature (4-25 degrees C) and pH 2.2-7.0. Growth at 4 degrees C was significant. Zygosaccharomyces lentus strains grew at 25-26 degrees C in static culture but were unable to grow in aerobic culture close to their temperature maximum. All Z. lentus strains grew in 60% w/v sugar and consequently, are osmotolerant. Zygosaccharomyces lentus strains could utilize sucrose, glucose or fructose as a source of fermentable sugar, but not galactose. Zygosaccharomyces lentus strains were resistant to food preservatives, growing in sorbic acid up to 400 mg l-1 and benzoic acid to 900 mg l-1 at pH 4.0. Adaptation to higher preservative concentrations was demonstrated with benzoic acid. Resistance to DMDC was shown to be greater than that of Z. bailii and Saccharomyces cerevisiae. This study confirms that Z. lentus is an important food spoilage organism potentially capable of growth in a wide range of food products, particularly low pH, high sugar foods and drinks. It is likely to be more significant than Z. bailii in the spoilage of chilled products.  相似文献   

11.
Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.  相似文献   

12.
Microbial spoilage of food causes losses of up to 40% of all food grown for human consumption worldwide. Yeast growth is a major factor in the spoilage of foods and beverages that are characterized by a high sugar content, low pH, and low water activity, and it is a significant economic problem. While growth of spoilage yeasts such as Zygosaccharomyces bailii and Saccharomyces cerevisiae can usually be retarded by weak organic acid preservatives, the inhibition often requires levels of preservative that are near or greater than the legal limits. We identified a novel synergistic effect of the chemical preservative benzoic acid and nitrogen starvation: while exposure of S. cerevisiae to either benzoic acid or nitrogen starvation is cytostatic under our conditions, the combination of the two treatments is cytocidal and can therefore be used beneficially in food preservation. In yeast, as in all eukaryotic organisms, survival under nitrogen starvation conditions requires a cellular response called macroautophagy. During macroautophagy, cytosolic material is sequestered by intracellular membranes. This material is then targeted for lysosomal degradation and recycled into molecular building blocks, such as amino acids and nucleotides. Macroautophagy is thought to allow cellular physiology to continue in the absence of external resources. Our analyses of the effects of benzoic acid on intracellular membrane trafficking revealed that there was specific inhibition of macroautophagy. The data suggest that the synergism between nitrogen starvation and benzoic acid is the result of inhibition of macroautophagy by benzoic acid and that a mechanistic understanding of this inhibition should be beneficial in the development of novel food preservation technologies.  相似文献   

13.
This study investigated the antimicrobial action of oleanolic acid against Listeria monocytogenes, Enterococcus faecium, and Enterococcus faecalis. To determine the cytotoxicity of oleanolic acid, HEp-2 cells were incubated with oleanolic acid at 37oC. MICs (minimal inhibition concentrations) for L. monocytogenes, E. faecium, and E. faecalis were determined using two-fold microdilutions of oleanolic acid, and bacterial cell viability was then assessed by exposing the bacteria to oleanolic acid at 2 × MIC. To investigate the mode of antimicrobial action of oleanolic acid, we measured leakage of compounds absorbing at 280 nm, along with propidium iodide uptake. Scanning electron microscope (SEM) images were also analysed. The viability of HEp-2 cells decreased (P < 0.05) at oleanolic acid concentrations greater than 128 μg mL-1. The MICs were 16-32 μg mL-1 for L. monocytogenes and 32-64 μg mL-1 for E. faecium and E. faecalis, and bacterial cell viability decreased (P < 0.05) about 3-4 log CFU mL-1 after exposure to 2 × MIC of oleanolic acid. Leakage of 280 nm absorbing materials and propidium iodide uptake was higher in oleanolic acid –treated cells than in the control. The cell membrane was damaged in oleanolic acid-treated cells, but the control group had intact cell membrane in SEM images. The results indicate that oleanolic acid can kill L. monocytogenes, E. faecium, and E. faecalis by destroying the bacterial cell membrane.  相似文献   

14.
Glass AD 《Plant physiology》1974,54(6):855-858
The membrane potentials of aged, excised barley (Hordeum vulgare L.) root cells were rapidly depolarized by the addition of salicylic acid (o-hydroxybenzoic acid) to the buffered medium bathing root segments. Initial values for membrane potentials were restored very slowly (within 100 minutes) by replacing the phenolic solution by phenolic-free buffer. Several other naturally occurring benzoic and cinnamic acids depolarized cell membrane potentials. The cinnamic acids consistently caused a greater depolarization than the correspondingly substituted benzoic acids. A strong positive correlation was found between the depolarization values (ΔE) for the benzoic acids and their lipid solubilities. This study supports the hypothesis that the inhibition of ion uptake brought about by naturally occurring phenolic acids is caused by a generalized increase in membrane permeability to inorganic ions.  相似文献   

15.
Cells of a strain of Pseudomonas cepacia were isolated from an oil-in-water emulsion containing methyl and propyl p-hydroxybenzoates (methylparaben and propylparaben) as preservative additives. This strain demonstrated the ability to destroy these additives, to utilize the propyl ester as sole carbon source, and to hydrolyze the methyl ester. When the isolate was grown on Eugon agar, exposure to the methyl ester killed 99.9% of the inoculum, but the surviving cells grew logarithmically. On the other hand, cells grown on media containing propylparaben were less susceptible when subsequently exposed to emulsions containing methylparaben. These observations demonstrate one mechanism by which microorganisms develop resistance to antimicrobial preservatives.  相似文献   

16.
The cosmetic industry adapts to the needs of consumers seeking to limit the use of preservatives and develop of preservative-free or self-preserving cosmetics, where preservatives are replaced by raw materials of plant origin. The aim of study was a comparison of the antimicrobial activity of extracts (Matricaria chamomilla, Aloe vera, Calendula officinalis) and essential oils (Lavandulla officinallis, Melaleuca alternifolia, Cinnamomum zeylanicum) with methylparaben. Extracts (2.5 %), essential oils (2.5 %) and methylparaben (0.4 %) were tested against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Candida albicans ATCC 14053. Essentials oils showed higher inhibitory activity against tested microorganism strain than extracts and methylparaben. Depending on tested microorganism strain, all tested extracts and essential oils show antimicrobial activity 0.8–1.7 and 1–3.5 times stronger than methylparaben, respectively. This shows that tested extracts and essential oils could replace use of methylparaben, at the same time giving a guarantee of microbiological purity of the cosmetic under its use and storage.  相似文献   

17.
Cells of a strain of Pseudomonas cepacia were isolated from an oil-in-water emulsion containing methyl and propyl p-hydroxybenzoates (methylparaben and propylparaben) as preservative additives. This strain demonstrated the ability to destroy these additives, to utilize the propyl ester as sole carbon source, and to hydrolyze the methyl ester. When the isolate was grown on Eugon agar, exposure to the methyl ester killed 99.9% of the inoculum, but the surviving cells grew logarithmically. On the other hand, cells grown on media containing propylparaben were less susceptible when subsequently exposed to emulsions containing methylparaben. These observations demonstrate one mechanism by which microorganisms develop resistance to antimicrobial preservatives.  相似文献   

18.
19.
Antifungal susceptibility testing was performed on 197 yeast isolates from the BCCM/IHEM biomedical fungi and yeasts collection (Belgian Co-ordinated Collections of Micro-organisms / IPH-Mycology) to study the in vitro activity of voriconazole against fluconazole, itraconazole and amphotericin B. MICs of the four antifungal agents were determined by an adapted NCCLS M27-A microdilution reference method. MIC readings were visually and spectrophotometrically determined. Optical density data were used for calculation of the MIC endpoints. For amphotericin B, the MIC endpoint was defined as the minimal antifungal concentration that exerts 90% inhibition, compared to the control growth. The azoles endpoints were determined at 50% inhibition of growth. The MIC distribution of voriconazole susceptibilities showed that 193 isolates had a MIC < or = 2 microg/ml and 185 a MIC < or = 1 microg/ml. Cross-tabulation of voriconazole, fluconazole, and itraconazole MICs indicated that voriconazole MICs raised with fluconazole and itraconazole MICs. The in vitro data obtained in this study suggest that voriconazole may also be effective treating yeast infection in patients infected with fluconazole or itraconazole resistant isolates.  相似文献   

20.
The spoilage yeast Saccharomyces cerevisiae degraded the food preservative sorbic acid (2,4-hexadienoic acid) to a volatile hydrocarbon, identified by gas chromatography mass spectrometry as 1,3-pentadiene. The gene responsible was identified as PAD1, previously associated with the decarboxylation of the aromatic carboxylic acids cinnamic acid, ferulic acid, and coumaric acid to styrene, 4-vinylguaiacol, and 4-vinylphenol, respectively. The loss of PAD1 resulted in the simultaneous loss of decarboxylation activity against both sorbic and cinnamic acids. Pad1p is therefore an unusual decarboxylase capable of accepting both aromatic and aliphatic carboxylic acids as substrates. All members of the Saccharomyces genus (sensu stricto) were found to decarboxylate both sorbic and cinnamic acids. PAD1 homologues and decarboxylation activity were found also in Candida albicans, Candida dubliniensis, Debaryomyces hansenii, and Pichia anomala. The decarboxylation of sorbic acid was assessed as a possible mechanism of resistance in spoilage yeasts. The decarboxylation of either sorbic or cinnamic acid was not detected for Zygosaccharomyces, Kazachstania (Saccharomyces sensu lato), Zygotorulaspora, or Torulaspora, the genera containing the most notorious spoilage yeasts. Scatter plots showed no correlation between the extent of sorbic acid decarboxylation and resistance to sorbic acid in spoilage yeasts. Inhibitory concentrations of sorbic acid were almost identical for S. cerevisiae wild-type and Δpad1 strains. We concluded that Pad1p-mediated sorbic acid decarboxylation did not constitute a significant mechanism of resistance to weak-acid preservatives by spoilage yeasts, even if the decarboxylation contributed to spoilage through the generation of unpleasant odors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号