首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
本文系统分析了叶蜂总科广布属的地理分布特性。叶蜂总科广布属被分为12个主要的分布类型,其中全北界分布型69属,可再分为6种次类型。在各分布型下列举了全部具有该类分布特征的叶蜂总科属名,并提出了一些有关起源与扩散的设想和推论。在广布型属的地理分布研究基础上,对各大生物地理界之间的关系也提出了一些看法。  相似文献   

2.
Aim We analysed the distribution patterns of the eastern Pacific octocoral genus Pacifigorgia and deduced its ancestral distribution to determine why Pacifigorgia is absent from the Gulf of Mexico, the Caribbean of central America, and the Antilles. We also examined the current patterns of endemism for Pacifigorgia to look for congruence between hot spots of endemism in the genus and generally recognized areas of endemism for the eastern Pacific. Location The tropical eastern Pacific and western Atlantic, America. Methods We used track compatibility analysis (TCA) and parsimony analysis of endemicity (PAE) to derive ancestral distribution patterns and hot spots of endemism, respectively. Distributional data for Pacifigorgia were gathered from several museum collections and from fieldwork, particularly in the Pacific of Costa Rica and Panama. Results A single generalized track joined the three main continental eastern Pacific biogeographical provinces and the western Atlantic. This track can be included within a larger eastern Atlantic–eastern Pacific transoceanic track that may be the oldest transoceanic track occurring in the region. PAE results designate previously recognized eastern Pacific biogeographical provinces as Pacifigorgia hot spots of endemism. The number of endemic species, which for other taxonomic groups is similar among the eastern Pacific provinces, is higher in the Panamic province for Pacifigorgia. Main conclusions We propose that the absence of Pacifigorgia from the Gulf of Mexico, the Caribbean of central America, and the Antilles is the result of an ancient absence of the genus from these areas rather than the consequence of a major, recent, extinction episode. The Cortez province and the Mexican province appear together as a result of either non‐response to vicariance or dispersal across the Sinaloan Gap. We posit that the Central American Gap acts as a barrier that separates the Panamic province from the northern Cortez–Mexican province.  相似文献   

3.
The aim of this study was to investigate the diversity and distribution patterns of orchid bees (Euglossina). Cluster and correlation analyses were applied to data extracted from 28 orchid-bee surveys throughout the Neotropical Region. The 28 sampling sites were grouped in three main biogeographic areas that roughly correspond to the Amazonian Basin, the Atlantic Forest and Central America. These three regions, as well as subregions within each of them, correspond approximately to biogeographic components identified through phylogeny-based analyses for other bees and organisms. The Amazonian Forest as a whole has the richest fauna and the highest levels of endemism. The Atlantic Forest, on the other hand, showed the poorest fauna and the lowest levels of endemism. However, a major neotropical biome, in which orchid bees are known to occur, has not been sampled yet, the savanna-like cerrado. At least 30% of the species are endemic to each biome. An updated checklist of the species of Euglossina is provided.  相似文献   

4.
Data on the geographical distribution, phylogeny and fossil record of cool-temperate North Atlantic shell-bearing molluscs that live in waters shallower than 100 m depth belong to two biogeographic provinces, one in eastern North America north of Cape Cod, the other in northern Europe. Amphi-Atlantic species, which are found in both provinces, comprise 30.8% of the 402 species in the northeastern Atlantic and 47.3% of the 262 species in the northwestern Atlantic. Some 54.8% of these amphi-Atlantic species have phylogenetic origins in the North Pacific. Comparisons among fossil Atlantic faunas show that amphi-Atlantic distributions became established in the Middle Pliocene (about 3.5 million years ago), and that all represent westward expansions of European taxa to North America. No American taxa spread eastward to Europe without human assistance. These results are in accord with previous phylogeographic studies among populations within several amphi-Atlantic species. Explanations for the unidirectional expansion of species across the Atlantic remain uncertain, but may include smaller size and greater prior extinction of the North American as compared to the European fauna and biased transport mechanisms. Destruction of the European source fauna may jeopardize faunas on both sides of the Atlantic.  相似文献   

5.
We synthesize the evolutionary implications of recent advances in the fields of phylogeography, biogeography and palaeogeography for shallow‐water marine species, focusing on marine speciation and the relationships among the biogeographic regions and provinces of the world. A recent revision of biogeographic provinces has resulted in the recognition of several new provinces and a re‐evaluation of provincial relationships. These changes, and the information that led to them, make possible a clarification of distributional dynamics and evolutionary consequences. Most of the new conclusions pertain to biodiversity hotspots in the tropical Atlantic, tropical Indo‐West Pacific, cold‐temperate North Pacific, and the cold Southern Ocean. The emphasis is on the fish fauna, although comparative information on invertebrates is utilized when possible. Although marine biogeographic provinces are characterized by endemism and thus demonstrate evolutionary innovation, dominant species appear to arise within smaller centres of high species diversity and maximum interspecies competition. Species continually disperse from such centres of origin and are readily accommodated in less diverse areas. Thus, the diversity centres increase or maintain species diversity within their areas of influence, and are part of a global system responsible for the maintenance of biodiversity over much of the marine world.  相似文献   

6.
1. Freshwater mussels (Order Unionoida) are the most imperiled faunal group in North America; 60% of described species are considered endangered or threatened, and 12% are presumed extinct. Widespread habitat degradation (including pollution, siltation, river channelization and impoundment) has been the primary cause of extinction during this century, but a new stress was added in the last decade by the introduction of the Eurasian zebra mussel, Dreissena polymorpha , a biofouling organism that smothers the shells of other molluscs and competes with other suspension feeders for food. Since the early 1990s, it has been spreading throughout the Mississippi River basin, which contains the largest number of endemic freshwater mussels in the world. In this report, we use an exponential decay model based on data from other invaded habitats to predict the long-term impact of D. polymorpha on mussel species richness in the basin.
2. In North American lakes and rivers that support high densities (>3000 m−2) of D. polymorpha , native mussel populations are extirpated within 4–8 years following invasion. Significant local declines in native mussel populations in the Illinois and Ohio rivers, concomitant with the establishment of dense populations of D. polymorpha , suggest that induced mortality is occurring in the Mississippi River basin.
3. A comparison of species loss at various sites before and after invasion indicates that D. polymorpha has accelerated regional extinction rates of North American freshwater mussels by 10-fold. If this trend persists, the regional extinction rate for Mississippi basin species will be 12% per decade. Over 60 endemic mussels in the Mississippi River basin are threatened with global extinction by the combined impacts of the D. polymorpha invasion and environmental degradation.  相似文献   

7.
Aim Patterns of phylogeographical diversity in eastern North America have been well documented, with suggestions of Pleistocene refugia in both coastal and interior regions. However, most studies to date have assessed these patterns only qualitatively, largely through visual observation of haplotype networks. Furthermore, many plant studies use only one or two individuals per locality, which probably limits the recovery of haplotype diversity. The aim of this study is to address the issues of sampling strategy and quantitative assessment of phylogeographical patterns in an eastern North American tree, Fagus grandifolia (American beech). Location Eastern North America. Methods Comparing two sampling strategies (more localities with lower sample size within localities versus fewer localities with increased sample size within localities), we analysed chloroplast DNA sequence data from more than 230 individuals across 130 localities using statistical parsimony, maximum parsimony, maximum likelihood and Bayesian analyses. We then assessed support for inferred phylogenetic relationships using Monmonier’s algorithm and analysis of molecular variance. As an additional test of biogeographic hypotheses, we employed ecological niche models (ENMs), which are used to predict the geographic range of a species from occurrence data and environmental records. Here we predict both present and palaeodistributions. Results More haplotypes were recovered when more localities were sampled, but novel haplotypes and haplotype distributions were recovered using both strategies. Phylogeographical patterns suggest possible Pleistocene refugia along the Gulf and Atlantic coasts according to ENMs, as well as a more interior refugium according to Monmonier’s algorithm. Main conclusions Monmonier’s algorithm supports previous findings of an interior refugium in the Lower Mississippi River Valley/Upper Midwest, while ENMs indicate that the Gulf and Atlantic coasts may have provided the most suitable habitat for F. grandifolia during the Pleistocene. Our findings allow us to highlight the strengths and weaknesses of the two approaches. We propose that future phylogeographical studies should follow a step‐wise sampling strategy, balancing cost and expected outcomes.  相似文献   

8.
The present article is the first comprehensive treatment of phytogeography of Thermopsis (Fabaceae) in the world. Thermopsis is one of the few genera within Fabaceae with the distribution pattern of the East Asia-North American disjunction. The distribution patterns of 5 recognized sections (including a new one) covering 21 species in Thermopsis are analyzed, and the results show four centres of frequency of the genus: the Eastern Asiatic Region (9 spp. / 3 sects., including 4 endemic species), the Irano-Turanian Region (7 spp./3 sects., including 3 endemic species), the Rocky Mountain Region (7 spp./2 sects., all endemic), and the Atlantic North American Region (3 spp. / 1 sect., all endemic). In the light of the fact that most species and sections, a number of phylogenetic series of the genus, and the most primitive sections and most advanced sections in Thermopsis occur in the East Asia, the Eastern Asiatic Region might be the centre of diversity of the genus. As the Irano-Turanian Region and the Rocky Mountain Region were just second to that of Eastern Asiatic Region in number of sections and species, and many polyploids appeared in these regions, they were considered as the secondary centres of distribution and speciation of the genus. The speciation looks to be frequent and complex in these regions, and many new taxa have been described from there while many new reduced or incorporated taxa have happened over there. However, recent molecular data has shown that two reduced taxa of Thermopsis are distinct in these regions. Based on the modern distribution patterns and evolutionary trends in morphological characters of the genus, and available fossil record of the genus and the historical geology, we speculate that Thermopsis had already existed on Eurasia and North America before the Late Miocene, and probably originated from an ancestral form of Sophora-like taxa with lupine alkaloids somewhere in the Laurasia in the Early Tertiary or Late Cretaceous. After the separation of the two continents, species on different continents developed distinctly under influences of different evolutionary factors. In Asia, the late Tertiary orogeny, disappearing of the Tethys and aridity and freezing caused by the Quaternary glaciation were the main forces to promote the speciation and evolutionary processes, whereas in North America it was the Quaternary glaciation and the orogeny of partial area to promote evolution of the genus. According to the evolutionary trends in Thermopsis and the distribution pattern of the primitive taxa, Sino-Japanese Subregion of Eastern Asiatic Region may be considered asthe centre of primitive forms of Thermopsis.  相似文献   

9.
About 95 species of stalked crinoids are now described from 60m to hadal depths, but our knowledge remains far from complete. Depending on which species concept is used, estimates of species richness can be dramatically different. It is necessary to have a homogeneous concept for taxonomic units. The abundance of the crinoid fossil record allows a discussion of the ancestry of deep sea crinoid fauna. Stalked crinoids have a horizontal diversity pattern with three regional centres of high diversity (i.e. western tropical Pacific, western tropical Atlantic and north-eastern Atlantic). Vertical patterns show two faunal strata which vary in importance among provinces. The epibathyal stratum has apparently remained relatively similar in intertropical areas since the Mesozoic. Despite environmental changes related to glaciation since the Middle Miocene, the deepest crinoid fauna (i.e. the deep sea fauna sensu stricto at depths more than 1000 ± 200 m) have a very ancient origin with a dispersion closely related to plate tectonics. The bathyal fauna on hard substrates includes a few living fossils and has a high historical interest.  相似文献   

10.
Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.  相似文献   

11.
Near TJ  Page LM  Mayden RL 《Molecular ecology》2001,10(9):2235-2240
North America exhibits the most diverse freshwater fish fauna among temperate regions of the world. Species diversity is concentrated in the Central Highlands, drained by the Mississippi, Gulf Slope and Atlantic Slope river systems. Previous investigations of Central Highlands biogeography have led to conflicting hypotheses involving dispersal and vicariance to explain the diversity and distribution of the freshwater fish fauna. In this investigation predictions of the Central Highlands pre-Pleistocene vicariance hypothesis are tested with a phylogeographic analysis of the percid species Percina evides, which is widely distributed in several disjunct areas of the Central Highlands. Phylogenetic analysis of complete gene sequences of mitochondrially encoded cytochrome b recover three phylogroups, with very low levels of sequence polymorphism within groups. The two western phylogroups are monophyletic with respect to the eastern phylogroup. The recovery of two monophyletic lineages with an eastern and western distribution in the disjunct highland areas is a pattern expected from vicariance, but is not predicted by the Central Highlands pre-Pleistocene vicariance hypothesis. The recovery of very limited mitochondrial DNA polymorphism and lack of phylogeographic structuring across the entire range of the eastern clade, very shallow polymorphism between the disjunct Missouri River and upper Mississippi River populations, and lack of sequence polymorphism in the upper Mississippi River populations, support a hypothesis of dispersal during or following the Pleistocene. The present distribution of P. evides is best explained by both vicariant and dispersal events.  相似文献   

12.
Summary We examined the potential effects of geography on the distribution and speciation of skinks on tropical Pacific archipelagos. The entire tropical Pacific skink fauna was divided into continental (found also in continental areas), Pacific (endemic to the study area but found within more than one archipelago) and endemic (found within only one archipelago) species categories. The number and proportion of skinks within each species category were determined for each of the 27 archipelagos in the study area. Nine geographic variables reflecting archipelago size, isolation and elevation were estimated for each archipelago. Principal components analysis was used to reduce the nine variables to three uncorrelated composite variables that were interpreted as representing archipelago size, isolation and elevation. Numbers and proportions of skinks in each category within an archipelago were related to the composite geographic variables using multiple linear regression analysis. Archipelago size and isolation were important predictors of both skink diversity and endemism. Results were then compared to diversity and endemism of birds within the study area. Skinks showed an archipelago-wide level of endemism similar to that of birds. On an archipelago by archipelago basis, however, large differences between birds and skinks were evident. In particular, the New Caledonia skink fauna was much more endemic than that of birds. The bird faunas of Hawaii and the Marquesas were nearly completely endemic, while no endemic skinks occurred in these two archipelagos. These differences presumably reflect the relative dispersal powers of skinks and birds and, consequently, rates of colonization and speciation. Differences may also be due partly to morphological conservatism among isolated skink populations and the occurrence of cryptic species that have not yet been identified as separate species. The discovery of such cryptic species, however, is unlikely to increase the endemic skink fauna of Hawaii and other distant archipelagos to a level commensurate with that of birds. Differences in endemism between skinks and birds may also be due to unknown local ecological interactions.  相似文献   

13.
The studies on marine copepods of Costa Rica started in the 1990’s and focused on the largest coastal-estuarine systems in the country, particularly along the Pacific coast. Diversity is widely variable among these systems: 40 species have been recorded in the Culebra Bay influenced by upwelling, northern Pacific coast, only 12 in the Gulf of Nicoya estuarine system, and 38 in Golfo Dulce, an anoxic basin in the southern Pacific coast of the country. Freshwater environments of Costa Rica are known to harbor a moderate diversity of continental copepods (25 species), which includes 6 calanoids, 17 cyclopoids and only two harpacticoids. Of the +100 freshwater species recorded in Central America, six are known only from Costa Rica, and one appears to be endemic to this country. The freshwater copepod fauna of Costa Rica is clearly the best known in Central America. Overall, six of the 10 orders of Copepoda are reported from Costa Rica. A previous summary by 2001 of the free-living copepod diversity in the country included 80 marine species (67 pelagic, 13 benthic). By 2009, the number of marine species increased to 209: 164 from the Pacific (49% of the copepod fauna from the Eastern Tropical Pacific) and 45 from the Caribbean coast (8% of species known from the Caribbean Basin). Both the Caribbean and Pacific species lists are growing. Additional collections of copepods at Cocos Island, an oceanic island 530 km away of the Pacific coast, have revealed many new records, including five new marine species from Costa Rica. Currently, the known diversity of marine copepods of Costa Rica is still in development and represents up to 52.6% of the total marine microcrustaceans recorded in the country. Future sampling and taxonomic efforts in the marine habitats should emphasize oceanic environments including deep waters but also littoral communities. Several Costa Rican records of freshwater copepods are likely to represent undescribed species. Also, the biogeographic relevance of the inland copepod fauna of Costa Rica requires more detailed surveys.  相似文献   

14.
Abstract. Using comprehensive range information of northern Hemisphere birds and mammals, we assessed the taxonomic diversity of these two groups in four different regions: Europe, east Asia, and western and eastern North America. East Asia is the richest region in the number of bird and mammal species, genera, families and orders, except that mammal species richness is highest in western North America. Eastern North America is taxonomically the poorest region, but when only forest-associated taxa were considered in mammals taxonomic diversity is equally low in Europe and in eastern North America, and in birds, Europe is the least diverse region. Patterns in endemic taxa follow overall taxonomic diversity. The proportion of shared taxa between regions is higher among boreal species and genera than among all taxa. A comparison with tree species diversity underpins the role of east Asia as the most diverse of all northern biota. Largely congruent patterns at different taxonomic levels emphasizes the role of historical processes, such as differential extinction rate in response to paleoenvironmental fluctuations, in producing these patterns, but we stress the need for more research on the coevolution of species diversity and habitat diversity.  相似文献   

15.
Delineating regions is an important first step in understanding the evolution and biogeography of faunas. However, quantitative approaches are often limited at a global scale, particularly in the marine realm. Reef fishes are the most diversified group of marine fishes, and compared to most other phyla, their taxonomy and geographical distributions are relatively well known. Based on 169 checklists spread across all tropical oceans, the present work aims to quantitatively delineate biogeographical entities for reef fishes at a global scale. Four different classifications were used to account for uncertainty related to species identification and the quality of checklists. The four classifications delivered converging results, with biogeographical entities that can be hierarchically delineated into realms, regions and provinces. All classifications indicated that the Indo-Pacific has a weak internal structure, with a high similarity from east to west. In contrast, the Atlantic and the Eastern Tropical Pacific were more strongly structured, which may be related to the higher levels of endemism in these two realms. The “Coral Triangle”, an area of the Indo-Pacific which contains the highest species diversity for reef fishes, was not clearly delineated by its species composition. Our results show a global concordance with recent works based upon endemism, environmental factors, expert knowledge, or their combination. Our quantitative delineation of biogeographical entities, however, tests the robustness of the results and yields easily replicated patterns. The similarity between our results and those from other phyla, such as corals, suggests that our approach may be of broad utility in describing and understanding global marine biodiversity patterns.  相似文献   

16.
Since the 19th Century, two regions have been recognized for North American mammals, which overlap in Mexico. The Nearctic region corresponds to the northern areas and the Neotropical region corresponds to the southern ones. There are no recent regionalizations for these regions under the criterion of endemism. In the present study, we integrate two methods to regionalize North America, using species distribution models of mammals: endemicity analysis (EA) and parsimony analysis of endemicity (PAE). EA was used to obtain areas of endemism and PAE was used to hierarchize them. We found 76 consensus areas from 329 sets classified in 146 cladograms, and the strict consensus cladogram shows a basal polytomy with 14 areas and 16 clades. The final regionalization recognizes two regions (Nearctic and Neotropical) and a transition zone (Mexican Transition Zone), six subregions (Canadian, Alleghanian, Californian‐Rocky Mountain, Pacific Central America, Mexican Gulf‐Central America, and Central America), two dominions (Californian and Rocky Mountain), and 23 provinces. Our analysis show that North America is probably more complex than previously assumed. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 485–499.  相似文献   

17.
18.
The Greater Caribbean biogeographic region is the high-diversity heart of the Tropical West Atlantic, one of four global centers of tropical marine biodiversity. The traditional view of the Greater Caribbean is that it is limited to the Caribbean, West Indies, southwest Gulf of Mexico and tip of Florida, and that, due to its faunal homogeneity, lacks major provincial subdivisions. In this scenario the northern 2/3 of the Gulf of Mexico and southeastern USA represent a separate temperate, “Carolinian” biogeographic region. We completed a comprehensive re-assessment of the biogeography of the Greater Caribbean by comparing the distributions of 1,559 shorefish species within 45 sections of shelf waters of the Greater Caribbean and adjacent areas. This analysis shows that that the Greater Caribbean occupies a much larger area than usually thought, extending south to at least Guyana, and north to encompass the entire Carolinian area. Rather than being homogenous, the Greater Caribbean is divided into three major provinces, each with a distinctive, primarily tropical fauna: (1) a central, tropical province comprising the West Indies, Bermuda and Central America; (2) a southern, upwelling-affected province spanning the entire continental shelf of northern South America; and (iii) a northern, subtropical province that includes all of the Gulf of Mexico, Florida and southeastern USA. This three-province pattern holds for both reef- and soft bottom fishes, indicating a general response by demersal fishes to major variation in provincial shelf environments. Such environmental differences include latitudinal variation in sea temperature, availability of major habitats (coral reefs, soft bottom shorelines, and mangroves), and nutrient additions from upwelling areas and large rivers. The three-province arrangement of the Greater Caribbean broadly resembles and has a similar environmental basis to the provincial arrangement of its sister biogeographic region, the Tropical Eastern Pacific.  相似文献   

19.
The bird fauna of the Brazilian Atlantic Forest is exceptionally diverse and threatened, with high levels of endemism. Available lists of the endemic birds of the Atlantic Forest were generated before recent taxonomic revisions lumped or split species and before the recent increase in species occurrence records. Our objective, therefore, was to compile a new list of the endemic birds of the Atlantic Forest, characterize these species in terms of conservation status and natural history traits, and map remaining vegetation and protected areas. We combined GIS analysis with a literature search to compile a list of endemic species and, based on the phylogeny and distribution of these species, characterized areas in terms of species richness, phylogenetic diversity, and endemism. We identified 223 species of birds endemic to the Atlantic Forest, including 12 species not included in previous lists. In addition, 14 species included in previous lists were not considered endemic, either because they occur outside the Atlantic Forest biome or because they are not considered valid species. The typical Atlantic Forest endemic bird is a small forest‐dependent invertivore. Of the species on our list, 31% are considered threatened or extinct. Only ~ 34% of the spatial analysis units had > 10% forest cover, and protected area coverage was consistently low (< 1%). In addition, we found spatial incongruity among the different measures of biodiversity (species richness, relative phylogenetic diversity, restricted‐range species, and irreplaceability). Each of these measures provides information concerning different aspects of biological diversity. However, regardless of which aspect(s) of biodiversity might be considered most important, preservation of the remaining areas of remnant vegetation and further expansion of protected areas are essential if we are to conserve the many endemic species of birds in the Atlantic Forest.  相似文献   

20.
Mexico is considered an exceptional biogeographic area with a varied endemic flora, however spatial phylogenetic measures of biodiversity have not yet been estimated to understand how its flora assembled to form the current vegetation. Patterns of species richness, endemism, phylogenetic diversity, phylogenetic endemism and centers of neo‐ and paleo‐endemism were determined to examine differences and congruence among these measures, and their implications for conservation. Of 24 360 vascular plant species 10 235 (42%) are endemic. Areas of endemism and phylogenetic endemism were associated with dry forests in zones of topographic complexity in mountain systems, in deserts, and in isolated xeric vegetation. Every single locality where seasonally tropical dry forests have been reported in Mexico was identified as an area of endemism. Significant phylogenetic diversity was the most restricted and occurred in the Trans‐Mexican Volcanic Belt and in the Sierra de Chiapas. Notably, the highest degree of phylogenetic clustering comprising neo‐, paleo‐, and super‐endemism was identified in southernmost Mexico. Most vascular plant lineages diverged in the Miocene (5–20 mya) when arid environments expanded across the world. The location of Mexico between two very large landmasses and the fact that more than fifty percent of its surface is arid favored the establishment of tropical lineages adapted to extreme seasonality and aridity. These lineages were able to migrate from both North and South America across Central America presumably during the Miocene and to diversify, illustrating the signature of the flora of Mexico of areas of endemism with a mixture of neo‐ and paleo‐endemism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号