首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium puffs are localized Ca2+ signals mediated by Ca2+ release from the endoplasmic reticulum (ER) through clusters of inositol trisphosphate receptor (IP3R) channels. The recruitment of IP3R channels during puffs depends on Ca2+-induced Ca2+ release, a regenerative process that must be terminated to maintain control of cell signaling and prevent Ca2+ cytotoxicity. Here, we studied puff termination using total internal reflection microscopy to resolve the gating of individual IP3R channels during puffs in intact SH-SY5Y neuroblastoma cells. We find that the kinetics of IP3R channel closing differ from that expected for independent, stochastic gating, in that multiple channels tend to remain open together longer than predicted from their individual open lifetimes and then close in near-synchrony. This behavior cannot readily be explained by previously proposed termination mechanisms, including Ca2+-inhibition of IP3Rs and local depletion of Ca2+ in the ER lumen. Instead, we postulate that the gating of closely adjacent IP3Rs is coupled, possibly via allosteric interactions, suggesting an important mechanism to ensure robust puff termination in addition to Ca2+-inactivation.  相似文献   

2.
Changes in cytoplasmic Ca2+ concentration, resulting from activation of intracellular Ca2+ channels within the endoplasmic reticulum, regulate several aspects of cellular growth and differentiation. Ca2+ homeostasis endoplasmic reticulum protein (CHERP) is a ubiquitously expressed protein that has been proposed as a regulator of both major families of endoplasmic reticulum Ca2+ channels, inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), with resulting effects on mitotic cycling. However, the manner by which CHERP regulates intracellular Ca2+ channels to impact cellular growth is unknown. Here, we challenge previous findings that CHERP acts as a direct cytoplasmic regulator of IP3Rs and RyRs and propose that CHERP acts in the nucleus to impact cellular proliferation by regulating the function of the U2 snRNA spliceosomal complex. The previously reported effects of CHERP on cellular growth therefore are likely indirect effects of altered spliceosomal function, consistent with prior data showing that loss of function of U2 snRNP components can interfere with cell growth and induce cell cycle arrest.  相似文献   

3.
Inositol (1,4,5)-trisphosphate receptors (IP3Rs) release intracellular Ca2+ as localized Ca2+ signals (Ca2+ puffs) that represent the activity of small numbers of clustered IP3Rs spaced throughout the endoplasmic reticulum. Although much emphasis has been placed on estimating the number of active Ca2+ release channels supporting Ca2+ puffs, less attention has been placed on understanding the role of cluster microarchitecture. This is important as recent data underscores the dynamic nature of IP3R transitions between heterogeneous cellular architectures and the differential behavior of IP3Rs socialized into clusters. Here, we applied a high-resolution model incorporating stochastically gating IP3Rs within a three-dimensional cytoplasmic space to demonstrate: 1), Ca2+ puffs are supported by a broad range of clustered IP3R microarchitectures; 2), cluster ultrastructure shapes Ca2+ puff characteristics; and 3), loosely corralled IP3R clusters (>200 nm interchannel separation) fail to coordinate Ca2+ puffs, owing to inefficient triggering and impaired coupling due to reduced Ca2+-induced Ca2+ release microwave velocity (<10 nm/s) throughout the channel array. Dynamic microarchitectural considerations may therefore influence Ca2+ puff occurrence/properties in intact cells, contrasting with a more minimal role for channel number over the same simulated conditions in shaping local Ca2+ dynamics.  相似文献   

4.
Puffs are localized, transient elevations in cytosolic Ca2+ that serve both as the building blocks of global cellular Ca2+ signals and as local signals in their own right. They arise from clustered inositol 1,4,5-trisphosphate receptor/channels (IP3Rs), whose openings are coordinated by Ca2+-induced Ca2+ release (CICR). We utilized total internal reflection fluorescence imaging of Ca2+ signals in neuroblastoma cells with single-channel resolution to elucidate the mechanisms determining the triggering, amplitudes, kinetics, and spatial spread of puffs. We find that any given channel in a cluster has a mean probability of ∼66% of opening following opening of an initial “trigger” channel, and the probability of puff triggering thus increases steeply with increasing number of channels in a cluster (cluster size). Mean puff amplitudes scale with cluster size, but individual amplitudes vary widely, even at sites of similar cluster size, displaying similar proportions of events involving any given number of the channels in the cluster. Stochastic variation in numbers of Ca2+-inhibited IP3Rs likely contributes to the variability of amplitudes of repeated puffs at a site but the amplitudes of successive puffs were uncorrelated, even though we observed statistical correlations between interpuff intervals and puff amplitudes. Initial puffs evoked following photorelease of IP3—which would not be subject to earlier Ca2+-inhibition—also showed wide variability, indicating that mechanisms such as stochastic variation in IP3 binding and channel recruitment by CICR further determine puff amplitudes. The mean termination time of puffs lengthened with increasing puff amplitude size, consistent with independent closings of channels after a given mean open time, but we found no correlation of termination time with cluster size independent of puff amplitude. The spatial extent of puffs increased with their amplitude, and puffs of similar size were of similar width, independent of cluster size.  相似文献   

5.
The inositol trisphosphate (IP3) signaling pathway evokes local Ca2+ signals (Ca2+ puffs) that arise from the concerted openings of clustered IP3 receptor/channels in the ER membrane. Physiological activation is triggered by binding of agonists to G-protein-coupled receptors (GPCRs) on the cell surface, leading to cleavage of phosphatidyl inositol bisphosphate and release of IP3 into the cytosol. Photorelease of IP3 from a caged precursor provides a convenient and widely employed means to study the final stage of IP3-mediated Ca2+ liberation, bypassing upstream signaling events to enable more precise control of the timing and relative concentration of cytosolic IP3. Here, we address whether Ca2+ puffs evoked by photoreleased IP3 fully replicate those arising from physiological agonist stimulation. We imaged puffs in individual SH-SY5Y neuroblastoma cells that were sequentially stimulated by picospritzing extracellular agonist (carbachol, CCH or bradykinin, BK) followed by photorelease of a poorly-metabolized IP3 analog, i-IP3. The centroid localizations of fluorescence signals during puffs evoked in the same cells by agonists and photorelease substantially overlapped (within ∼1 μm), suggesting that IP3 from both sources accesses the same, or closely co-localized clusters of IP3Rs. Moreover, the time course and spatial spread of puffs evoked by agonists and photorelease matched closely. Because photolysis generates IP3 uniformly throughout the cytoplasm, our results imply that IP3 generated in SH-SY5Y cells by activation of receptors to CCH and BK also exerts broadly distributed actions, rather than specifically activating a subpopulation of IP3Rs that are scaffolded in close proximity to cell surface receptors to form a signaling nanodomain.  相似文献   

6.
The liberation of calcium ions sequestered in the endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors/channels (IP3Rs) results in a spatiotemporal hierarchy of calcium signaling events that range from single-channel openings to local Ca2+ puffs believed to arise from several to tens of clustered IP3Rs to global calcium waves. Using high-resolution confocal linescan imaging and a sensitive Ca2+ indicator dye (fluo-4-dextran), we show that puffs are often preceded by small, transient Ca2+ elevations that we christen “trigger events”. The magnitude of triggers is consistent with their arising from the opening of a single IP3 receptor/channel, and we propose that they initiate puffs by recruiting neighboring IP3Rs within the cluster by a regenerative process of Ca2+-induced Ca2+ release. Puff amplitudes (fluorescence ratio change) are on average ~6 times greater than that of the triggers, suggesting that at least six IP3Rs may simultaneously be open during a puff. Trigger events have average durations of ~12 ms, as compared to 19 ms for the mean rise time of puffs, and their spatial extent is ~3 times smaller than puffs (respective widths at half peak amplitude 0.6 and 1.6 μm). All these parameters were relatively independent of IP3 concentration, although the proportion of puffs showing resolved triggers was greatest (~80%) at low [IP3]. Because Ca2+ puffs constitute the building blocks from which cellular IP3-mediated Ca2+ signals are constructed, the events that initiate them are likely to be of fundamental importance for cell signaling. Moreover, the trigger events provide a useful yardstick by which to derive information regarding the number and spatial arrangement of IP3Rs within clusters.  相似文献   

7.
In atrial myocytes lacking t-tubules, action potential triggers junctional Ca2+ releases in the cell periphery, which propagates into the cell interior. The present article describes growing evidence on atrial local Ca2+ signaling and on the functions of inositol 1,4,5-trisphosphate receptors (IP3Rs) in atrial myocytes, and show our new findings on the role of IP3R subtype in the regulation of spontaneous focal Ca2+ releases in the compartmentalized areas of atrial myocytes. The Ca2+ sparks, representing focal Ca2+ releases from the sarcoplasmic reticulum (SR) through the ryanodine receptor (RyR) clusters, occur most frequently at the peripheral junctions in isolated resting atrial cells. The Ca2+ sparks that were darker and longer lasting than peripheral and non-junctional (central) sparks, were found at peri-nuclear sites in rat atrial myocytes. Peri-nuclear sparks occurred more frequently than central sparks. Atrial cells express larger amounts of IP3Rs compared with ventricular cells and possess significant levels of type 1 IP3R (IP3R1) and type 2 IP3R (IP3R2). Over the last decade the roles of atrial IP3R on the enhancement of Ca2+-induced Ca2+ release and arrhythmic Ca2+ releases under hormonal stimulations have been well documented. Using protein knock-down method and confocal Ca2+ imaging in conjunction with immunocytochemistry in the adult atrial cell line HL-1, we could demonstrate a role of IP3R1 in the maintenance of peri-nuclear and non-junctional Ca2+ sparks via stimulating a posttranslational organization of RyR clusters.  相似文献   

8.
Puffs are localized, transient elevations in cytosolic Ca2+ that serve both as the building blocks of global cellular Ca2+ signals and as local signals in their own right. They arise from clustered inositol 1,4,5-trisphosphate receptor/channels (IP3Rs), whose openings are coordinated by Ca2+-induced Ca2+ release (CICR). We utilized total internal reflection fluorescence imaging of Ca2+ signals in neuroblastoma cells with single-channel resolution to elucidate the mechanisms determining the triggering, amplitudes, kinetics, and spatial spread of puffs. We find that any given channel in a cluster has a mean probability of ∼66% of opening following opening of an initial “trigger” channel, and the probability of puff triggering thus increases steeply with increasing number of channels in a cluster (cluster size). Mean puff amplitudes scale with cluster size, but individual amplitudes vary widely, even at sites of similar cluster size, displaying similar proportions of events involving any given number of the channels in the cluster. Stochastic variation in numbers of Ca2+-inhibited IP3Rs likely contributes to the variability of amplitudes of repeated puffs at a site but the amplitudes of successive puffs were uncorrelated, even though we observed statistical correlations between interpuff intervals and puff amplitudes. Initial puffs evoked following photorelease of IP3—which would not be subject to earlier Ca2+-inhibition—also showed wide variability, indicating that mechanisms such as stochastic variation in IP3 binding and channel recruitment by CICR further determine puff amplitudes. The mean termination time of puffs lengthened with increasing puff amplitude size, consistent with independent closings of channels after a given mean open time, but we found no correlation of termination time with cluster size independent of puff amplitude. The spatial extent of puffs increased with their amplitude, and puffs of similar size were of similar width, independent of cluster size.  相似文献   

9.
A rise in the intracellular concentration of ionized calcium ([Ca2+]i) is a primary signal for contraction in all types of muscles. Recent progress in the development of imaging techniques, with special accent on fluorescence confocal microscopy, and new achievements in the synthesis of organelle- and ion-specific fluorochromes provide an experimental basis for studying the relationship between the structural organization of living smooth muscle cells (SMCs) and features of calcium signaling at the subcellular level. Applying fluorescent confocal imaging, patch-clamp recording, immunostaining, and flash photolysis techniques to freshly isolated SMCs, we have demonstrated that: (i) Ca2+ sparks are mediated by spontaneous clustered opening of ryanodine receptors (RyRs) and occur at the highest rate at preferred sites (frequent discharge sites, FDSs), the number of which depends on SMC type; (ii) FDSs are associated with sub-plasmalemmal sarcoplasmic reticulum (SR) elements, but not with polarized mitochondria; (iii) Ca2+ spark frequency increases with membrane depolarization in voltage-clamped SMCs or following neurotransmitter application to SMCs, in which the membrane potential was not controlled, leading to spark summation and resulting in a cell-wide increase in [Ca2+]i and myocyte contraction; (iv) cross-talk between RyRs and inositol trisphosphate receptors (IP3Rs) is an important determinant of the [Ca2+]i dynamics and recruits neighboring Ca2+-release sites to generate [Ca2+]i waves; (v) [Ca2+]i waves induced by depolarization of the plasma membrane or by noradrenaline or caffeine, but not by carbachol (CCh), originate at FDSs; (vi) Ca2+-dependent K+ and Cl- channels sense the local changes in [Ca2+]i during a Ca2+ spark and thereby may couple changes in [Ca2+]i within a microdomain to changes in the membrane potential, thus affecting the cell excitability; (vii) the muscarinic cation current (mI cat) does not mirror changes in [Ca2+]i, thus reflecting the complexity of [Ca2+]i — muscarinic cationic channel coupling; (viii) RyR-mediated Ca2+ release, either spontaneous or caffeine-induced, does not augment mI cat; (ix) intracellular flash release of Ca2+ is less effective in augmentation of mI cat than flash release of IP3, suggesting that IP3 may sensitize muscarinic cationic channels to Ca2+; (x) intracellular flash release of IP3 fails to augment mI cat in SMCs, in which [Ca2+]i was strongly buffered, suggesting that IP3 exerts no direct effect on muscarinic cationic channel gating, and that these channels sense an increase in [Ca2+]i rather than depletion of the IP3-dependent Ca2+ store; and (xi) predominant expression of IP3R type 1 in the peripheral SR provides a structural basis for a tight functional coupling between IP3R-mediated Ca2+ release and muscarinic cationic channel opening.Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 455–465, September–December, 2004.This revised version was published online in April 2005 with a corrected cover date and copyright year.  相似文献   

10.
Recently, it has become possible to record the localized fluorescence transient associated with the opening of a single plasma membrane Ca2+ permeable ion channel using Ca2+ indicators like fluo-3. These Single Channel Ca2+ Fluorescence Transients (SCCaFTs) share some of the characteristics of such elementary events as Ca2+ sparks and Ca2+ puffs caused by Ca2+ release from intracellular stores (due to the opening of ryanodine receptors and IP3 receptors, respectively). In contrast to intracellular Ca2+ release events, SCCaFTs can be observed while simultaneously recording the unitary channel currents using patch-clamp techniques to verify the channel openings. Imaging SCCaFTs provides a way to examine localized Ca2+ handling in the vicinity of a channel with a known Ca2+ influx, to obtain the Ca2+ current passing through plasma membrane cation channels in near physiological solutions, to localize Ca2+ permeable ion channels on the plasma membrane, and to estimate the Ca2+ currents underlying those elementary events where the Ca2+ currents cannot be recorded. Here we review studies of these fluorescence transients associated with caffeine-activated channels, L-type Ca2+ channels, and stretch-activated channels. For the L-type Ca2+ channel, SCCaFTs have been termed sparklets. In addition, we discuss how SCCaFTs have been used to estimate Ca2+ currents using the rate of rise of the fluorescence transient as well as the signal mass associated with the total fluorescence increase.  相似文献   

11.
There is a body of evidence suggesting that Ca2+ handling proteins assemble into signaling complexes required for a fine regulation of Ca2+ signals, events that regulate a variety of critical cellular processes. Canonical transient receptor potential (TRPC) and Orai proteins have both been proposed to form Ca2+-permeable channels mediating Ca2+ entry upon agonist stimulation. A number of studies have demonstrated that inositol 1,4,5-trisphosphate receptors (IP3Rs) interact with plasma membrane TRPC channels; however, at present there is no evidence supporting the interaction between Orai proteins and IP3Rs. Here we report that treatment with thapsigargin or cellular agonists results in association of Orai1 with types I and II IP3Rs. In addition, we have found that TRPC3, RACK1 (receptor for activated protein kinase C-1), and STIM1 (stromal interaction molecule 1) interact with Orai1 upon stimulation with agonists. TRPC3 expression silencing prevented both the interaction of Orai1 with TRPC3 and, more interestingly, the association of Orai1 with the type I IP3R, but not with the type II IP3R, thus suggesting that TRPC3 selectively mediates interaction between Orai1 and type I IP3R. In addition, TRPC3 expression silencing attenuated ATP- and CCh-stimulated interaction between RACK1 and the type I IP3R, as well as Ca2+ release and entry. In conclusion, our results indicate that agonist stimulation results in the formation of an Orai1-STIM1-TRPC3-RACK1-type I IP3R complex, where TRPC3 plays a central role. This Ca2+ signaling complex might be important for both agonist-induced Ca2+ release and entry.  相似文献   

12.
Puffs and sparks are localized intracellular Ca2+ elevations that arise from the cooperative activity of Ca2+-regulated inositol 1,4,5-trisphosphate receptors and ryanodine receptors clustered at Ca2+ release sites on the surface of the endoplasmic reticulum or the sarcoplasmic reticulum. While the synchronous gating of Ca2+-regulated Ca2+ channels can be mediated entirely though the buffered diffusion of intracellular Ca2+, interprotein allosteric interactions also contribute to the dynamics of ryanodine receptor (RyR) gating and Ca2+ sparks. In this article, Markov chain models of Ca2+ release sites are used to investigate how the statistics of Ca2+ spark generation and termination are related to the coupling of RyRs via local [Ca2+] changes and allosteric interactions. Allosteric interactions are included in a manner that promotes the synchronous gating of channels by stabilizing neighboring closed-closed and/or open-open channel pairs. When the strength of Ca2+-mediated channel coupling is systematically varied (e.g., by changing the Ca2+ buffer concentration), simulations that include synchronizing allosteric interactions often exhibit more robust Ca2+ sparks; however, for some Ca2+ coupling strengths the sparks are less robust. We find no evidence that the distribution of spark durations can be used to distinguish between allosteric interactions that stabilize closed channel pairs, open channel pairs, or both in a balanced fashion. On the other hand, the changes in spark duration, interspark interval, and frequency observed when allosteric interactions that stabilize closed channel pairs are gradually removed from simulations are qualitatively different than the changes observed when open or both closed and open channel pairs are stabilized. Thus, our simulations clarify how changes in spark statistics due to pharmacological washout of the accessory proteins mediating allosteric coupling may indicate the type of synchronizing allosteric interactions exhibited by physically coupled RyRs. We also investigate the validity of a mean-field reduction applicable to the dynamics of a ryanodine receptor cluster coupled via local [Ca2+] and allosteric interactions. In addition to facilitating parameter studies of the effect of allosteric coupling on spark statistics, the derivation of the mean-field model establishes the correct functional form for cooperativity factors representing the coupled gating of RyRs. This mean-field formulation is well suited for use in computationally efficient whole cell simulations of excitation-contraction coupling.  相似文献   

13.
Inositol 1,4,5-trisphosphate receptors (IP3R) are the most widely expressed intracellular Ca2+ release channels. Their activation by IP3 and Ca2+ allows Ca2+ to pass rapidly from the ER lumen to the cytosol. The resulting increase in cytosolic [Ca2+] may directly regulate cytosolic effectors or fuel Ca2+ uptake by other organelles, while the decrease in ER luminal [Ca2+] stimulates store-operated Ca2+ entry (SOCE). We are close to understanding the structural basis of both IP3R activation, and the interactions between the ER Ca2+-sensor, STIM, and the plasma membrane Ca2+ channel, Orai, that lead to SOCE. IP3Rs are the usual means through which extracellular stimuli, through ER Ca2+ release, stimulate SOCE. Here, we review evidence that the IP3Rs most likely to respond to IP3 are optimally placed to allow regulation of SOCE. We also consider evidence that IP3Rs may regulate SOCE downstream of their ability to deplete ER Ca2+ stores. Finally, we review evidence that IP3Rs in the plasma membrane can also directly mediate Ca2+ entry in some cells.  相似文献   

14.
In addition to its well established function in activating Ca2+ release from the endoplasmic reticulum (ER) through ryanodine receptors (RyR), the second messenger cyclic ADP-ribose (cADPR) also accelerates the activity of SERCA pumps, which sequester Ca2+ into the ER. Here, we demonstrate a potential physiological role for cADPR in modulating cellular Ca2+ signals via changes in ER Ca2+ store content, by imaging Ca2+ liberation through inositol trisphosphate receptors (IP3R) in Xenopus oocytes, which lack RyR. Oocytes were injected with the non-metabolizable analog 3-deaza-cADPR, and cytosolic [Ca2+] was transiently elevated by applying voltage-clamp pulses to induce Ca2+ influx through expressed plasmalemmal nicotinic channels. We observed a subsequent potentiation of global Ca2+ signals evoked by strong photorelease of IP3, and increased numbers of local Ca2+ puffs evoked by weaker photorelease. These effects were not evident with cADPR alone or following cytosolic Ca2+ elevation alone, indicating that they did not arise through direct actions of cADPR or Ca2+ on the IP3R, but likely resulted from enhanced ER store filling. Moreover, the appearance of a new population of puffs with longer latencies, prolonged durations, and attenuated amplitudes suggests that luminal ER Ca2+ may modulate IP3R function, in addition to simply determining the size of the available store and the electrochemical driving force for release.  相似文献   

15.
The subcellular localization of membrane Ca2+ channels is crucial for their functioning, but is difficult to study because channels may be distributed more closely than the resolution of conventional microscopy is able to detect. We describe a technique, stochastic channel Ca2+ nanoscale resolution (SCCaNR), employing Ca2+-sensitive fluorescent dyes to localize stochastic openings and closings of single Ca2+-permeable channels within <50 nm, and apply it to examine the clustered arrangement of inositol trisphosphate receptor (IP3R) channels underlying local Ca2+ puffs. Fluorescence signals (blips) arising from single functional IP3Rs are almost immotile (diffusion coefficient <0.003 μm2 s−1), as are puff sites over prolonged periods, suggesting that the architecture of this signaling system is stable and not subject to rapid, dynamic rearrangement. However, rapid stepwise changes in centroid position of fluorescence are evident within the durations of individual puffs. These apparent movements likely result from asynchronous gating of IP3Rs distributed within clusters that have an overall diameter of ∼400 nm, indicating that the nanoscale architecture of IP3R clusters is important in shaping local Ca2+ signals. We anticipate that SCCaNR will complement superresolution techniques such as PALM and STORM for studies of Ca2+ channels as it obviates the need for photoswitchable labels and provides functional as well as spatial information.  相似文献   

16.
The TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation-specific channels and likely mediate counterion movements to support efficient Ca2+ release from the sarco/endoplasmic reticulum. Vascular smooth muscle cells (VSMCs) contain both TRIC subtypes and two Ca2+ release mechanisms; incidental opening of ryanodine receptors (RyRs) generates local Ca2+ sparks to induce hyperpolarization and relaxation, whereas agonist-induced activation of inositol trisphosphate receptors produces global Ca2+ transients causing contraction. Tric-a knock-out mice develop hypertension due to insufficient RyR-mediated Ca2+ sparks in VSMCs. Here we describe transgenic mice overexpressing TRIC-A channels under the control of a smooth muscle cell-specific promoter. The transgenic mice developed congenital hypotension. In Tric-a-overexpressing VSMCs from the transgenic mice, the resting membrane potential decreased because RyR-mediated Ca2+ sparks were facilitated and cell surface Ca2+-dependent K+ channels were hyperactivated. Under such hyperpolarized conditions, L-type Ca2+ channels were inactivated, and thus, the resting intracellular Ca2+ levels were reduced in Tric-a-overexpressing VSMCs. Moreover, Tric-a overexpression impaired inositol trisphosphate-sensitive stores to diminish agonist-induced Ca2+ signaling in VSMCs. These altered features likely reduced vascular tonus leading to the hypotensive phenotype. Our Tric-a-transgenic mice together with Tric-a knock-out mice indicate that TRIC-A channel density in VSMCs is responsible for controlling basal blood pressure at the whole-animal level.  相似文献   

17.
Puffs are local Ca2+ signals that arise by Ca2+ liberation from the endoplasmic reticulum through the concerted opening of tightly clustered inositol trisphosphate receptors/channels (IP3Rs). The locations of puff sites observed by Ca2+ imaging remain static over several minutes, whereas fluorescence recovery after photobleaching (FRAP) experiments employing overexpression of fluorescently tagged IP3Rs have shown that the majority of IP3Rs are freely motile. To address this discrepancy, we applied single-molecule imaging to locate and track type 1 IP3Rs tagged with a photoswitchable fluorescent protein and expressed in COS-7 cells. We found that ∼70% of the IP3R1 molecules were freely motile, undergoing random walk motility with an apparent diffusion coefficient of ∼0.095 μm s−1, whereas the remaining molecules were essentially immotile. A fraction of the immotile IP3Rs were organized in clusters, with dimensions (a few hundred nanometers across) comparable to those previously estimated for the IP3R clusters underlying functional puff sites. No short-term (seconds) changes in overall motility or in clustering of immotile IP3Rs were apparent following activation of IP3/Ca2+ signaling. We conclude that stable clusters of small numbers of immotile IP3Rs may underlie local Ca2+ release sites, whereas the more numerous motile IP3Rs appear to be functionally silent.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels. Their regulation by both IP3 and Ca2+ allows interactions between IP3Rs to generate a hierarchy of intracellular Ca2+ release events. These can progress from openings of single IP3R, through near-synchronous opening of a few IP3Rs within a cluster to much larger signals that give rise to regenerative Ca2+ waves that can invade the entire cell. We have used patch-clamp recording from excised nuclear membranes of DT40 cells expressing only IP3R3 and shown that low concentrations of IP3 rapidly and reversibly cause IP3Rs to assemble into small clusters. In addition to bringing IP3Rs close enough to allow Ca2+ released by one IP3R to regulate the activity of its neighbors, clustering also retunes the regulation of IP3Rs by IP3 and Ca2+. At resting cytosolic [Ca2+], lone IP3R are more sensitive to IP3 and the mean channel open time (~10ms) is twice as long as for clustered IP3R. When the cytosolic free [Ca2+] is increased to 1µM, to mimic the conditions that might prevail when an IP3R within a cluster opens, clustered IP3R are no longer inhibited and their gating becomes coupled. IP3, by dynamically regulating IP3R clustering, both positions IP3R for optimal interactions between them and it serves to exaggerate the effects of Ca2+ within a cluster. During the course of these studies, we have observed that nuclear IP3R stably express one of two single channel K + conductances (γK ~120 or 200pS). Here we demonstrate that for both states of the IP3R, the effects of IP3 on clustering are indistinguishable. These observations reinforce our conclusion that IP3 dynamically regulates assembly of IP3Rs into clusters that underlie the hierarchical recruitment of elementary Ca2+ release events.  相似文献   

19.
We recently reported key physiologic roles for Ca2+-activated transient receptor potential melastatin 4 (TRPM4) channels in detrusor smooth muscle (DSM). However, the Ca2+-signaling mechanisms governing TRPM4 channel activity in human DSM cells are unexplored. As the TRPM4 channels are activated by Ca2+, inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the sarcoplasmic reticulum represents a potential Ca2+ source for TRPM4 channel activation. We used clinically-characterized human DSM tissues to investigate the molecular and functional interactions of the IP3Rs and TRPM4 channels. With in situ proximity ligation assay (PLA) and perforated patch-clamp electrophysiology, we tested the hypothesis that TRPM4 channels are tightly associated with the IP3Rs and are activated by IP3R-mediated Ca2+ release in human DSM. With in situ PLA, we demonstrated co-localization of the TRPM4 channels and IP3Rs in human DSM cells. As the TRPM4 channels and IP3Rs must be located within close apposition to functionally interact, these findings support the concept of a potential Ca2+-mediated TRPM4-IP3R regulatory mechanism. To investigate IP3R regulation of TRPM4 channel activity, we sought to determine the consequences of IP3R pharmacological inhibition on TRPM4 channel-mediated transient inward cation currents (TICCs). In freshly-isolated human DSM cells, blocking the IP3Rs with the selective IP3R inhibitor xestospongin-C significantly decreased TICCs. The data suggest that IP3Rs have a key role in mediating the Ca2+-dependent activation of TRPM4 channels in human DSM. The study provides novel insight into the molecular and cellular mechanisms regulating TRPM4 channels by revealing that TRPM4 channels and IP3Rs are spatially and functionally coupled in human DSM.  相似文献   

20.
Vertebrate genomes code for three subtypes of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R1, -2, and -3). Individual IP3R monomers are assembled to form homo- and heterotetrameric channels that mediate Ca2+ release from intracellular stores. IP3R subtypes are regulated differentially by IP3, Ca2+, ATP, and various other cellular factors and events. IP3R subtypes are seldom expressed in isolation in individual cell types, and cells often express different complements of IP3R subtypes. When multiple subtypes of IP3R are co-expressed, the subunit composition of channels cannot be specifically defined. Thus, how the subunit composition of heterotetrameric IP3R channels contributes to shaping the spatio-temporal properties of IP3-mediated Ca2+ signals has been difficult to evaluate. To address this question, we created concatenated IP3R linked by short flexible linkers. Dimeric constructs were expressed in DT40–3KO cells, an IP3R null cell line. The dimeric proteins were localized to membranes, ran as intact dimeric proteins on SDS-PAGE, and migrated as an ∼1100-kDa band on blue native gels exactly as wild type IP3R. Importantly, IP3R channels formed from concatenated dimers were fully functional as indicated by agonist-induced Ca2+ release. Using single channel “on-nucleus” patch clamp, the channels assembled from homodimers were essentially indistinguishable from those formed by the wild type receptor. However, the activity of channels formed from concatenated IP3R1 and IP3R2 heterodimers was dominated by IP3R2 in terms of the characteristics of regulation by ATP. These studies provide the first insight into the regulation of heterotetrameric IP3R of defined composition. Importantly, the results indicate that the properties of these channels are not simply a blend of those of the constituent IP3R monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号