首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Identification and mapping of the novel apple scab resistance gene Vd3   总被引:1,自引:0,他引:1  
Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most devastating diseases for the apple growing in temperate zones with humid springs and summers. Breeding programs around the world have been able to identify several sources of resistance, the Vf from Malus floribunda 821 being the most frequently used. The appearance of two new races of V. inaequalis (races 6 and 7) in several European countries that are able to overcome the resistance of the Vf gene put in evidence the necessity of the combination of different resistance genes in the same genotype (pyramiding). Here, we report the identification and mapping of a new apple scab resistance gene (Vd3) from the resistant selection “1980-015-25” of the apple breeding program at Plant Research International, The Netherlands. This selection contains also the Vf gene and the novel V25 gene for apple scab resistance. We mapped Vd3 on linkage group 1, 1 cM to the south of Vf in repulsion phase to it. Based on pedigree analysis and resistance tests, it could be deduced that 1980-015-25 had inherited Vd3 from the founder “D3.” This gene provides resistance to the highly virulent EU-NL-24 strain of race 7 of V. inaequalis capable of overcoming the resistance from Vf and Vg. JMS and SGJ contributed equally to this work  相似文献   

2.
3.
Reports from several European countries of the breakdown of the Vf resistance, the most frequently used source of resistance in breeding programs against apple scab, emphasize the urgency of diversifying the basis of apple scab resistance and pyramiding different apple scab resistances with the use of their associated molecular markers. GMAL 2473 is an apple scab resistant selection thought to carry the resistance gene Vr. We report the identification by BSA of three AFLP markers and one RAPD marker associated with the GMAL 2473 resistance gene. SSRs associated with the resistance gene were found by (1) identifying the linkage group carrying the apple scab resistance and (2) testing the SSRs previously mapped in the same region. One such SSR, CH02c02a, mapped on linkage group 2, co-segregates with the resistance gene. GMAL 2473 was tested with molecular markers associated with other apple scab resistance genes, and accessions carrying known apple scab resistance genes were tested with the SSR linked to the resistance gene found in GMAL 2473. The results indicate that GMAL 2473 does not carry Vr, and that a new apple scab resistance gene, named Vr 2, has been identified.  相似文献   

4.
RAPD markers linked to the Vf gene for scab resistance in apple   总被引:14,自引:0,他引:14  
Scab (Venturia inaequalis) is one of the most harmful diseases of apple, significantly affecting world apple production. The identification and early selection of resistant genotypes by molecular markers would greatly improve breeding strategies. Bulked segregant analysis was chosen for the identification of RAPD markers linked to the Vf scab resistant gene. Five different RAPD markers, derived from the wild species Malus floribunda. 821, were identified, and their genetic distance from Vf gene was estimated. The markers OPAM192200 and OPAL07580 were found to be very closely linked to the Vf gene. This result was indirectly confirmed by the analysis of resistant genotypes collected from various breeding programmes. Except for cv Murray, which carries the Vm gene, all these resistant genotypes showed the markers OPAM192200 and OPAL07580.  相似文献   

5.
 Apple scab, caused by the fungus Venturia inaequalis (Cke.) Wint., is an important disease in commercial apple production. A mapping population of 155 individuals, derived from a cross between the apple varieties ‘Prima’ (resistant)בFiesta’ (susceptible), was scored for response to the disease in replicated field and glasshouse trials throughout Europe. Twenty data sets were selected and cluster analysis was used to form a consensus score for the population fitting a 1 : 1 segregation ratio of resistance:susceptibility. The progeny were scored with molecular markers. A detailed map covering 54 cM of the ‘Prima’ linkage group containing the Vf gene for scab resistance was constructed using 24 molecular markers linked to the resistance gene. One isoenzyme marker (Pgm-1), six RFLP markers and 17 RAPD markers formed a linkage group with the consensus measure of resistance to scab. Four marker bridges were established with the corresponding ‘Fiesta’ linkage group with additional markers (one isozyme, one RFLP, three RAPD and one AFLP). A low chi-square value indicated a good fit of the marker ordering, which was in close agreement with previously reported linkage positions for some of the markers and Vf. Differences were observed in the ability of different scoring methods to resolve susceptible and resistant classes. The results obtained for the consensus classification of resistance to scab for the population may suggest the presence of virulent inocula at some sites, which could overcome the Vf gene for resistance. The consequences of relying on individual scoring occasions for studying Vf scab resistance are discussed in the context of linkage analysis, conventional breeding selection, and marker-assisted selection. Received: 23 July 1997 / Accepted: 31 October 1997  相似文献   

6.
The availability of high-density anchored markers is a prerequisite for reliable construction of a deep coverage BAC contig, which leads to creation of a sequence-ready map in the target chromosomal region. Unfortunately, such markers are not available for most plant species, including woody perennial plants. Here, we report on an efficient approach to build a megabase-size sequence-ready map in the apple genome for the Vf region containing apple scab resistance gene(s) by targeting AFLP-derived SCAR markers to this specific genomic region. A total of 11 AFLP-derived SCAR markers, previously tagged to the Vf locus, along with three other Vf-linked SCAR markers have been used to screen two apple genome BAC libraries. A single BAC contig which spans the Vf region at a physical distance of approximately 1,100 kb has been constructed by assembling the recovered BAC clones, followed by closure of inter-contig gaps. The contig is 4 ×deep, and provides a minimal tiling path of 16 contiguous and overlapping BAC clones, thus generating a sequence-ready map. Within the Vf region, duplication events have occurred frequently, and the Vf locus is restricted to the ca. 290 kb region covered by a minimum of three overlapping BAC clones.  相似文献   

7.
Six sequence‐characterized amplified region (SCAR) markers linked to the apple scab resistance gene Vf were evaluated for their utility in marker‐assisted selection (MAS) in apple breeding. Of the six SCARs used in this study, ACS‐6 was located left of the Vf gene, ACS‐7 and ACS‐9 co‐segregated with Vf, and ACS‐8, ACS‐4, ACS‐5 were located right of the Vf gene. Three families derived from crosses between scab‐resistant and scab‐susceptible cultivars, including ‘Liberty’ × ‘Deljub’, ‘Liberty’ × ‘Delcorf’, and ‘Florina’ בDelcorf’, previously screened for scab resistance following greenhouse inoculation with the fungal pathogen Venturia inaequalis, were genotyped and compared with phenotypic reactions to scab infection in the field. For each family, a subset progeny of 30 seedlings (propagated onto Malling 9 rootstock and of 7 years old) was selected based on fungal sporulation according to the following scheme. Ten seedlings with no visible scab sporulation on leaves were given phenotypic scores of 0 (deemed resistant); 10 seedlings with moderate scab sporulation were given phenotypic scores of 1.0 (deemed moderately resistant); and 10 seedlings with heavy sporulation were given phenotypic scores of 2.0 (deemed susceptible). DNA was isolated from leaf tissue collected from all 90 seedlings, parents and Malus floribunda 821, the original source of the Vf gene, and screened with all six SCARs. All six SCARs were present in the two scab‐resistant parents, ‘Liberty’ and ‘Florina’, and M. floribunda 821; while, the two scab‐susceptible parents, ‘Deljub’ and ‘Delcorf’, lacked all SCARs. All SCARs were either present or absent in varying numbers of seedlings in each progeny with phenotypic ratings of either 0 (resistant) or 1.0 (moderately resistant); while all seedlings with phenotypic ratings of 2.0 (susceptible) lacked all SCARs. The inconsistencies between phenotypic scab ratings and SCAR marker data are discussed.  相似文献   

8.
A narrow-down strategy to restrict the Vf region, which controls resistance to the fungal disease apple scab in apple, to a genetic distance of 0.4 cM is presented. Using 11 AFLP-derived SCARs and three RAPD-derived SCARs, all linked to the Vf gene, we subjected 1,412 scab-resistant individuals from 16 mapping populations to genotype analysis. Eleven recombinant individuals were identified within a genetic distance of 0.9 cM around the Vf gene. Using these 11 recombinants, we achieved fine-resolution of several AFLP-derived SCAR markers surrounding the Vf gene, resulting in the following genetic linkage map: ACS-6 and ACS are located left of the Vf gene at genetic distances of 0.2 cM and 0.1 cM, respectively; ACS-7 and ACS-9 are inseparable from the Vf gene; ACS-8, ACS-10, and ACS-4 are located to the right of the Vf gene at genetic distances of 0.1 cM, 0.4 cM, and 0.5 cM, respectively; the remaining five SCARs—ACS-11, ACS-5, ACS-2, ACS-1, and AL07—are inseparable and are located right of the Vf gene at a genetic distance of 0.7 cM. By integrating this linkage data with our previous physical map, we generated a revised map of the narrowed-down region of Vf.Communicated by P. Langridge  相似文献   

9.
Screening apples for OPD20/600 using sequence-specific primers   总被引:13,自引:0,他引:13  
Apple scab, caused by Venturia inaequalis (Cke.) Wint., is the most serious disease of apple trees in many areas of the world. Resistance to V. inaequalis, derived from the small-fruited species Malus floribunda 821, is determined by a major dominant gene, Vf. Using random decamer primers, we identified a RAPD marker, OPD20/600, which is linked to the Vf gene. OPD20/600 was then cloned and sequenced. Sequence-specific primers based on the marker were used to further screen M. floribunda 821, 7 scab-susceptible apple cultivars, 10 scab-resistant apple cultivars, and 28 scab-resistant Coop selections. The sequence-specific primers allowed identification of polymorphisms of OPD20/600 based on the presence or absence of a single band. The advantages of sequence-specific primers over decamer primers for developing genetic markers are discussed.  相似文献   

10.
A chromosomal region originating from Malus floribunda 821 confers Vf scab resistance to many isolates of Venturia inaequalis. Twelve DNA markers located in this region were used to scan the equivalent of 31 cM in 98 Malus accessions. This allowed a molecular diagnosis of a source of resistance in apple germplasm with the aid of pedigree information, and in the context of a limited marker survey representing other chromosomes. At least five marker alleles were present in all scab-resistant breeding selections or varieties arising from M. floribunda. The validity of findings based on RAPD markers was confirmed with SCAR assays and Southern-hybridisation experiments. The order of markers determined in previous mapping studies was confirmed and sets of recombinants identified that establish reliable fine-mapping orders within 0.7 cM of the resistance locus. None of the marker alleles were present in the accessions that are either susceptible or possess weak polygenic resistance to scab. The presence of some alleles corresponding to those present at least 5.3 cM from Vf in M. floribunda was detected in some accessions. Other major sources of scab resistance do not appear to possess alleles in common with the Vf region, which will simplify future allelism tests. The results are discussed in the context of the introgression of resistance loci together with marker-assisted selection. The use of breeding pedigrees to assist in fine-scale mapping and map-based cloning is discussed. Received: 16 February 1999 / Accepted: 11 March 1999  相似文献   

11.
Pear scab (caused by Venturia nashicola) is one of the most harmful diseases of pears, especially Japanese and Chinese pear species. The molecular identification and early selection of resistant plants could greatly improve pear breeding. We have identified the position of the scab resistance gene, designated Vnk in an indigenous Japanese pear cultivar Kinchaku, within the pear genome by using simple sequence repeat (SSR) markers derived from pear and apple. The position of Vnk was identified in the central region of linkage group 1 of Kinchaku. Several amplified fragment length polymorphism (AFLP) markers linked to Vnk were obtained by bulked segregant analysis. Among them, the AFLP marker closest to Vnk was converted into a sequence tagged site (STS) marker. Four random amplified polymorphic DNA (RAPD) markers previously found to be loosely associated with Vnk (Iketani et al. 2001) were successfully converted into STS markers. Six markers (one SSR Hi02c07 and five STSs converted from AFLP and RAPD) showed tight linkages to Vnk, being mapped with distances ranging from 2.4 to 12.4 cM. The SSR CH-Vf2, which was isolated from a BAC clone of the contig containing the apple scab gene Vf, was mapped at the bottom of linkage group 1 in Kinchaku, suggesting that the Vnk and Vf loci are located in different genomic regions of the same homologous linkage group.  相似文献   

12.
A detailed genetic map has been constructed in apple (Malus x domestica Borkh.) in the region of the v f gene. This gene confers resistance to the apple scab fungus Venturia inaequalis (Cooke) Wint. Linkage data on four RAPD (random amplified polymorphic DNA) markers and the isoenzyme marker PGM-1, previously reported to be linked to the v f gene, are integrated using two populations segregating for resistance to apple scab. Two new RAPD markers linked to v f (identified by bulked segregant analysis) and a third marker previously reported as being present in several cultivars containing v f are also placed on the map. The map around v f now contains eight genetic markers spread over approximately 28 cM, with markers on both sides of the resistance gene. The study indicates that RAPD markers in the region of crab apple DNA introgressed with resistance are often transportable between apple clones carrying resistance from the same source. Analysis of co-segregation of the resistance classes 3A (weakly resistant) and 3B (weakly susceptible) with the linked set of genetic markers demonstrates that progeny of both classes carry the resistance gene.This work was supported in part by grants from the New Zealand Foundation for Research Science and Technology (FoRST) Programme 94-HRT-07-366 and ENZA New Zealand (International)  相似文献   

13.
Apple scab resistance genes, HcrVf1 and HcrVf2, were isolated including their native promoter, coding and terminator sequences. Two fragment lengths (short and long) of the native gene promoters and the strong apple rubisco gene promoter (PMdRbc) were used for both HcrVf genes to test their effect on expression and phenotype. The scab susceptible cultivar ‘Gala’ was used for plant transformations and after selection of transformants, they were micrografted onto apple seedling rootstocks for scab disease tests. Apple transformants were also tested for HcrVf expression by quantitative RT-PCR (qRT-PCR). For HcrVf1 the long native promoter gave significantly higher expression that the short one; in case of HcrVf2 the difference between the two was not significant. The apple rubisco gene promoter proved to give the highest expression of both HcrVf1 and HcrVf2. The top four expanding leaves were used initially for inoculation with monoconidial isolate EU-B05 which belongs to race 1 of V. inaequalis. Later six other V. inaequalis isolates were used to study the resistance spectra of the individual HcrVf genes. The scab disease assays showed that HcrVf1 did not give resistance against any of the isolates tested regardless of the expression level. The HcrVf2 gene appeared to be the only functional gene for resistance against Vf avirulent isolates of V. inaequalis. HcrVf2 did not provide any resistance to Vf virulent strains, even not in case of overexpression. In conclusion, transformants carrying the apple-derived HcrVf2 gene in a cisgenic as well as in an intragenic configuration were able to reach scab resistance levels comparable to the Vf resistant control cultivar obtained by classical breeding, cv. ‘Santana’.  相似文献   

14.
Using the amplified fragment length polymorphism (AFLP) technique combined with a ”narrow-down” bulk segregant strategy enabled us to quickly identify 15 tightly linked AFLP markers to the Vf gene that confers resistance to the apple scab disease. High-resolution mapping placed all 15 AFLP markers within an interval of 0.6 cM around the Vf region; 7 of them were found to be inseparable from the Vf gene, 1 was localized left of, and the remaining 7 located right of the Vf gene. In addition, eight previously identified RAPD markers were also mapped, but only three, including M18, AM19, and AL07, were localized within this short interval, and none co-segregated with the Vf gene. The saturation of the Vf region with AFLP markers will accelerate both marker-assisted selection and map-based cloning. The advantages of this ”narrow-down” strategy, estimation of physical distances among AFLP markers, and their potential application are also discussed. Received: 22 December 1999 / Accepted: 25 March 2000  相似文献   

15.
A positional cloning project was started in apple with the aim of isolating the Vf resistance gene of Malus floribunda 821. Vf confers resistance against apple scab, the most important disease in apple orchards. A chromosome walk starting from two molecular markers (M18-CAPS and AM19-SCAR) flanking Vf was performed, using a bacterial artificial chromosome (BAC) library containing inserts of the cultivar Florina, which is heterozygous for Vf. Thirteen BAC clones spanning the region between the two markers were identified in nine chromosome walking steps. The size of the resulting contig is approximately 550 kb. In order to map the Vf region in more detail, we analyzed over 2000 plants from different populations segregating for Vf with markers produced from BAC end sequences. In this way, we were able to restrict the possible location of the Vf gene to a minimum of five clones spanning an interval of approximately 350 kb. Received: 4 July 1999 / Accepted: 16 September 1999  相似文献   

16.
A major scab resistance gene initially called Vr1 was identified in the apple cultivar “Regia” derived from the Malus scab resistance source R12740-7A (Russian seedling, RS). A codominant, multiallelic sequence characterized amplified region (SCAR) marker was developed from a random amplified polymorphic DNA marker identified by bulked-segregant analysis. Additional alleles of the AD13 marker locus proved to be informative for the analysis of genetic relationships within Malus including putative relatives of RS. Separate linkage maps were created for the two families derived from crosses with “Regia”. Using phenotypic data from the greenhouse scab tests, the recombination frequency between Vr1 and AD13-SCAR was between 6 and 17%. The Vr1 locus appeared to be closely linked to the Vx [Hemmat et al. J Am Soc Hortic Sci, 127:365–370, 2002], Vr2 [Patocchi et al. Theor Appl Genet, 109:1087–1092, 2004], and the Vh4 gene [Bus et al. Mol Breed, 15:103–116, 2005a]. Our linkage analysis of the molecular markers identified by Hemmat et al. [J Am Soc Hortic Sci, 127:365–370, 2002] for two scab resistance factors from RS (Vr and Vx) indicate that both genes are separated by a large distance on apple linkage group 2 [Boudichevskaia et al. Acta Hortic, 663:171–175, 2004]. This is in agreement with the results of Bus et al., [Mol Breed, 15:103–116, 2005a] who concluded that (1) the RS-derived gene Vh2 is identical to Vr, (2) the RS-derived gene Vh4 is identical to Vx and Vr1, (3) Vh2/Vr and Vh4/Vr1/Vx map on opposite sides of LG 2. One of our main goals was the verification of the Vr1-SCAR within a practical apple-breeding program. The utility of the AD13-SCAR was evident after 2 years under natural scab infection conditions in both families investigated. This is the first report about the confirmation of a molecular marker for a RS resistance factor in a 2-year field experiment. A multiplex polymerase chain reaction assay based on two codominant SCARs for Vf and Vr1 was tested in an apple progeny segregating for both genes. The result of the two-marker approach is discussed with respect to scab races, which are able to overcome the Vf resistance gene.  相似文献   

17.
Woolly apple aphid (WAA; Eriosoma lanigerum Hausm.) can be a major economic problem to apple growers in most parts of the world, and resistance breeding provides a sustainable means to control this pest. We report molecular markers for three genes conferring WAA resistance and placing them on two linkage groups (LG) on the genetic map of apple. The Er1 and Er2 genes derived from ‘Northern Spy’ and ‘Robusta 5,’ respectively, are the two major genes that breeders have used to date to improve the resistance of apple rootstocks to this pest. The gene Er3, from ‘Aotea 1’ (an accession classified as Malus sieboldii), is a new major gene for WAA resistance. Genetic markers linked to the Er1 and Er3 genes were identified by screening random amplification of polymorphic deoxyribonucleic acid (DNA; RAPD) markers across DNA bulks from resistant and susceptible plants from populations segregating for these genes. The closest RAPD markers were converted into sequence-characterized amplified region markers and the genome location of these two genes was assigned to LG 08 by aligning the maps around the genes with a reference map of ‘Discovery’ using microsatellite markers. The Er2 gene was located on LG 17 of ‘Robusta 5’ using a genetic map developed in a M.9 × ‘Robusta 5’ progeny. Markers for each of the genes were validated for their usefulness for marker-assisted selection in separate populations. The potential use of the genetic markers for these genes in the breeding of apple cultivars with durable resistance to WAA is discussed.  相似文献   

18.
Scab, caused by the ascomycete fungus Venturia pirina, leads to severe damage on European pear varieties resulting in a loss of commercial value and requiring frequent use of fungicides. Identifying scab resistance genes, developing molecular markers linked to these genes and establishing marker-assisted selection would be an effective way to improve European pear breeding for scab resistance. Most of the European pear cultivars (Pyrus communis) are currently reported to be sensitive. The pear cultivar ‘Navara’ was shown to carry a major scab resistance gene whose phenotypic expression in seedling progenies was a typical stellate necrosis symptom. The resistance gene was called Rvp1, for resistance to V. pirina, and was mapped on linkage group 2 of the pear genome close to microsatellite marker CH02b10. This genomic region is known to carry a cluster of scab resistance genes in apple indicating a first functional synteny for scab resistance between apple and pear.  相似文献   

19.
Apple is host to a wide range of pests and diseases, with several of these, such as apple scab, powdery mildew and woolly apple aphid, being major causes of damage in most areas around the world. Resistance breeding is an effective way of controlling pests and diseases, provided that the resistance is durable. As the gene pyramiding strategy for increasing durability requires a sufficient supply of resistance genes with different modes of action, the identification and mapping of new resistance genes is an ongoing process in breeding. In this paper, we describe the mapping of an apple scab, a powdery mildew and a woolly apple aphid gene from progeny of open-pollinated mildew immune selection. The scab resistance gene Rvi16 was identified in progeny 93.051 G07-098 and mapped to linkage group 3 of apple. The mildew and woolly aphid genes were identified in accession 93.051 G02-054. The woolly aphid resistance gene Er4 mapped to linkage group 7 to a region close to where previously the genes Sd1 and Sd2, for resistance to the rosy apple leaf-curling aphid, had been mapped. The mildew resistance gene Pl-m mapped to the same region on linkage group 11 where Pl2 had been mapped previously. Flanking markers useful for marker-assisted selection have been identified for each gene.  相似文献   

20.
Russian apple R12740-7A is the designation for an accession grown from seed collected in Russia, which was found to be highly resistant to apple scab. The resistance has historically been attributed to a naturally pyramided complex involving three major genes: one race-nonspecific gene, Vr, conditioning resistance to all known races, plus two race-specific genes. The race-nonspecific gene was identified as an independently segregating gene by Dayton and Williams (1968) and is referred to in this paper as Vr-DW. The first researchers to study the scab resistance gene complex in Russian apple never described the phenotype conditioned by the race-nonspecific gene. Later, Aldwinckle et al. (1976) associated the name Vr with a scab resistance gene conditioning distinctive stellate necrotic reactions, which we refer to as Vr-A in order to distinguish it from Vr-DW. We show that the segregation ratios in progenies from the scab differential hosts 2 and 4 that are derived from Russian apple, crossed with susceptible cultivars were consistent with a single gene conditioning resistance in each host. The genes have been named Vh2 and Vh4, respectively. Resistant segregants from host 2 showed stellate necrotic reactions, while those from host 4 showed hypersensitive reactions. Both the phenotypes and the genetic maps for the genes in the respective hosts were very similar to those of the genes previously named Vr-A and Vx, respectively, in an F1 family of Russian apple. We showed that race 2 of V. inaequalis isolated from host 2 was able to infect resistant descendants of the non-differential accession PRI 442-23 as well as host 2. The descendants of PRI 442-23 were expected to carry the race-nonspecific Vr-DW gene, but in fact carry Vr-A. We conclude that the Vh2 gene in host 2 and Vr-A are the same, and that the Vh4 gene in host 4 and Vx are the same. However, a major finding of this study is that the latter gene mapped to linkage group 2 of apple instead of linkage group 10 as suggested from previous research. With the two race-specific genes from Russian apple defined now, we discuss the nature of the race-nonspecific Vr-DW gene in this accession. We also report the identification of a new scab resistance gene, VT57, from either Golden Delicious or Red Dougherty, which conditions chlorotic resistance reactions and is linked to Vh2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号