首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Matringe M  Ksas B  Rey P  Havaux M 《Plant physiology》2008,147(2):764-778
Vitamin E is a generic term for a group of lipid-soluble antioxidant compounds, the tocopherols and tocotrienols. While tocotrienols are considered as important vitamin E components in humans, with functions in health and disease, the protective functions of tocotrienols have never been investigated in plants, contrary to tocopherols. We took advantage of the strong accumulation of tocotrienols in leaves of double transgenic tobacco (Nicotiana tabacum) plants that coexpressed the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene (PDH) and the Arabidopsis (Arabidopsis thaliana) hydroxyphenylpyruvate dioxygenase gene (HPPD) to study the antioxidant function of those compounds in vivo. In young leaves of wild-type and transgenic tobacco plants, the majority of vitamin E was stored in thylakoid membranes, while plastoglobules contained mainly delta-tocopherol, a very minor component of vitamin E in tobacco. However, the vitamin E composition of plastoglobules was observed to change substantially during leaf aging, with alpha-tocopherol becoming the major form. Tocotrienol accumulation in young transgenic HPPD-PDH leaves occurred without any significant perturbation of photosynthetic electron transport. Tocotrienols noticeably reinforced the tolerance of HPPD-PDH leaves to high light stress at chilling temperature, with photosystem II photoinhibition and lipid peroxidation being maintained at low levels relative to wild-type leaves. Very young leaves of wild-type tobacco plants turned yellow during chilling stress, because of the strongly reduced levels of chlorophylls and carotenoids, and this phenomenon was attenuated in transgenic HPPD-PDH plants. While sugars accumulated similarly in young wild-type and HPPD-PDH leaves exposed to chilling stress in high light, a substantial decrease in tocotrienols was observed in the transgenic leaves only, suggesting vitamin E consumption during oxygen radical scavenging. Our results demonstrate that tocotrienols can function in vivo as efficient antioxidants protecting membrane lipids from peroxidation.  相似文献   

2.
Tocopherols and tocotrienols have been originally identified as essential nutrients in mammals based on their vitamin E activity. These lipid-soluble compounds are potent antioxidants that protect polyunsaturated fatty acids from lipid peroxidation. The biosynthesis of tocopherols and tocotrienols occurs exclusively in photosynthetic organisms. The biosynthetic precursors and the different pathway intermediates have been identified by biochemical studies and the different vitamin E biosynthetic genes (VTE genes) have been isolated in several plants and cyanobacteria. The characterization of transgenic plants overexpressing one or multiple VTE genes combined with the study of vitamin E deficient mutants allows from now on understanding the regulation and the function of tocopherols and tocotrienols in plants.  相似文献   

3.
Microbiological production of tocopherols: current state and prospects   总被引:1,自引:0,他引:1  
Tocopherols are antioxidants that prevent various diseases caused by oxidative stress. Tocochromanols comprise four isoforms of tocopherols and four isoforms of tocotrienols but α-tocopherol is the most abundant and active isoform in human and animal tissues. Tocopherols are used as dietary supplements for human, as food preservatives, in manufacture of cosmetics, and for fortification of animal feed. Only photosynthetic cells are known to accumulate detectable concentrations of tocopherols. Tocopherols can be extracted and purified or concentrated from vegetable oils and other higher plant materials. However, the concentrations in these higher plant materials are very low and there are high proportions of the less-active homologues of tocopherols. Among the many strains of photosynthetic microorganisms known to accumulate tocopherols, Euglena gracilis is promising for commercial production of α-tocopherol. The growth rate and α-tocopherol contents are relatively high and α-tocopherol comprise more than 97% of all the tocopherols accumulated by Euglena gracilis. Although a lot of work has been done to increase the contents and composition of tocopherols in higher plants through genetic and metabolic engineering, work on genetic modification of microorganisms for increased tocopherol accumulation is scarce. Many cultivation systems have been investigated for efficient production of tocopherol by Euglena gracilis. However, those that involve heterotrophic metabolism are more promising. Bubble columns and flat-plate photobioreactors are more suitable for commercial production of tocopherols, than the tubular, internally illuminated, and open-air photobioreactors.  相似文献   

4.
A procedure is described and evaluated for the analysis of ubiquinone, plastoquinone, tocopherols and vitamin K1 in Pisum sativum L. Vitamin K1 appears to be absent from the roots of this plant. While the pea seed contains only γ-tocopherol, the root and shoot contain only α-tocopherol. During the greening of etiolated tissue, plastoquinone and vitamin K1 levels increase markedly while ubiquinone and α-tocopherol levels are unaffected. On homogenization or damage to tissue, considerable losses of α-tocopherol occur in the pea plant.  相似文献   

5.
Vitamin E (tocopherol) is a powerful antioxidant essential for human health and synthesized only by photosynthetic organisms. The effects of over-expression of tocopherol biosynthetic enzymes have been studied in leaves and seeds, but not in a non-photosynthetic, below-ground plant organ. Genetic and molecular approaches were used to determine if increased levels of tocopherols can be accumulated in potato (Solanum tuberosum L.) tubers through metabolic engineering. Two transgenes were constitutively over-expressed in potato: Arabidopsis thaliana p-hydroxyphenylpyruvate dioxygenase (At-HPPD) and A. thaliana homogentisate phytyltransferase (At-HPT). α-Tocopherol levels in the transgenic plants were determined by high-performance liquid chromatography. In potato tubers, over-expression of At-HPPD resulted in a maximum 266% increase in α-tocopherol, and over-expression of At-HPT yielded a 106% increase. However, tubers from transgenic plants still accumulated approximately 10- and 100-fold less α-tocopherol than leaves or seeds, respectively. The results indicate that physiological and regulatory constraints may be the most limiting factors for tocopherol accumulation in potato tubers. Studying regulation and induction of tocopherol biosynthesis should reveal approaches to more effectively engineer crops with enhanced tocopherol content.  相似文献   

6.
Background and Aims Vitamin E helps to control the cellular redox state by reacting with singlet oxygen and preventing the propagation of lipid peroxidation in thylakoid membranes. Both plant ageing and phosphorus deficiency can trigger accumulation of reactive oxygen species, leading to damage to the photosynthetic apparatus. This study investigates how phosphorus availability and vitamin E interact in the control of plant longevity in the short-lived annual Arabidopsis thaliana.Methods The responses of tocopherol cyclase (VTE1)- and γ-tocopherol methyltransferase (VTE4)-null mutants to various levels of phosphorus availability was compared with that of wild-type plants. Longevity (time from germination to rosette death) and the time taken to pass through different developmental stages were determined, and measurements were taken of photosynthetic efficiency, pigment concentration, lipid peroxidation, vitamin E content and jasmonate content.Key Results The vte1 mutant showed accelerated senescence under control conditions, excess phosphorus and mild phosphorus deficiency, suggesting a delaying, protective effect of α-tocopherol during plant senescence. However, under severe phosphorus deficiency the lack of α-tocopherol paradoxically increased longevity in the vte1 mutant, while senescence was accelerated in wild-type plants. Reduced photoprotection in vitamin E-deficient mutants led to increased levels of defence chemicals (as indicated by jasmonate levels) under severe phosphorus starvation in the vte4 mutant and under excess phosphorus and mild phosphorus starvation in the vte1 mutant, indicating a trade-off between the capacity for photoprotection and the activation of chemical defences (jasmonate accumulation).Conclusions Vitamin E increases plant longevity under control conditions and mild phosphorus starvation, but accelerates senescence under severe phosphorus limitation. Complex interactions are revealed between phosphorus availability, vitamin E and the potential to synthesize jasmonates, suggesting a trade-off between photoprotection and the activation of chemical defences in the plants.  相似文献   

7.
The Function of Tocopherols and Tocotrienols in Plants   总被引:1,自引:0,他引:1  
Referee: Dr. Kozi Asada, Department of Biotechnology, Faculty of Engineering, Fukuyama University, Gakuencho 1, Fukuyama 729-0292, Japan Tocopherols and tocotrienols, which differ only in the degree of saturation of their hydrophobic prenyl side chains, are lipid-soluble molecules that have a number of functions in plants. Synthesized from homogentisic acid and isopentenyl diphosphate in the plastid envelope, tocopherols and tocotrienols are essential to maintain membrane integrity. α-Tocopherol is the major form found in green parts of plants, while tocotrienols are mostly found in seeds. These compounds are antioxidants, thus they protect the plant from oxygen toxicity. Tocopherols and tocotrienols scavenge lipid peroxy radicals, thereby preventing the propagation of lipid peroxidation in membranes, and the ensuing products tocopheroxyl and tocotrienoxyl radicals, respectively, are recycled back to tocopherols and tocotrienols by the concerted action of other antioxidants. Furthermore, tocopherols and tocotrienols protect lipids and other membrane components by physically quenching and reacting chemically with singlet oxygen. The scavenging of singlet oxygen by α-tocopherol in chloroplasts results in the formation of, among other products, α -tocopherol quinone, a known contributor to cyclic electron transport in thylakoid membranes, therefore providing photoprotection for chloroplasts. Moreover, given that α-tocopherol increases membrane rigidity, its concentration, together with that of the other membrane components, might be regulated to afford adequate fluidity for membrane function. Furthermore, α-tocopherol may affect intracellular signaling in plant cells. The effects of this compound in intracellular signaling may be either direct, by interacting with key components of the signaling cascade, or indirect, through the prevention of lipid peroxidation or the scavenging of singlet oxygen. In the latter case, α-tocopherol may regulate the concentration of reactive oxygen species and plant hormones, such as jasmonic acid, within the cell, which control both the growth and development of plants, and also plant response to stress.  相似文献   

8.
Tocopherols are members of the vitamin E complex and essential antioxidant compounds synthesized in chloroplasts that protect photosynthetic membranes against oxidative damage triggered by most environmental stresses. Tocopherol deficiency has been shown to affect germination, retard growth and change responses to abiotic stress, suggesting that tocopherols may be involved in a number of diverse physiological processes in plants. Instead of seeking constitutive synthesis of tocopherols to improve stress tolerance, we followed an inducible approach of enhancing α-tocopherol accumulation under dehydration conditions in tobacco. Two uncharacterized stress inducible promoters isolated from Arabidopsis and the VTE2.1 gene from Solanum chilense were used in this work. VTE2.1 encodes the enzyme homogentisate phytyltransferase (HPT), which catalyzes the prenylation step in tocopherol biosynthesis. Transgenic tobacco plants expressing ScVTE2.1 under the control of stress-inducible promoters showed increased levels of α-tocopherol when exposed to drought conditions. The accumulation of α-tocopherol correlated with higher water content and increased photosynthetic performance and less oxidative stress damage as evidenced by reduced lipid peroxidation and delayed leaf senescence. Our results indicate that stress-induced expression of VTE2.1 can be used to increase the vitamin E content and to diminish detrimental effects of environmental stress in plants. The stress-inducible promoters introduced in this work may prove valuable to future biotechnological approaches in improving abiotic stress resistance in plants.  相似文献   

9.

Background and Aims

Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots.

Methods

Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, α-tocopherol and Fv/Fm ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer.

Key Results

Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of α-tocopherol (up to 2·7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females.

Conclusions

It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.  相似文献   

10.
Plasticity in plants could be changed due to abiotic factors, tending to increase fitness across environments. In the Neotropical savannah, a strong water deficit during the dry season is one of the main factors limiting the plasticity in physiological responses of plants. The present study aims to assess the plasticity in physiological responses and vegetative phenology of three plant species of the Neotropical savannah (Cerrado in Brazil) during the dry and the rainy seasons. The three species, Byrsonima verbascifolia, Roupala montana, and Solanum lycocarpum, occur in Serra do Cipó in the state of Minas Gerais, Brazil. The development and vegetative phenology of individuals of these three species were evaluated over the course of 1 year. In February 2012 (rainy season) and August 2012 (dry season), stomatal conductance (g s), water potential (Ψ), photosynthetic quantum yield, and concentration of leaf photosynthetic pigments were measured. The relative distance among the physiological parameters of all individuals within each season was measured using the relative distance plasticity index. B. verbascifolia has pronounced senescence in July and lost leaves completely by the early September, while R. montana and S. lycocarpum have green leaves throughout the year. The three studied species had greater control of stomatal opening during the dry season. S. lycocarpum and R. montana had negative water potential values in the dry season and in the middle of the day in both seasons. In the dry season, the three species exhibited a decrease in F v/F m, with values between 0.7 and 0.75. The relative distance plasticity index varied from 0 to 1. R. montana demonstrated the greatest plasticity and S. lycocarpum had lower plasticity. Then, a seasonal effect on physiological response was observed in all three model-species, with lower values for leaf water potential and stomatal conductance, and increased photoinhibition, in the dry season. Ecophysiological traits, such as stomatal conductance and leaf water potential, exhibited the greatest plasticity. In addition, there was a seasonal effect on the plasticity in physiological responses of the three plants species of the Neotropical savannah. The results are contradicting the idea that water restriction in the dry season would reduce the plasticity in most species of the Neotropical savannah.  相似文献   

11.
Progress in the dissection and manipulation of plant vitamin E biosynthesis   总被引:4,自引:0,他引:4  
Plants contain many unique biosynthetic pathways producing a diverse array of natural products that are important for plant function, agriculture, and human nutrition. The tocochromanols define one such class of compounds, comprised of four tocopherols and four tocotrienols that are collectively termed vitamin E. Tocochromanols are synthesized only by plants and other oxygenic, photosynthetic organisms, and the eight individual compounds vary widely in their vitamin E activities. Vitamin E was recognized as an essential component in mammalian diets in the 1920s and the tocochromanol biosynthetic pathway elucidated from radiotracer studies in the mid 1980s. However, it is only recently that genetic and genomics-based approaches in model photosynthetic organisms have allowed the genes and proteins for tocochromanol synthesis to be isolated, setting the stage for targeted manipulation of tocochromanol levels and types in various crops. This article reviews advancements in our molecular and genetic understanding of the tocochromanol biosynthetic pathway in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803 and highlights ongoing efforts to use this knowledge to manipulate the levels of this essential nutrient in food crops.  相似文献   

12.
Vitamin E refers to eight distinct compounds collectively known as tocochromanols and can be further divided into two classes, tocotrienols and tocopherols. Tocochromanols are the major lipid-soluble antioxidants in maize (Zea mays L.) grain. Enhancing vitamin E content of maize through plant breeding has important implications for human and animal nutrition. Four inbred lines exhibiting unique variation for tocochromanol compounds were chosen from the Goodman maize diversity panel to construct two biparental mapping populations (N6xNC296 and E2558xCo125). The N6xNC296 population was developed to analyze segregation for α-tocopherol and α-tocotrienol content. The E2558WxCo125 population was developed to analyze segregation for the ratio of total tocotrienols to tocopherols. The tocochromanol variation in two replicates of each population was quantified using liquid chromatography-diode array detection. Using high-density linkage mapping, novel quantitative trait loci (QTL) in the N6xNC296 population were mapped using tocopherol ratio traits. These QTL contain the candidate gene homogentisate phytyltransferase (ZmVTE2) within the respective support intervals. This locus was not mapped in a previous genome-wide association study that analyzed tocochromanols in the Goodman diversity panel. Transgressive segregation was observed for γ- and α-tocochromanols in these populations, which facilitated QTL identification. These QTL and transgressive segregant families can be used in selection programs for vitamin E enhancement in maize. This work illustrates the complementary nature of biparental mapping populations and genome-wide association studies to further characterize genetic variation of tocochromanol content in maize grain.  相似文献   

13.

Background and Aims

Calotropis procera and Calotropis gigantea, originally from warm parts of Africa and Asia, are now pan-tropical and in ecological terms considered an indicator of overgrazed, disturbed lands; they grow successfully in dry areas. Variations in water relations, morphology and photosynthesis of the two species growing in the same habitat were studied to assess possible mechanisms of tolerance to drought and how these relate to their ecophysiological success. Also the hypothesis that their photosynthetic rate (A) under drought would be affected by stomatal and non-stomatal limitations was tested.

Methods

Water relations, gas exchange, water use efficiency (WUE), fluorescence parameters, pubescence and specific leaf area (SLA) of Calotropis procera and C. gigantea plants growing in the field were evaluated during the wet (WS) and dry (DS) seasons.

Results

The xylem water potential (ψ) was similar in both species during the WS and DS; drought caused a 28 % decrease of ψ. In C. procera, A, stomatal conductance (gs) and carboxylation efficiency (CE) were higher in the WS with half the values of those during the DS, this species being more affected by drought than C. gigantea. A high δ13C of C. gigantea (–26·2 ‰) in the WS indicated a higher integrated WUE, in agreement with its lower gs. Leaves of C. gigantea were more pubescent than C. procera. Relative stomatal and non-stomatal limitation of A increased with drought in both species; no changes in maximum quantum yield of photosystem II (PSII; Fv/Fm) were observed. The decrease in the relative quantum yield of PSII (φPSII) and in the photochemical quenching coefficient (qP) was more pronounced in C. procera than in C. gigantea.

Conclusions

The photosynthetic capacity of C. procera was higher than that of C. gigantea. During the DS, A was regulated by stomatal and non-stomatal factors in a coordinated manner and drought did not cause chronic photoinhibition. A higher density of trichomes and leaf angle in C. gigantea may contribute to the maintenance of A and confer more efficient protection of photochemical activity in the DS. Ecophysiological traits such as high photosynthetic rate throughout the year even during the DS, and high WUE, highly pubescent leaves and low SLA observed in both species contribute to the establishment and growth of Calotropis in dry conditions.  相似文献   

14.
The tocopherols are amphipathic antioxidant synthesized by photosynthetic organisms, which forms the essential component in the human diet. To increase the α-tocopherol content in tobacco, two approaches have been attempted in this study: (1) transgenic approach, by constitutive overexpression of the genes encoding Arabidopsis homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) through Agrobacterium-mediated genetic transformation; (2) non-transgenic approach, by supplementation of intermediates/precursors of vitamin E biosynthesis like tyrosine, p-hydroxyphenyl pyruvic acid, homogentisic acid (HGA) and phytol in different concentrations and combinations using cell suspension culture system. Molecular analyses by PCR, RT-PCR and Southern hybridization were carried out to confirm the HPT and TC expressing transgenic tobacco lines. The α-tocopherol content in transgenic plants expressing HPT and TC increase by 5.5 and 4.1, respectively, over the wild type. These results indicate that, HPT and TC activities are important in tobacco plants for enhancing the vitamin E content. In the second approach, the supplementation of precursor in cell suspension cultures, i.e., combination of 150 μM HGA + 100 μM phytol, showed the maximum enhancement of α-tocopherol, i.e., 36-fold. These findings clearly imply that enhancement of α-tocopherol levels in tobacco system is possible, if we could modulate the vitamin E metabolic pathway. This is a very useful finding for the large-scale production of natural Vitamin E. Among the two systems tested, cell suspension culture-based system is ideal over the transgenic technology due to its efficiency and no biosafety concerns.  相似文献   

15.
生育三烯酚的生理功能及合成代谢调控   总被引:1,自引:0,他引:1  
维生素E是一种重要的脂溶性抗氧化剂。天然维生素E包括α-、β-、γ-和δ-生育酚及α-、β-、γ-和δ-生育三烯酚等8种组分。生育三烯酚具有独特的降低胆固醇、抗癌和神经保护功能,这些功能是生育酚所不具备的。生育三烯酚主要由谷物等单子叶植物合成。虽然生育三烯酚成分占天然维生素E的一半,但有关生育三烯酚的研究仅占维生素E全部文献的1%。可喜的是,近年来这一领域的研究取得了较大的进展。我们就生育三烯酚在人体内的生理功能、来源、生物合成及代谢调控等方面的进展进行概述。  相似文献   

16.
Acclimation of photosynthetic light reactions to daily changes in solar radiation requires adjustments in photosystem II photochemistry and may be affected by environmental stresses, such as drought. In this study, we examined the effects of a short-term, severe water deficit on diurnal variations in photosystem II photochemistry, photoprotective compounds (tocopherols and carotenoids, including the xanthophyll cycle) and stress-related phytohormones (abscisic acid and salicylic acid) in the CAM plant, Aptenia cordifolia L. f. Schwantes. Violaxanthin was rapidly converted to zeaxanthin under high light, the de-epoxidation state of the xanthophyll cycle reaching maximum levels of 0.95 at midday in irrigated plants. Under a higher photoprotective demand caused by water deficit, plants showed significant increases in abscisic acid and γ-tocopherol levels, which were followed by decreases in β-carotene and the Fv/Fm ratio at later stages of stress. Decreases in this ratio below 0.70 correlated with sustained increases in the de-epoxidation state of the xanthophyll cycle, which kept above 0.90 at night after 15 days of water deficit. In contrast to abscisic acid, salicylic acid levels kept constant under water deficit and showed a sharp decrease during the day both under irrigated and water stress conditions. We conclude that the CAM plant, A. cordifolia showed several strategies of acclimation to short-term water deficit, including abscisic acid and γ-tocopherol accumulation, as well as sustained increases in the de-epoxidation state of the xanthophyll cycle, which was tightly coupled to daily variations in photosystem II photochemistry. The differential accumulation of tocopherol homologues under water deficit and the diurnal fluctuations of salicylic acid levels in this CAM plant will also be discussed.  相似文献   

17.
Vitamin E comprises four tocopherols and four tocotrienols, collectively termed tocochromanols that play an essential role as antioxidants in humans, animals and photosynthetic organisms and are also believed to play a role in modulation of signal transduction and gene expression pathways. In rice and Populus genome, we have identified 7 and 11 tocochromanol biosynthesis genes, respectively. A detailed study of domain organization and phylogenetic analysis of these genes in rice, Arabidopsis and other plants has revealed the presence of homologous genes. Expression profiling of rice and Populus genes has been done by full-length cDNA and EST-based analysis. In rice, real-time PCR analysis was done to reveal the light-regulated expression pattern. Microarray-based expression analysis in different rice tissues and developmental stages revealed expression of these genes in almost all plant tissues/organs. Under abiotic stress conditions, expression of gene coding for HPPD enzyme, that regulates pathway flux, was also found to be increased. This information is expected to be helpful for further functional characterization of tocochromanol biosynthesis genes in different plant tissues under diverse growth conditions.  相似文献   

18.
In order to evaluate the salinity tolerance of Hibiscus hamabo Siebold & Zuccarini (Malvaceae), a candidate halophyte for reclamation areas, we analyze the effects of NaCl concentration, ranging from 0 to 500?mM, on the morphological, photosynthetic and chlorophyll fluorescent traits of this species. The optimal concentration for the germination of H. hamabo was 25?mM NaCl, and the optimal concentration for the survival and growth of H. hamabo ranged from 5 to 10?mM NaCl. Growth traits of H. hamabo at 25?mM, including the plant height, canopy diameter, number of leaves and width of the largest leaf, showed no statistical differences from the control. Net photosynthetic rate, stomatal conduction, light utilization efficiency, water utilization efficiency, maximal photosynthetic rate, light saturation point and chlorophyll content were the highest at 7.5?mM NaCl. F v/F m and F v/F 0 at 5 and 7.5?mM were significantly higher than the others, while F 0 was significantly lower. F m and F v at NaCl concentrations ranging from 2.5 to 10?mM were significantly higher than the others. Pearson correlation analysis showed that the chlorophyll content, maximal photosynthetic rate and light saturation point were significantly positively correlated with the number of leaves, while F 0 was significantly negatively correlated with the width of the largest leaf. Light compensation point was significantly negatively correlated with plant height, leaf number, width of the largest leaf and canopy diameter, and might be a good indicator for the salt tolerance of H. hamabo.  相似文献   

19.
Morphological and functional characteristics of Plantago media L. leaves were compared for plants growing at different light regimes on limestone outcrops in Southern Timan (62°45′N, 55°49′E). The plants grown in open areas under exposure to full sunlight had small leaves with low pigment content and high specific leaf weight; these leaves exhibited high photosynthetic capacity and elevated water use efficiency at high irradiance. The maximum photochemical activity of photosystem II (F v/F m) in leaves of sun plants remained at the level of about 0.8 throughout the day. The photosynthetic apparatus of sun plants was resistant to excess photosynthetically active radiation, mostly due to non-photochemical quenching of chlorophyll fluorescence (qN). This quenching was promoted by elevated deepoxiation of violaxanthin cycle pigments. Accumulation of zeaxanthin, a photoprotective pigment in sun plant leaves was observed already in the morning hours. The plant leaves grown in the shade of dense herbage were significantly larger than the sun leaves, with pigment content 1.5–2.0 times greater than in sun leaves; these leaves had low qN values and did not need extensive deepoxidation of violaxanthin cycle pigments. The data reveal the morphophysiological plasticity of plantain plants in relation to lighting regime. Environmental conditions can facilitate the formation of the ecotype with photosynthetic apparatus resistant to photoinhibition. Owing to this adjustment, hoary plantain plants are capable of surviving in ecotopes with high insolation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号