首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Recently, curvature was described as a new trait useful in the analysis of root apex shape. Treating the root profile as a geometric curve revealed that root apex curvature values are lower in ethylene-insensitive mutants (Cervantes E, Tocino A. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development. J Plant Physiol 2005;162:1038-45). This fact suggests that curvature is regulated by ethylene. In this work, we have determined the curvature values in embryonic roots of wild-type Columbia as well as in ethylene signal-transduction mutants, and found smaller values in embryos of the mutants. We also report on the evolution of root curvature during early development after seed germination. The line Lt16b that expresses GFP in the cell wall has allowed us to investigate the evolution of curvature values in three successive cell layers of seedling roots by confocal microscopy. Treatment of seedlings with norbornadiene resulted in lower curvature values. Our results show details illustrating the effect of ethylene in root curvature.  相似文献   

2.
The major UV-B photoproduct in DNA is the cyclobutane pyrimidine dimer (CPD). CPD-photolyases repair this DNA damage by a light-driven electron transfer. The chromophores of the class II CPD-photolyase from Arabidopsis thaliana, which was cloned recently [Taylor, R., Tobin, A. & Bray, C. (1996) Plant Physiol. 112, 862; Ahmad, M., Jarillo, J.A., Klimczak, L.J., Landry, L.G., Peng, T., Last, R.L. & Cashmore, A.R. (1997) Plant Cell 9, 199-207], have not been characterized so far. Here we report on the overexpression of the Arabidopsis CPD photolyase in Escherichia coli as a 6 x His-tag fusion protein, its purification and the analysis of the chromophore composition and enzymatic activity. Like class I photolyase, the Arabidopsis enzyme contains FAD but a second chromophore was not detectable. Despite the lack of a second chromophore the purified enzyme has photoreactivating activity.  相似文献   

3.
4.
Regulation of the cytosolic acetyl-coenzyme A carboxylase (ACCase) gene promoter from common bean (Phaseolus vulgaris) was studied in transgenic Arabidopsis (Arabidopsis thaliana) plants using a beta-glucuronidase (GUS) reporter gene fusion (PvACCase::GUS). Under normal growth conditions, GUS was expressed in hydathodes, stipules, trichome bases, flowers, pollen, and embryos. In roots, expression was observed in the tip, elongation zone, hypocotyl-root transition zone, and lateral root primordia. The PvACCase promoter was induced by wounding, Pseudomonas syringae infection, hydrogen peroxide, jasmonic acid (JA), ethylene, or auxin treatment. Analysis of PvACCase::GUS expression in JA and ethylene mutants (coronatine insensitive1-1 [coi1-1], ethylene resistant1-1 [etr1-1], coi1-1/etr1-1) suggests that neither JA nor ethylene perception participates in the activation of this gene in response to wounding, although each of these independent signaling pathways is sufficient for pathogen or hydrogen peroxide-induced PvACCase gene expression. We propose a model involving different pathways of PvACCase gene activation in response to stress.  相似文献   

5.
Buer CS  Sukumar P  Muday GK 《Plant physiology》2006,140(4):1384-1396
Plant organs change their growth direction in response to reorientation relative to the gravity vector. We explored the role of ethylene in Arabidopsis (Arabidopsis thaliana) root gravitropism. Treatment of wild-type Columbia seedlings with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC) reduced root elongation and gravitropic curvature. The ethylene-insensitive mutants ein2-5 and etr1-3 had wild-type root gravity responses, but lacked the growth and gravity inhibition by ACC found in the wild type. We examined the effect of ACC on tt4(2YY6) seedlings, which have a null mutation in the gene encoding chalcone synthase, the first enzyme in flavonoid synthesis. The tt4(2YY6) mutant makes no flavonoids, has elevated indole-3-acetic acid transport, and exhibits a delayed gravity response. Roots of tt4(2YY6), the backcrossed line tt4-2, and two other tt4 alleles had wild-type sensitivity to growth inhibition by ACC, whereas the root gravitropic curvature of these tt4 alleles was much less inhibited by ACC than wild-type roots, suggesting that ACC may reduce gravitropic curvature by altering flavonoid synthesis. ACC treatment induced flavonoid accumulation in root tips, as judged by a dye that becomes fluorescent upon binding flavonoids in wild type, but not in ein2-5 and etr1-3. ACC also prevented a transient peak in flavonoid synthesis in response to gravity. Together, these experiments suggest that elevated ethylene levels negatively regulate root gravitropism, using EIN2- and ETR1-dependent pathways, and that ACC inhibition of gravity response occurs through altering flavonoid synthesis.  相似文献   

6.
7.
Wall-associated kinase 1--WAK1 is a transmembrane protein containing a cytoplasmic Ser/Thr kinase domain and an extracellular domain in contact with the pectin fraction of the plant cell wall in Arabidopsis thaliana (L.) HEYNH. In a previous paper [Decreux, A., Messiaen, J., 2005. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol. 46, 268-278], we showed that a recombinant peptide expressed in yeast corresponding to amino acids 67-254 of the extracellular domain of WAK1 specifically interacts with commercial non-methylesterified homogalacturonic acid, purified homogalacturonans from Arabidopsis and oligogalacturonides in a calcium-induced conformation. In this report, we used a receptor binding domain sequence-based prediction method to identify four putative binding sites in the extracellular domain of WAK1, in which cationic amino acids were selected for substitution by site-directed mutagenesis. Interaction studies between mutated forms of WAK1 and homogalacturonans allowed us to identify and confirm at least five specific amino acids involved in the interaction with homogalacturonan dimers and multimers. The presence of this homogalacturonan-binding domain within the extracellular domain of WAK1 is discussed in terms of cell wall architecture and signal transduction.  相似文献   

8.
A J Cary  W Liu    S H Howell 《Plant physiology》1995,107(4):1075-1082
Cytokinins have profound effects on seedling development in Arabidopsis thaliana. Benzyladenine (BA) inhibits root elongation in light- or dark-grown seedlings, and in dark-grown seedlings BA inhibits hypocotyl elongation and exaggerates the curvature of apical hooks. The latter are characteristic ethylene responses and, therefore, the possible involvement of ethylene in BA responses was examined in seedlings. It was found that the inhibitory effects of BA on root and hypocotyl elongation were partially blocked by the action of ethylene inhibitors or ethylene-resistant mutations (ein1-1 and ein2-1). Ethylene production was stimulated by submicromolar concentrations of BA and could account, in part, for the inhibition of root and hypocotyl elongation. It was demonstrated further that BA did not affect the sensitivity of seedlings to ethylene. Thus, the effect of cytokinin on root and hypocotyl elongation in Arabidopsis appears to be mediated largely by the production of ethylene. The coupling between cytokinin and ethylene responses is further supported by the discovery that the cytokinin-resistant mutant ckr1 is resistant to ethylene and is allelic to the ethylene-resistant mutant ein2.  相似文献   

9.
Arabidopsis (Arabidopsis thaliana) was transformed with a redox-sensing green fluorescent protein (reduction-oxidation-sensitive green fluorescent protein [roGFP]), with expression targeted to either the cytoplasm or to the mitochondria. Both the mitochondrial and cytosolic forms are oxidation-reduction sensitive, as indicated by a change in the ratio of 510 nm light (green light) emitted following alternating illumination with 410 and 474 nm light. The 410/474 fluorescence ratio is related to the redox potential (in millivolts) of the organelle, cell, or tissue. Both forms of roGFP can be reduced with dithiothreitol and oxidized with hydrogen peroxide. The average resting redox potentials for roots are -318 mV for the cytoplasm and -362 mV for the mitochondria. The elongation zone of the Arabidopsis root has a more oxidized redox status than either the root cap or meristem. Mitochondria are much better than the cytoplasm, as a whole, at buffering changes in redox. The data show that roGFP is redox sensitive in plant cells and that this sensor makes it possible to monitor, in real time, dynamic changes in redox in vivo.  相似文献   

10.
Ethylene represents an important regulatory signal for root development. Genetic studies in Arabidopsis thaliana have demonstrated that ethylene inhibition of root growth involves another hormone signal, auxin. This study investigated why auxin was required by ethylene to regulate root growth. We initially observed that ethylene positively controls auxin biosynthesis in the root apex. We subsequently demonstrated that ethylene-regulated root growth is dependent on (1) the transport of auxin from the root apex via the lateral root cap and (2) auxin responses occurring in multiple elongation zone tissues. Detailed growth studies revealed that the ability of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid to inhibit root cell elongation was significantly enhanced in the presence of auxin. We conclude that by upregulating auxin biosynthesis, ethylene facilitates its ability to inhibit root cell expansion.  相似文献   

11.
Russian Journal of Plant Physiology - Arabidopsis thaliana Heynh. (L.) plants of the Columbia ecotype (Col-0) and its ethylene-insensitive etr1-1 (ethylene resistant 1) and ein2-1 (ethylene...  相似文献   

12.
Scott AC  Allen NS 《Plant physiology》1999,121(4):1291-1298
Ratiometric wide-field fluorescence microscopy with 1',7'- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran demonstrated that gravistimulation leads to rapid changes in cytoplasmic pH (pHc) in columella cells of Arabidopsis roots. The pHc of unstimulated columella cells in tiers 2 and 3, known sites of graviperception (E.B. Blancaflor, J.B. Fasano, S. Gilroy [1998] Plant Physiol 116: 213-222), was 7.22 +/- 0.02 pH units. Following gravistimulation, the magnitude and direction of pHc changes in these cells depended on their location in the columella. Cells in the lower side of tier 2 became more alkaline by 0.4 unit within 55 s of gravistimulation, whereas alkalinization of the cells on the upper side was slower (100 s). In contrast, all cells in tier 3 acidified by 0.4 pH unit within 480 s after gravistimulation. Disrupting these pHc changes in the columella cells using pHc modifiers at concentrations that do not affect root growth altered the gravitropic response. Acidifying agents, including bafilomycin A1, enhanced curvature, whereas alkalinizing agents disrupted gravitropic bending. These results imply that pHc changes in the gravisensing cells and the resultant pH gradients across the root cap are important at an early stage in the signal cascade leading to the gravitropic response.  相似文献   

13.
14.
15.
16.
The phytohormone auxin controls processes such as cell elongation, root hair development and root branching. Tropisms, growth curvatures triggered by gravity, light and touch, are also auxin-mediated responses. Auxin is synthesized in the shoot apex and transported through the stem, but the molecular mechanism of auxin transport is not well understood. Naphthylphthalamic acid (NPA) and other inhibitors of auxin transport block tropic curvature responses and inhibit root and shoot elongation. We have isolated a novel Arabidopsis thaliana mutant designated roots curl in NPA (rcn1). Mutant seedlings exhibit altered responses to NPA in root curling and hypocotyl elongation. Auxin efflux in mutant seedlings displays increased sensitivity to NPA. The rcn1 mutation was transferred-DNA (T-DNA) tagged and sequences flanking the T-DNA insert were cloned. Analysis of the RCN1 cDNA reveals that the T-DNA insertion disrupts a gene for the regulatory A subunit of protein phosphatase 2A (PP2A-A). The RCN1 gene rescues the rcn1 mutant phenotype and also complements the temperature-sensitive phenotype of the Saccharomyces cerevisiae PP2A-A mutation, tpd3-1. These data implicate protein phosphatase 2A in the regulation of auxin transport in Arabidopsis.  相似文献   

17.
T R Conley  M C Shih 《Plant physiology》1995,108(3):1013-1022
In a previous study of Arabidopsis thaliana (J. Dewdney, T.R. Conley, M.-C. Shih, H.M. Goodman [1993] Plant Physiol 103: 1115-1121), it was postulated that both blue light receptor- and phytochrome-mediated pathways contribute to regulation of the nuclear genes encoding A and B subunits of glyceraldehyde-3-phosphate dehydrogenase (GAPA and GAPB). Here were report on the involvement of a nuclear gene encoding a putative blue-light receptor (HY4) and of a nuclear gene encoding phytochrome A apoprotein (PHYA) in regulation of the GAPA and GAPB genes in response to blue and far-red light. Continuous light irradiation experiments with the hy4 mutant demonstrate that the HY4 gene product is required for full expression of GAPA, GAPB, and one or more of the nuclear genes encoding small subunits of of ribulose-1,5-bisphosphate carboxylase/oxygenase. Continuous light irradiation and fluence-response studies with the phyA-101 mutant show that phytochrome A functions in far-red light regulation of GAPA, GAPB, nuclear genes encoding small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, and CAB genes. Phytochromes A and B alone either do not participate in red light-mediated gene regulation or have redundant functions, as shown by analysis of phyA-101 and phyB-1 single mutants. In addition, the hypothesis that chloroplast-nucleus interactions affect GAPA and GAPB gene regulation was tested. Herbicide-mediated photooxidative damage to chloroplasts in A thaliana seedlings strongly decreased the maximum amount of GAPA and GAPB steady-state mRNA detected in continuous-light irradiation experiments. Full expression of the GAPB genes is dependent on the presence of functional chloroplasts.  相似文献   

18.
19.
The effects of root application of brassinolide (BL) on the growth and development of Arabidopsis plants ( Arabidopsis thaliana ecotype Columbia [L.] Heynh) were evaluated. Initially, all leaves were evaluated on plants 18, 22, 26 and 29 days old. The younger leaves were found to exhibit maximal petiole elongation and upward leaf bending in response to BL treatment. Therefore, based on these results leaves 6, 7 and 8 on 22–24-day-old plants were selected for all subsequent studies. Elongation along the length of the petiole in response to BL treatment was uniform with the exception of an approximately 4 mm region next to the leaf where upward curvature was observed. Both BL and 24-epibrassinolide (24-epiBL) were evaluated, with BL being more effective at lower concentrations than 24-epiBL. The exaggerated growth induced by 0.1 μ M BL was not observed in plants treated with 1 000-fold higher concentrations of GA3, IAA, NAA or 2,4-D (100 μ M ). In addition, no exaggerated growth effects were observed when plants were treated with 200 ppm ethylene or 1 m M ACC. All treatments with BL, NAA, 2,4-D, IAA or ACC promoted ethylene and ACC production in wild type Arabidopsis plants, but only BL triggered exaggerated plant growth. BL also promoted exaggerated growth and elevated levels of ACC and ethylene in the ethylene insensitive mutant etr1-3 , showing that the effect of BR on growth is independent of ethylene. This work provides evidence that BR-induced exaggerated growth of Arabidopsis plants is independent of gibberellins, auxins and ethylene.  相似文献   

20.
The shape of Arabidopsis thaliana dry seed is described here as a prolate spheroid. The accuracy of this approximation is discussed. Considering its limitations, it allows a geometric approximation to the analysis of changes occurring in seed shape during imbibition prior to seed germination as well as the differences in shape between genotypes and their changes during imbibition. The triple mutant ein2-1, ers1-2, etr1-7 presents notable alterations in seed shape. In addition, seeds of this and other mutants in the ethylene signaling pathway (ctr1-1, eto1-1, etr1-1, ein2-1) show different response to imbibition than the wild type. Imbibed seeds of the wild type increase their asymmetry compared with the dry seeds. This is detected by the relative changes in the curvature values in both poles. Thus, during imbibition of the wild-type seeds, the reduction in curvature values observed in the basal pole gives them an ovoid shape. In contrast, in the seeds of the ethylene mutants, reduction in curvature values occurs in both basal and apical poles, and its shape remains as a prolate spheroid. Our data indicate that the ethylene signaling pathway is involved, in general, in the complex regulation of seed shape and, in particular, in the establishment of polarity in seeds, controlling curvature values in the seed poles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号