首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth induction in resting fibroblast cultures by serum or growth factors induces a fast, transient cGMP peak which may constitute the intracellular signal for growth. A similar cGMP peak occurs when 3T3 cells arrested at the restriction point or in G0 by starvation for certain amino acids are induced for growth by readdition of the lacking nutrients. Both 3T3 and SV3T3 cells which are arrested randomly all around the cell cycle do not exhibit major changes in cyclic nucleotides after growth induction. Determination of intracellular cAMP and cGMP levels in normal and transformed fibroblasts under different growth conditions shows that the transition between growing and resting state (G0 arrest) is accompanied and probably induced by characteristic changes in cAMP to cGMP ratios. cGMP is decreased 2-5-fold in resting as compared to growing cultures, and increased 10-20-fold in activated cultures 20 min after serum induction. No major cGMP change was observed in growing, confluent, or serum-activated cultures of transformed cells. Measurement of guanylcyclase under unphysiological conditions (2 mM Mn++) in crude and purified membranes from 3T3 and SV3T3 cultures did not show increased enzyme activity in the transformed cells. Significant differences may only show up when synchronized cells pass through the restriction point in G1 phase. As a hypothesis it is proposed that transformed cells have an activated guanylcyclase system or a relaxed cGMP-pleiotypic response mechanism at the restriction point of their cell cycle.  相似文献   

2.
Intracellular plasminogen activator (PA) was examined in 3T3 and transformed 3T3 cells under various growth conditions to determine whether expression of this activity changes with the growth state. During exponential growth, SV40 and benzpyrene (BP) transformed 3T3 cells exhibited 3- to 5-fold more intracellular PA activity than untransformed 3T3 cells. This relationship changed as the cells exhausted serum factors and arrested in G1. The specific activity of intracellular PA in cells that have retained a serum-sensitive restriction point in G1 (G0) (3T3 and BP 3T3) increased 200- and 20-fold, respectively, at this time, while the level in cells that have lost most growth control mechanisms (SV3T3) remained constant. At confluency, 3T3 cells had considerably more PA than either of their transformed counterparts. Sparse cultures of 3T3 and BP3T3 cells arrest at G1 following serum depravation, and also accumulate high intracellular PA activity. The addition of serum or purified epidermal growth factor to these cultures initiated cell proliferation and resulted in a rapid, actinomycin D-sensitive loss of this activity. Less than 50% of the original activity remained 30 minutes after growth stimulation. This loss of intracellular PA activity did not appear to result from the presence of serum or cellular inhibitors. Intracellular PA activity remained low following growth stimulation. It increased again as the cells traversed through G1. These findings indicate that intracellular PA activity fluctuates with the growth state of cells, and may be related to the cell cycle. Culture conditions which place cells, whether normal or transformed, in G1 arrest lead to increased intracellular PA, while factors that initiate growth again result in a rapid loss of this activity. This behavior is lacking in cells not subject to density-dependent inhibition of growth. Like many other correlates of transformation, comparison of intracellular PA in normal and transformed cells must be defined in terms of the growth state of the cells in question.  相似文献   

3.
DNA methylation is essential for mammalian development, X-chromosome inactivation, and imprinting yet aberrant methylation patterns are one of the most common features of transformed cells. One of the proposed causes for these defects in the methylation machinery is overexpression of one or more of the three known catalytically active DNA methyltransferases (DNMTs) 1, 3a and 3b, yet there are clearly examples in which overexpression is minimal or non-existent but global methylation anomalies persist. An alternative mechanism which could give rise to global methylation errors is the improper expression of one or more of the DNMTs during the cell cycle. To begin to study the latter possibility we examined the expression of the mRNAs for DNMT1, 3a and 3b during the cell cycle of normal and transformed cells. We found that DNMT1 and 3b levels were significantly downregulated in G0/G1 while DNMT3a mRNA levels were less sensitive to cell cycle alterations and were maintained at a slightly higher level in tumor lines compared to normal cell strains. Enzymatic activity assays revealed a similar decrease in the overall methylation capacity of the cells during G0/G1 arrest and again revealed that a tumor cell line maintained a higher methylation capacity during arrest than a normal cell strain. These results reveal a new level of control exerted over the cellular DNA methylation machinery, the loss of which provides an alternative mechanism for the genesis of the aberrant methylation patterns observed in tumor cells.  相似文献   

4.
Normal and SV40 virus-transformed WI-38 human lung fibroblasts were serum starved and refed, or synchronized by double thymidine block and released from the block. At different time points in the cell cycle, steady state levels of P120 mRNA and P120 protein content of the cells were determined by densitometric scans of Northern and Western blots. At the same time points, [3H]thymidine uptake was measured and flow cytometric analysis performed for DNA content and P120 antigen staining. Levels of P120 protein and P120 mRNA were approximately 4 times greater in non-synchronous, exponentially growing transformed cells than in similarly growing normal cells. Early G1-cells, synchronized either with serum deprivation or with metabolic block, contained only a trace amount of P120 protein and mRNA. The P120 gene was transcribed early in G1 and P120 protein synthesis initiated in middle G1. A dramatic increase of P120 protein level occurred in S-phase with a corresponding mRNA peak preceding the P120 protein peak. These results indicate that P120 is overexpressed in transformed WI-38 cells and that P120 is temporally regulated during the cell cycle of both transformed and normal fibroblasts. The dramatic increase in P120 protein expression at the G1 to S boundary suggests that P120 may play a role in the regulation of cell cycle and increased nucleolar activity that is associated with cell proliferation. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Cytoagglutination with Concanavalin A was studied in SV3T3 cells as a function of cell density. Agglutinability was low in subconfluent cultures (midpoint concentration 200 μg/ml) buth high in multilayered cultures (midpoint concentration 10–15 μg/ml). Normal 3T3 cells retained low agglutinability (midpoint concentration 1000 μg/ml) even when seeded at superconfluent density. By growing SV3T3 cells at low and at high density in the same culture dish it could be excluded that density modulation of cytoagglutination was caused by differences in pH or nutrient supply. Changes in the density of ConA binding sites or in ATP concentration could not account for the 20-fold difference in agglutinability between cells from high and low density regions. Cell kinetic studies demonstrated that all cells in high and low density cultures were in log phase of growth, differing only in the amount of intercellular contact. In Py-BHK cells, density modulation of agglutinability was much less demonstrated. Unlike SV3T3 cells, these cells rearranged on the substrate when seeded at low density to form clusters of cells with intensive overlapping contact. The results suggest that in transformed cells, cell-to-cell contact is a major determinant of high agglutinability which therefore seems the result, rather than the cause, of uncontrolled growth.  相似文献   

6.
7.
Phosphate uptake by monolayers of 3T3 cell decreases when the cultures enter the stationary phase, even when incubated in fresh medium containing 10% serum. However, SV 3T3 cultures retain a high rate of phosphate uptake when the cells reach saturation densities.We have observed that 3T3 cells grown to stationary phase in monolayers and then trypsinized and incubated in suspension, display an increase in phosphate uptake when the cell concentration is decreased from 106 cells/ml to 105 cells/ml. Where the cell concentration is further reduced from 105 cells/ml to 2.5 × 104 cells/ml there is no further increase in the rate of phosphate uptake. We observed, on the contrary, a small decrease.The “concentration effect” (the decrease of phosphate uptake when the cell concentration increases from 105 to 106 cells/ml) is larger when cells originate from a culture in stationary phase than when they originate from a culture in log phase.The “concentration effect” may be observed 10 min after cell incubation but is larger after a lag time of 40 min incubation.Differences in the “concentration effect” may be noted between 3T3 and SV 3T3 cells. In SV 3T3 cells no significant variations of phosphate uptake were observed when the cell concentration was changed. Thus, differences between phosphate uptake in 3T3 and SV 3T3 cells are large when cells are incubated at high concentrations or at high densities and small when they are incubated at low concentrations or at low densities.The “concentration effect” in 3T3 cells supports the assumption that interactions between cells cause the decrease of phosphate metabolism in dense culture. Diffusion of an inhibitor into the medium remains the more plausible explanation of the data.  相似文献   

8.
FR901228, a novel antitumor antibiotic, reversed the transformed morphology of the Ha-ras transformants, Ras-1 cells, and inhibited their growth. The reduction of c-myc expression was observed in FR901228-treated Ras-1 cells by RNA dot-blot hybridization. This reduction of c-myc expression and morphological reversion of the transformed cells to normal were correlated with growth inhibition (G0/G1 arrest in cell cycle).  相似文献   

9.
Populations of G1 phase 3T3 and SV40 3T3 mouse fibroblasts have been isolated from exponentially growing cultures by the technique of centrifugal elutriation. Return of the G1 phase cells to growth conditions results in their synchronous passage through the cell cycle, as determined from monitoring of cell number, [3H]thymidine ([3H]TdR) incorporation and fraction of [3H]TdR labeled nuclei. The durations of G1, S and G2 phases are consistent with values obtained by previous investigators using conventional induction techniques for synchronization. The method for isolation of the G1 phase cells is rapid, the yield is high and the process does not appear to alter the temporal aspects of the cell cycle in either cell type.  相似文献   

10.
Abstract. We have demonstrated previously that SV40 T antigen and serum regulate the length of G1 in exponentially growing NIH-3T3 cells in part by inhibiting density dependent negative cell cycle regulation. In these studies it was suggested that T antigen positively regulated G1 in a density independent manner as well. In this report we show that, 24 h after treatment, TGF-β1 perturbs the cell cycle of exponentially growing fibroblasts in a manner similar to T antigen. However, prior to 24 h, TGF-β1 produced a negative response, elongating the Gi phase of the cell cycle that was followed by a positive response, both of which were density independent. This biphasic response was measured between 0 and 12 h post-treatment and was relative to responses from serum. This switch from an early inhibitory effect to a late stimulatory effect was associated with changes in Rb phosphorylation, the timing and magnitude of which indicated that Rb may be directly regulating TG1 rather than reporting changes in the population. This is further substantiated by abrogation of the inhibitory effect by expression of wild-type SV40 T antigen and retention of the effect in cells that express an Rb-binding mutant of T antigen (K1). The biphasic regulatory effects of TGF-β1 were also displayed in WI-38 and IMR-90 human fibroblasts. This suggests that this biphasic effect is a property of fibroblasts.  相似文献   

11.
A trimodal change in the cellular levels of three major polyamines: spermidine, N,N′-bis(3-aminopropyl)-1, 3-propanediamine (BAP) and 3,3′-diaminodipropylamine (DAD) was observed during two successive cell cycles in synchronously dividing cultures of the algal flagellate, Euglena gracilis Z photoautotrophically grown in a 24-h light-dark cycle. The intracellular levels of these three polyamines decreased as cells divided and then were enhanced as cells exited the G1 phase and proceeded through the S and G2 phases. Spermidine, BAP and DAD concentrations increased about 2.5-fold during the S phase. Putrescine and 1,3-diaminopropane levels did not vary significantly. One peak of polyamine synthesis occurred in the G1 phase prior to DNA synthesis, followed by a second more important peak during the S-G2 phases before cell division; both peaks were observed during the light period. A third minor peak was observed during the pre-G1 (or G0) phase in the dark period after mitosis had been completed. In contrast, when the cells attained the “stationary” phase of growth, there was no significant increase in the content of polyamines during the light period although spermidine and BAP increased slightly twice during the dark period (putrescine and 1,3-diaminopropane and DAD levels remained almost constant). To ascertain whether the synthesis of polyamines was merely a direct effect of the photoperiod, parallel experiments with synchronous cultures were carried out in the presence and absence of 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea, a photosynthetic inhibitor. Although a slight decrease in the concentration of polyamines was observed, the three maxima of polyamines synthesis were observed as in normal cultures. These results clearly suggest that polyamine biosynthesis is closely related to DNA replication and cell division in Euglena cells.  相似文献   

12.
Quiescent SV40 virus transformed 3T3 cells in culture   总被引:6,自引:0,他引:6  
Serum counteracts low nutrient concentrations in the culture medium in SV40 virus transformed 3T3 (SV3T3) cells. The transport of [3H]-leucine into TCA soluble material in SV3T3 cells is stimulated by serum and inhibited by But2-cAMP. When SV3T3 cells are cultured in low leucine concentrations (? 8 × 10?6 M), the cell's morphology is similar to the one of cells incubated in complete medium in the presence of But2-cAMP and cells become quiescent. Cells become arrested throughout the cell cycle. The results suggest that the mechanism by which But2-cAMP inhibits growth of SV3T3 cells is by inhibiting the transport of leucine in SV3T3 cells.  相似文献   

13.
The proliferation rate of mammalian cells is regulated normally in the G1 phase of the cell cycle. During this phase, it is convenient to assign positive and negative roles to the molecular programs that regulate the duration of G1 and the phase transition from G1 to S phase. Density-dependent inhibition of cellular proliferation results in an increase in the duration of G1. This form of regulation is due to both secreted factors and cell—cell contact. Serum is mitogenic to a variety of mammalian cell types. Because quiescent cells enter S phase as a result of serum addition to culture media, serum is usually regarded as a source of positive regulatory growth factors. We have measured the length of the G1, S and G2+ M phases of NIH 3T3 cells during exponential growth as a function of cell density and serum concentration. The G1 length increases during exponential growth as a function of density while S and G2+ M are relatively constant. Further, this increase in G1 phase time, or density mediated negative regulation, is inhibited by increasing serum concentration. This phenotype is saturable between 10% to 20% serum. Serum concentrations above 2.5% are able to increase the rate of cell cycling (decrease the G1 phase time) by inhibiting density dependent negative regulation of NIH 3T3.  相似文献   

14.
The decreased growth rate observed in older muscle cultures has been attributed to the withdrawal of cells from the proliferative pool by fusion. The possibility was examined that this decrease reflects changes in the cell cycle as well. Before fusion, the cycle is relatively short and uniform (10.0 ± 2.7 hr) becoming greatly extended and more variable (19.2 ± 8.5 hr) in cultures undergoing fusion. Most of the increase in generation time is introduced by a long, variable G1 phase, that phase to which fusion is restricted. These stage-specific cycle characterstics are a function of changes occurring in the medium, rather than of time in culture. Older cultures, refed fresh medium acquire the cell cycle characteristics of younger cultures, and conversely, early cultures fed medium collected from older cultures exhibit cycle measurements typical of older cultures.Although the mean G1 time almost doubles at the time of fusion, there is no evidence that cells actually withdraw from the cycle prior to fusion. Continuous labeling before and after the initiation of fusion indicate that at all stages virtually 100% of the mononucleated cells incorporate 3H-TdR. Since fusion occurs in G1, it seems reasonable to assume that some preparation for fusion occurs during this phase and the probability of fusion increases with protraction of G1.  相似文献   

15.
Staurosporine (SSP) is an inhibitor of a variety of protein kinases with an especially high affinity towards protein kinase C. Whereas SSP has been shown to halt the cell cycle progression of various normal, nontransformed cell types in G1, most virus transformed or tumor cells are unaffected in G1 but arrest in G2 phase. SSP has also been observed to increase the appearance of cells with higher DNA content, suggestive of endoreduplication, in cultures of tumor cells. Using multivariate flow cytometry (DNA content vs. expression of cyclin B, nucleolar p120 protein, or protein reactive with Ki-67 antibody) which makes it possible to discriminate cells with identical DNA content but at different phases of the cycle, we have studied the cell cycle progression of human lymphocytic leukemic MOLT-4 cells in the presence of 0.1 μM SSP.MOLT-4 cells did not arrest in G1 or G2 phase in the presence of the inhibitor. Rather, they failed to undergo cytokinesis, entering G1 phase at higher DNA ploidy (tetraploidy; G1T), and then progressed through ST (rereplication) into G2T and MT. The rates of entrance to G2 and G2T were essentially identical, indicating that the rates of cell progression through S and ST as well as through G2 and G2T, respectively, were similar. Cells entrance to mitosis and mitotic chromatin condensation were also similar at the diploid and tetraploid DNA content level and were unaffected by 0.1 μM SSP. No evidence of growth imbalance (altered protein or RNA to DNA ratio) was observed in the case of tetraploid cells. The data show that, in the case of MOLT-4 cells, all events associated with the chromosome or DNA cycle were unaffected by SSP; the only target of the inhibitor appears to be kinase(s) controlling cytokinesis. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Age-related changes in the cytokinetics of human diploid cells in vitro have been compared in normal cultures and in cultures in which lifespan has been prolonged by the addition of hydrocortisone to the medium. For both cultures, with advancing age the fraction of cells in the actively proliferating pool decreased and the intercellular variation in cell cycle times increased. The average cell cycle time was prolonged during aging due almost entirely to changes in the duration of G1. The duration of S remained constant, while a small delay in G2 was observed in late passage cells near the end of their lifespan. Although the same pattern of change in proliferative parameters occurred in both control and hydrocortisone-treated cultures, the changes were somewhat delayed in the presence of the steroid. The results are interpreted in terms of several cell cycle models and suggest that the events controlling cell proliferation are sensitive to hydrocortisone modulation during the G1 and possibly the G2 periods.  相似文献   

17.
In the previous report (Porter et al., in this issue) morphological changes in Chinese hamster ovary (CHO) cells during the cell cycle were described. In this report we describe the role of intercellular contact on these changes. We find that intercellular contact is required for cells to exhibit the morphologies Porter et al. described for S and G2. When cells are synchronized by mitotic selection and plated onto cover slips at very low density such that no intercellular contact occurs, the cells remain in a G1 configuration (rounded and highly blebbed through G1, S, and G2). This G1 morphology is also observed in nonsynchronized log phase cells plated at low densities and allowed to grow for several generations. The addition of conditioned medium from confluent cultures does not induce low density cells to change morphology during the cell cycle. These results indicate that extensive intercellular contact is required for the complete expression of the morphological changes associated with the cell cycle (as described by Porter et al.). It is concluded that although classic contact inhibition of movement and of growth may be absent in this transformed cell line, some contact-dependent response persists.  相似文献   

18.
Flow cytometry indicated that significant amounts of dsRNA were accumulated in HeLa S3 cells blocked at or near G1/S boundary by hydroxyurea (HU) or excess thymidine (TdR). The dsRNA/DNA ratio increased in these cells in a manner characteristic of unbalanced cell growth. In HU-treated cells, dsRNA content was maximal 16 hours after addition of the drug and did not change significantly during the next 24 hours. The DNA content in blocked cells increased by 10%. Cell viability assessed by colony formation in soft agar decreased exponentially in HU-treated cultures after 16 hours of incubation. Correlation between loss of cell viability and rate of cell proliferation after removal of HU was observed, as determined by cell count and analysis of cell cycle progression. In TdR-treated cultures cells slowly progressed into mid S-phase during 40 hours and dsRNA accumulation continued during this period. Cell viability was not significantly affected by treatment with excess TdR, indicating that unbalanced growth per se, as measured by dsRNA accumulation, is not lethal for the cells. After reversal of DNA synthesis inhibition by removal of the drug, cells treated with HU for 16 hours or TdR for 16–24 hours promptly progressed through the cell cycle. This progression was accompanied by accumulation of significant amounts of dsRNA. As a result, cells in G2 phase had a very high dsRNA content leading to retention of the unbalanced condition (increased dsRNA/DNA ratio) in the daughter cells. It is suggested that dsRNA accumulation in the cell is controlled to a certain degree by cell progression through the S phase. This type of control, evidently, was reflected in limited dsRNA accumulation in the cells blocked at or near G1/S border, in continuous dsRNA accumulation in the cells slowly progressing through S phase, and in accumulation of large amounts of dsRNA after renewal of progression through the S phase.  相似文献   

19.
The question of whether lymphocytes which have once been activated and have completed one or several cell cycle(s) can return to the G0 phase and stay ready for a new activation (G0-G1 transition), rather than simply die, was investigated. To do so interleukin 2 (IL-2) was removed from cultures of continuously proliferating human T lymphocytes and the formation of resting (G0) cells was measured. Kinetic analyses in freshly prepared peripheral blood lymphocytes (PBL) revealed that the onset of detectable RNA synthesis and the appearance of structures binding the anti-Tac antibody occurred simultaneously. This allowed the expansion of the definition of G0 T lymphocytes as cells having a low RNA (and DNA) content, and no Tac antigen. When cultured human T cells proliferating continuously by means of IL-2 were characterized in terms of their distribution in the cell cycle, 7 days after the initial PHA stimulation, it could be demonstrated that very few cells were in the G0 phase, supporting the concept of direct S/G2/M-G1 transition. However, when IL-2 was removed from the cultures, the [3H]thymidine incorporation per 104 cells and correspondingly the number of cells in the S/G2/M and G1 phases were reduced drastically and during the following 72-hr period, the number of G0 cells increased markedly. Restimulation of such in vitro formed G0 cells, under conditions permitting observation of their shift from the G0 to G0 phase, demonstrated that most cells could respond normally. Based on these observations, it was concluded that IL-2 not only ensures T-lymphocyte survival and proliferation, but IL-2 starvation induces many continuously proliferating T lymphocytes to stop cycling and to return to the G0 phase of the cell cycle where they remain functional.  相似文献   

20.
Transport rates of the nonphosphorylated D-glucose analogs 6-deoxy-D-glucose and D-xylose were measured in quiescent and serum-stimulated cultures of mouse 3T3 cells, in SV40-transformed 3T3 cells (SV101), and in a density revertant cell line derived from SV101 (Fl-SV101). Initial rates of both entry and exit of 6-deoxy-D-glucose and D-xylose were more than threefold higher in serum-stimulated 3T3 and in SV101 cells than they were in quiescent 3T3 cells, but transport rates were not higher in the transformed cells (SV101) than they were in serum-stimulated 3T3. Confluent cultures of Fl-SV101 showed lower rates of transport than serum-stimulated Fl-SV101, but not as low as quiescent 3T3 cells. These data confirm previous findings of others with other analogs that glucose transport is one of the cell functions that is depressed when 3T3 cells enter the quiescent G0 state, but emphasize that SV40-transformed 3T3 cells do not show higher activity of the D-glucose carrier than do actively growing 3T3 cells. Thus, enhanced glucose transport appears not to be a specific consequence of transformation, but a reflection of the active growth state of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号