首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tree-ring chronologies were examined to investigate the influence of climate on radial growth of Pinus nigra in southeastern Spain. We addressed whether drought differentially affected the ring-widths of dominant and suppressed trees and if our results supported the hypothesis that, in a Mediterranean climate, suppressed conifer trees suffer greater growth reductions than dominant trees. Climate–growth relationships were analyzed using response and correlation functions, whereas the effect of drought on trees growth was approached by superposed epoch analysis in 10 dry years. A cool, wet autumn and spring, and/or mild winter enhanced radial growth. Latewood was the most sensitive ring section in both kinds of trees and it was primarily influenced by current year precipitations. Earlywood was mostly influenced by climatic conditions previous to the growing season. In general, May was the most influential month. Pinus nigra was shown to be very drought sensitive tree in the study area. Tree-rings in suppressed trees showed lower growth reductions caused by drought than those of dominant trees. However, dominant trees recovered normal growth faster. Dominant trees showed a more plastic response, and suppression appeared to reduce the effect of climate on tree radial growth. Some possible causes for these effects are discussed. Our results support the essential role of the balance between light and moisture limitations for plant development during droughts and show that it is not appropriate to generalize about the way in which suppression affects climate-growth relationship in conifers.  相似文献   

2.
The significant mortality of the Austrocedrus chilensis (D. Don) Pic. Serm. et Bizarri forests, locally known as “Mal del Ciprés”, has been reported since 1945 for most sites across its distribution in Argentina. However, the cause of this decline is still a topic of discussion. In this study, radial growth patterns from symptomatic and asymptomatic A. chilensis trees were analyzed to determine the influence of drought events on tree growth. Fifty pairs of symptomatic and asymptomatic trees with similar DBH, competition, and microsite conditions were cored at five pure A. chilensis stands near El Bolsón, Río Negro, Argentina. A reference chronology from nonaffected trees was used to cross-date all cores and to determine the relationship between A. chilensis radial growth and climate. The growth of A. chilensis is favored by above average precipitation in late spring–early summer (November and December). A strong relationship was also observed between radial growth patterns and the Palmer drought severity index, a measure of the regional water deficit. Significant differences in growth patterns were recorded between symptomatic and asymptomatic trees. Following extreme drought events, the growth of symptomatic trees is consistently lower than in asymptomatic trees. Based on the larger number of droughts recorded during the past decades and on future climatic predictions suggesting increasing trends in the frequency and intensity of drought events in northern Patagonia, a gradual increase in the number of trees affected by “Mal del Ciprés” along the twenty-first century is likely expected.  相似文献   

3.
The dynamics of aseasonal lowland dipterocarp forest in Borneo is influenced by perturbation from droughts. These events might be increasing in frequency and intensity in the future. This paper describes drought-affected dynamics between 1986 and 2001 in Sabah, Malaysia, and considers how it is possible, reliably and accurately, to measure both coarse- and fine-scale responses of the forest. Some fundamental concerns about methodology and data analysis emerge. In two plots forming 8 ha, mortality, recruitment, and stem growth rates of trees ≥10 cm gbh (girth at breast height) were measured in a ‘pre-drought’ period (1986–1996), and in a period (1996–2001) including the 1997–1998 ENSO-drought. For 2.56 ha of subplots, mortality and growth rates of small trees (10–<50 cm gbh) were found also for two sub-periods (1996–1999, 1999–2001). A total of c. 19 K trees were recorded. Mortality rate increased by 25% while both recruitment and relative growth rates increased by 12% for all trees at the coarse scale. For small trees, at the fine scale, mortality increased by 6% and 9% from pre-drought to drought and on to ‘post-drought’ sub-periods. Relative growth rates correspondingly decreased by 38% and increased by 98%. Tree size and topography interacted in a complex manner with between-plot differences. The forest appears to have been sustained by off-setting elevated tree mortality by highly resilient stem growth. This last is seen as the key integrating tree variable which links the external driver (drought causing water stress) and population dynamics recorded as mortality and recruitment. Suitably sound measurements of stem girth, leading to valid growth rates, are needed to understand and model tree dynamic responses to perturbations. The proportion of sound data, however, is in part determined by the drought itself. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
This study is aimed at comparing wide- versus specific-adaptation strategies for lucerne in northern Italy on the basis of actual dry matter yield gains over 12 harvests from phenotypic selection, assessing the value of specific genetic bases and selecting environments for the contrasting subregion A (no drought stress/sandy-loam soil) and subregion C (summer drought stress/silty-clay soil). A second aim is to investigate the adaptive responses of five sets of 18 half-sib progenies. The following selected populations were evaluated along with five cultivars: GW–SW, GA–SA, GA–SC, GC–SC and GC–SA (where GW, GA and GC are the genetic bases for wide adaptation, subregions A and C; SW, SA and SC are the selection environments for wide adaptation, subregions A and C). The selection and test environments were four artificial environments created by the factorial combination of two drought stress levels by two soil types. Two environments represented the subregions A and C whereas the combination of the other two environments represented the intermediate subregion B. Genotype × environment interaction (P ≤ 0.001) due to both environmental factors and implying cross-over interaction between the contrasting subregions occurred for the populations and the five selections. Specific genetic bases (GA and GC) implied gains in their target subregions of 5.2% for subregion A and 2.9% for subregion C compared with the widely adapted one (GW). The gain of SA (‘no stress/sandy-loam soil’) over SC (‘stress/silty-clay soil’) decreased from subregion A (10.6%) through subregion C (1.7%) but exhibited an advantage per se across environments of 5.4%. The best specific selections (GA–SA for subregions A and B; GC–SA for subregion C) implied higher yields of 9.8% in subregion A and 6.5% in subregion C, and over twofold greater selection efficiency across the region, relative to GW–SW. Half-sib progeny × artificial environment interaction (P ≤ 0.05) occurred in three sets of progenies whose parents belonged to cultivars with different or similar adaptation.  相似文献   

5.
Prosopis flexuosa trees dominate woodlands in the Central Monte Desert (Mendoza, Argentina), with <200 mm rainfall, exploiting the water table recharged by Andean rivers, and also growing in dunes with no access to the water table. Prosopis woodlands were extensively logged during development of the agricultural oasis, and surface and groundwater irrigation could lower the depth of the water table in the future. We evaluated tree populations with decreasing access to the water table: valley adult trees, valley saplings, and dune adult trees, in order to assess their ecophysiological response to water table accessibility. High and seasonally stable pre-dawn leaf water potentials (−2.2 ± 0.2 to −1.2 ± 0.07 MPa) indicated that valley adults utilize larger and more stable water reservoirs than valley saplings and dune adults (−3.8 ± 0.3 to −1.3 ± 0.07 MPa), with higher midday leaf conductance to water vapor (valley adults ~250; dune adults <60 mmol m−2 s−1), potentially higher CO2 uptake, and increased radial growth rate (valley adults 4.1 ± 0.07; dune adults 2.9 ± 0.02 mm year−1). Trees with poor access to the water table exhibited drought tolerance responses such as midday stomata closure, leaflet closure, and osmotic adjustment. Stomata density decreased in response to drought when leaf expansion was restricted. The combination of phreatophytism and drought tolerance would enlarge P. flexuosa habitats and buffer populations against changes in rainfall dynamics and water table depth.  相似文献   

6.
The objective of this research was to determine whether the dendroclimatic responses of young Quercus alba (aged 29–126 years) differ from those of old Q. alba (149–312 years). We collected Q. alba increment cores across a range of size classes from Buffalo Mountain Natural Area Preserve, an oak-hickory forest in southcentral Virginia, USA. Tree cores were crossdated and raw ring widths were detrended to remove the influence of increasing circumference with age, microsite, and local stand dynamics. Standardized ring widths were averaged to develop two master chronologies from the 20 oldest and youngest trees. Ring-width indices were correlated with temperature, precipitation, and Palmer Drought Severity Index (PDSI). Annual tree-ring growth in old and young Q. alba was significantly correlated with precipitation from the previous growing season, but was not significantly correlated with temperature. Only the old trees showed a significant correlation between annual ring width and PDSI. These results may indicate that growth in old trees is more sensitive to drought than in young trees. If future climate change includes the predicted increase in mid-growing season droughts, tree-level responses are likely to be age-dependent with older trees experiencing relatively greater reductions in growth.  相似文献   

7.
 Radial growth responses to drought were examined in the tree-ring records of six species growing within two locations of differing land-use history and soil moisture characteristics, and in overstory and understory canopy positions in northern Virginia. Tree species experienced differential ring-width reductions during or immediately following four severe drought periods occurring from 1930 to 1965 and were influenced by climatic variables including annual and summer temperatures, annual precipitation, and annual Palmer Drought Severity Index. Relative growth comparisons averaged across species before and after drought years indicated that understory trees on dry-mesic sites grew 11% faster after drought compared to pre-drought rates while mesic site trees in both canopy positions grew approximately 4% slower. Superposed epoch analysis indicated that Liriodendron tulipifera growing on mesic sites experienced greater ring-width reductions associated with drought than co-occurring, more drought-tolerant Quercus alba and Q. velutina. On dry-mesic sites, L. tulipifera also experienced greatly reduced growth as a result of drought but exhibited significant growth increases following individual drought events. Quercus alba was the only species that exhibited a consistent, significant ring-width decrease associated with all droughts on dry-mesic sites. In contrast, Pinus virginiana was least impacted by drought on dry-mesic sites but was much more impacted by drought on mesic sites, indicating a drought×site interaction for this species. Overstory Carya glabra and Q. alba experienced larger growth decreases during drought on dry-mesic versus mesic sites. Understory tree growth reductions did not differ between site types but were often significantly larger than overstory responses of the same species on mesic sites. Following drought, most trees exhibited growth reductions lasting 2–3 years, although several species experienced reductions lasting up to 6 years. The results of this study suggest that tree rings represent an important long-term proxy for leaf-level ecophysiological measurements of growth responses to drought periods. Received: 31 July 1996 / Accepted: 16 April 1997  相似文献   

8.
Studies were conducted to examine changes in soil (Ψs) and plant water status during summer in a 16-year old Quercus suber plantation in southern Portugal. Continuous measurements were conducted between May 2003 and August 2004, while discontinuous measurements were conducted on a monthly basis between May and September 2003 and repeated between March and September 2004. Intensive measurements were conducted on five trees with mean height and DBH of 5.3 m and 11.6 cm, respectively, growing at close proximity to each other. Weather conditions and soil water potential (Ψs) at the rhizosphere of each of the trees measured at 0.3 and 1 m soil depth were continuously monitored. Predawn (Ψpd) and midday (Ψmd) leaf water potentials were determined every month. Soil and plant samples were also collected in June and September from different locations within the study site for δ18O isotope composition analysis. Pressure–volume (pv) curves were constructed from plant shoots at different times during the vegetative period to determine osmotic potential at full saturation (Π100), water potential at turgor loss point (Ψtlp), relative water content at turgor loss point (R*tlp) and bulk modulus of elasticity (ε). Significant P < 0.05 decline in Ψs occurred between May and September, the lowest value recorded being –2.0 MPa. Decline in soil moisture affected tree water status, but decline in leaf water potential varied significantly (P < 0.05) among the trees. At the end of summer drought, lowest Ψpd measured was –1.7 MPa while the highest measured during this time was –0.8 MPa. Differences among trees were attributed to differences in rooting depth, as shown by regression analysis of 18O isotopes. Radial stem growth ceased when Ψs within the upper 0.3 m depth approached –1.5 MPa. The upper soil layers contributed approximately 33% of the total tree water requirement, between spring and mid summer when drought was experienced by trees. Deep soil layers however, supplied most of the water required during drought and no growth was recorded during this time. Stressed trees increased solute concentration of their tissues by a Magnitude of 0.7 MPa while bulk tissue elastic modulus increased by about 17 MPa. The study emphasizes the significance of roots as determinants of tree productivity and survival in the Mediterranean ecosystems.  相似文献   

9.
Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, the loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate–growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (ca. 2,000–2,200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥19 trees) throughout most of the time period analysed. MRF calculated for the period 1866–1999 and 1901–1999 for ca. 200- and ca. 100-year-old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid-1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a <10% increase in annual increments of ca. 50-year-old trees at the timberline and at the tree line in 2003 compared with 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the twentieth century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology.  相似文献   

10.
Tree-ring samples of Picea schrenkiana (Fisch. et Mey) were studied along an altitudinal gradient in the central Tianshan Mountains, and ring-width chronologies were developed for three sites at different altitudes: low-forest border (1600–1700 m a.s.l.), interior forest (2100–2200 m a.s.l.), and upper treeline (2600–2700 m a.s.l.). Annual ring-width variations were similar among the three sites but variability was greatest at the low-forest border site. The statistical characters of the chronologies showed that mean sensitivity (MS) and standard deviation (SD) decreased with increasing elevation. In other words, the response of tree growth to environmental changes decreased with increasing altitude. To understand the differing response of trees at different elevations to the environmental changes, response function analysis was used to study the relationships between tree-ring widths and mean monthly temperature and total monthly precipitation from 1961 to 2000. The results showed that precipitation was the most important factor limiting tree radial growth in the arid central Tianshan Mountains, precipitation in August of the prior growth year played an important role on tree's radial growth across the entire altitudinal gradient even at the cold, high-elevation treeline site. It is expected that with increasing altitude air temperature decreased and precipitation increased, the importance of precipitation on tree growth decreased, and the response of tree growth to environmental changes decreased, too. This conclusion may be helpful to understand and research the relationship between climatic change and tree growth in arid and semiarid area.  相似文献   

11.
We analyzed the hydraulic constraints imposed on water uptake from soils of different porosities in loblolly pine (Pinus taeda L.) by comparing genetically related and even-aged plantations growing in loam versus sand soil. Water use was evaluated relative to the maximum transpiration rate (E crit) allowed by the soil-leaf continuum. We expected that trees on both soils would approach E crit during drought. Trees in sand, however, should face greater drought limitation because of steeply declining hydraulic conductivity in sand at high soil water potential (Ψ S). Transport considerations suggest that trees in sand should have higher root to leaf area ratios (A R:A L), less negative leaf xylem pressure (Ψ L), and be more vulnerable to xylem cavitation than trees in loam. The A R:A L was greater in sand versus loam (9.8 vs 1.7, respectively). This adjustment maintained about 86% of the water extraction potential for both soils. Trees in sand were more deeply rooted (>1.9 m) than in loam (95% of roots <0.2 m), allowing them to shift water uptake to deeper layers during drought and avoid hydraulic failure. Midday Ψ L was constant for days of high evaporative demand, but was less negative in sand (–1.6 MPa) versus loam (–2.1 MPa). Xylem was more vulnerable to cavitation in sand versus loam trees. Roots in both soils were more vulnerable than stems, and experienced the greatest predicted loss of conductivity during drought. Trees on both soils approached E crit during drought, but at much higher Ψ S in sand (<–0.4 MPa) than in loam (<–1.0 MPa). Results suggest considerable phenotypic plasticity in water use traits for P. taeda which are adaptive to differences in soil porosity. Received: 28 December 1999 / Accepted: 31 March 2000  相似文献   

12.
Temporal instability of climate signal in tree-ring width of the five dominant species (Pinus nigra, P. sylvestris, P. uncinata, Abies alba, Fagus sylvatica) growing under Mediterranean mountainous climate was studied over the last century (1910–2004). To disentangle the tree–climate–site complex, the effects of both soil water availability (SWA) (dry, mesic and humid sites) and altitude (from 430 to 1,690 m) were investigated on the response patterns. Responses to climate were analysed using bootstrapped correlation coefficients from 17 ring-width chronologies built from 293 trees sampled in 64 stands in South-Eastern France. Temporal analyses were performed considering forty-six 50-years intervals (from 1910–1959 to 1955–2004). May–June drought was the primary limiting factor. For P. sylvestris, summer precipitation also played a key role. F. sylvatica was the less responding species with no clear common pattern. Low SWA led to an increasing correlation with precipitation in May for P. nigra and A. alba. Precipitation from May to August prevailed on the driest conditions for P. sylvestris. Correlation analyses suggested that warm autumn or winter enhanced growth, except for F. sylvatica. For P. nigra, the importance of April temperature increased with increasing altitude. Temporal analyses revealed a stability of sensitivity for the highest contexts (P. uncinata and F. sylvatica). At lower altitudes, the correlation with minimum temperature in April increased while temperature more often exceeded the threshold of 0°C over the last decades. For precipitation, a decrease in the strength of correlation was observed without close relationships with local xericity.  相似文献   

13.
The observed long-term decrease in the regional fire activity of Eastern Canada results in excessive accumulation of organic layer on the forest floor of coniferous forests, which may affect climate–growth relationships in canopy trees. To test this hypothesis, we related tree-ring chronologies of black spruce (Picea mariana (Mill.) B.S.P.) to soil organic layer (SOL) depth at the stand scale in the lowland forests of Quebec’s Clay Belt. Late-winter and early-spring temperatures and temperature at the end of the previous year’s growing season were the major monthly level environmental controls of spruce growth. The effect of SOL on climate–growth relationships was moderate and reversed the association between tree growth and summer aridity from a negative to a positive relationship: trees growing on thin organic layers were thus negatively affected by drought, whereas it was the opposite for sites with deep (>20–30 cm) organic layers. This indicates the development of wetter conditions on sites with thicker SOL. Deep SOL were also associated with an increased frequency of negative growth anomalies (pointer years) in tree-ring chronologies. Our results emphasize the presence of nonlinear growth responses to SOL accumulation, suggesting 20–30 cm as a provisional threshold with respect to the effects of SOL on the climate–growth relationship. Given the current climatic conditions characterized by generally low-fire activity and a trend toward accumulation of SOL, the importance of SOL effects in the black spruce ecosystem is expected to increase in the future.  相似文献   

14.
Linares JC  Tíscar PA 《Oecologia》2011,167(3):847-859
Within-range effects of climatic change on tree growth at the sub-regional scale remain poorly understood. The aim of this research was to use climate and radial-growth data to explain how long-term climatic trends affect tree growth patterns along the southern limit of the range of Pinus nigra ssp. salzmannii (Eastern Baetic Range, southern Spain). We used regional temperature and precipitation data and measured sub-regional radial growth variation in P. nigra forests over the past two centuries. A dynamic factor analysis was applied to test the hypothesis that trees subjected to different climates have experienced contrasting long-term growth variability. We defined four representative stand types based on average temperature and precipitation to evaluate climate–growth relationships using linear mixed-effect models and multi-model selection criteria. All four stand types experienced warming and declining precipitation throughout the twentieth century. From the onset of the twentieth century, synchronised basal-area increment decline was accounted for by dynamic factor analysis and was related to drought by climate–growth models; declining basal-area increment trends proved stronger at lower elevations, whereas temperature was positively related to growth in areas with high rainfall inputs. Given the contrasting sub-regional tree-growth responses to climate change, the role of drought becomes even more complex in shaping communities and affecting selection pressure in the Mediterranean mountain forests. Potential vegetation shifts will likely occur over the dry edge of species distributions, with major impacts on ecosystem structure and function.  相似文献   

15.
Hippophae rhamnoides L. is uniquely capable of growing well under extreme environmental conditions such as water deficit, low temperature, and high altitude. Such tolerance invokes much interest in understanding the biology of this plant species and its utilization potential. In this study, analysis of drought stress-responsive proteins in H. rhamnoides was conducted wherein greenhouse-grown seedlings were subjected to drought stress. By using proteomic techniques, proteins, extracted from leaves, were analyzed using two-dimensional electrophoresis and MALDI-TOF MS. Altogether, 55 proteins exhibited changes in abundance under stress. Of these, 13 proteins were identified, including three that disappeared under drought (a putative ABC transporter ATP-binging protein, a heat shock protein HslU, and a hypothetical protein XP-515578), seven that were up-regulated (three large subunits of rubisco, a hypothetical protein DSM3645–23351, a putative acyl-CoA dehydrogenase, a nesprin-2, and a J-type co-chaperone HSC20), and three that were only detected under drought (a probable nitrogen regulation protein (NtrX), a 4-hydroxyphenylpyruvate dioxygenase, and an unnamed protein product). These proteins may function in β-oxidation pathways in mitochondria, across membranes transport, abnormal protein removal, or prevent protein aggregation arrest, cell division, cytoskeleton stabilization, iron–sulfur cluster assembly, nitrogen metabolism regulation, and antioxidant substance biosynthesis. Four proteins (J-type co-chaperone Hsc20, a putative ABC transporter ATP-binging protein, NtrX, and HslU) were deemed as new discoveries in higher plants, and their functions were predicted either from their conserved domains or homologies to other organisms. These results provide new insights into our understanding of the mechanism of drought tolerance in plants.  相似文献   

16.
Recent land-use changes in intensively managed forests such as Mediterranean coppice stands might profoundly alter their structure and function. We assessed how the abandonment of traditional management practices in coppice stands, which consisted of short cutting-cycles (10–15 years), has caused overaging (stems are usually much older than when they were coppiced) and altered their wood anatomy and hydraulic architecture. We studied the recent changes of wood anatomy, radial growth, and hydraulic architecture in two stands of Quercus pyrenaica, a transitional Mediterranean oak with ring-porous wood forming coppice stands in W–NW Spain. We selected a xeric and a mesic site because of their contrasting climates and disturbance histories. The xeric site experienced an intense defoliation after the severe 1993–1994 summer drought. The mesic site was thinned in late 1994. We studied the temporal variability in width, vessel number and diameter, and predicted the hydraulic conductivities (K h) of earlywood and latewood. In the mesic site, we estimated the vulnerability to xylem cavitation of earlywood vessels. Overaging caused a steep decline in latewood production at a cambial age of 14 years., which was close to the customary cutting cycle of Q. pyrenaica. The diameter distribution of vessels was bimodal, and latewood vessels only accounted for 4% of the K h. Overaging, acting as a predisposing factor in the decline episode, was observed at the xeric site, where most trees did not produce latewood in 1993–1995. At the mesic site, thinned trees formed wider tree-rings, more latewood and multiseriate tree-rings than overaged trees. The growth enhancement remained 8 years after thinning. Most of the hydraulic conductivity in earlywood was lost in a narrow range of potentials, between −2.5 and −3.5 MPa. We have shown how hydraulic conductivity and radial growth are closely related in Q. pyrenaica and how aging modulates this relationship.  相似文献   

17.
Clones of Norway spruce (Picea abies L.) were grown for several years on an altitudinal gradient (1750 m, 1150 m and 800 m above sea level) to study the effects of environmental × genetic interactions on growth and foliar metabolites (protein, pigments, antioxidants). Clones at the tree line showed 4.3-fold lower growth rates and contained 60% less chlorophyll (per gram of dry matter) than those at valley level. The extent of growth reduction was clone-dependent. The mortality of the clones was low and not altitude-dependent. At valley level, but not at high altitude, needles of mature spruce trees showed lower pigment and protein concentrations than clones. In general, antioxidative systems in needles of the mature trees and young clones did not increase with increasing altitude. Needles of all trees at high altitude showed higher concentrations of dehydroascorbate than at lower altitudes, indicating higher oxidative stress. In one clone, previously identified as sensitive to acute ozone doses, this increase was significantly higher and the growth reduction was stronger than in the other genotypes. This clone also displayed a significant reduction in glutathione reductase activity at high altitude. These results suggest that induction of antioxidative systems is apparently not a general prerequisite to cope with altitude in clones whose mother plants originated from higher altitudes (about 650–1100 m above sea level, Hercycnic-Carpathian distribution area), but that the genetic constitution for maintenance of high antioxidative protection is important for stress compensation at the tree line. Received: 13 October 1998 / Accepted: 22 June 1999  相似文献   

18.
We investigated scaling of physiological parameters between age classes of Quercus rubra by combining in situ field measurements with an experimental approach. In the in situ field study, we investigated changes in drought response with age in seedlings, juveniles, and mature trees of Q. rubra. Throughout the particularly dry summer of 1995 and the unusually wet summer of 1996 in New England, we measured water potential of leaves (ΨLeaf) and gas exchange of plants at three sites at the Harvard Forest in Petersham, Massachusetts. In order to determine what fraction of the measured differences in gas exchange between seedlings and mature trees was due to environment versus ontogeny, an experiment was conducted in which seedlings were grown under light and soil moisture regimes simulating the environment of mature trees. The photosynthetic capacity of mature trees was three-fold greater than that of seedlings during the wet year, and six-fold greater during the drought year. The seedling experiment demonstrated that the difference in photosynthetic capacity between seedlings and mature trees is comprised equally of an environmental component (50%) and an ontogenetic component (50%) in the absence of water limitation. Photosynthesis was depressed more severely in seedlings than in mature trees in the drought year relative to the wet year, while juveniles showed an intermediate response. Throughout the drought, the predawn leaf water potential (ΨPD) of seedlings became increasingly negative (–0.4 to –1.6 MPa), while that of mature trees became only slightly more negative (–0.2 to –0.5 MPa). Again, juveniles showed an intermediate response (–0.25 to –0.8 MPa). During the wet summer of 1996, however, there was no difference in ΨPD between seedlings, juveniles and mature trees. During the dry summer of 1995, seedlings were more responsive to a major rain event than mature trees in terms of ΨLeaf , suggesting that the two age classes depend on different water sources. In all age classes, instantaneous measurements of intrinsic water use efficiency (WUEi), defined as C assimilation rate divided by stomatal conductance, increased as the drought progressed, and all age classes had higher WUEi during the drought year than in the wet year. Mature trees, however, showed a greater ability to increase their WUEi in response to drought. Integrated measurements of WUE from C isotope discrimination (Δ) of leaves indicated higher WUE in mature trees than juveniles and seedlings. Differences between years, however, could not be distinguished, probably due to the strong bias in C isotope fractionation at the time of leaf production, which occurred prior to the onset of drought conditions in 1995. From this study, we arrive at two main conclusions: Received: 14 July 1999 / Accepted: 10 January 2000  相似文献   

19.
Lianas, or woody climbing plants, are a major constituent of seasonally dry tropical forests, and are thought to impact negatively their host trees. In this study we evaluated whether liana presence was associated with reduced leaf water potentials and growth in adult Senna multijuga trees during the dry season in a lowland Bolivian forest. We used leaf water potentials in trees as a first approach to assess trees’ water status, under the assumption that leaf water potentials become more negative when water losses (via transpiration) exceed gains (by uptake). We measured relative growth in girth at 1.5 m height (gbh) to quantify tree growth. At the beginning of the 1996 dry season (early June), we selected 20 S. multijuga trees 10–20 cm dbh, and measured their gbh. We also recorded pre-dawn and mid-day leaf water potentials in these trees. In ten experimental trees all lianas were then cut, while the remaining trees were used as controls. Pre-dawn and mid-day water potentials were re-measured 1 day after liana-cutting, and then every week in all trees for 1 month and then at 3 and 5 months, until the beginning of the next rainy season (November); gbh was measured again in July 1997 to estimate relative growth rate. Liana removal was associated with less negative pre-dawn (–0.3 vs –0.4 MPa) and mid-day (–0.5 vs –0.7 MPa) water potentials in trees during the dry season. This difference appeared as early as 1 day after cutting, and disappeared once the rainy season began. Liana-cut trees grew more (0.4 mm/mm year) than liana-uncut trees (0.2 mm/mm year). These findings suggest that lianas may interfere with water availability to these trees during the dry season, and may also hinder tree growth. Received: 16 November 1999 / Accepted: 23 March 2000  相似文献   

20.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号