首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abs to Ro/SSA Ags in the sera of patients with systemic lupus erythematosus and Sj?gren's syndrome are influenced by the HLA class II genes. To investigate the role of individual HLA class II genes in immune responses to human Ro60 (hRo60), mice lacking murine class II molecules and carrying either HLA genes DR2(DRB1*1502), DR3(DRB1*0301), DQ6(DQA1*0103/DQB1*0601), or DQ8(DQA1*0301/DQB1*0302), were immunized with rhRo60. The results show that hRo60 induces strong T and B cell responses in DR2, DR3, and DQ8 mice in comparison to weaker responses in DQ6 mice. In all mice, the majority of the dominant T cell epitopes were located in the amino portion (aa 61-185) and the carboxy portion (aa 381-525) of the hRo60 molecules. In contrast, the early dominant B cell epitopes were located in the middle and carboxy portion of the hRo60 molecule (aa 281-315 and 401-538). In DR2, DR3, and DQ8 mice, the B cell epitopes subsequently spread to the amino and carboxy portion of the hRo60 molecule but were limited to the middle and carboxy portion in DQ6 mice. The DR2 and DR3 mice produced the highest titers of immunoprecipitating Abs against hRo60 and native mouse Ro60. In addition, only DR2 mice exclusively produced immunoprecipitating Abs to native mouse Ro52 and Abs to mouse La by slot blot analysis, whereas in other strains of mice Abs to mouse La were cross-reactive with the immunogen. The results of the present study demonstrate the importance of HLA class II in controlling the immune responses to the Ro-ribonucleoprotein.  相似文献   

2.
Genetic control of immune reactions has a major role in the development of rheumatic heart disease (RHD) and differs between patients with rheumatic fever (RF). Some authors think the risk of acquiring RHD is associated with the HLA class II DR and DQ loci, but other views exist, due to the various HLA-typing methods and ways of grouping cases. Our goal was to determine the relations between HLA class II alleles and risk of or protection from RF in patients with relatively homogeneous clinical manifestations. A total of 70 RF patients under the age of 18 years were surveyed in Latvia. HLA genotyping of DRB1*01 to DRB1*18 and DQB1*0201-202, *0301-305, *0401-402, *0501-504, and *0601-608 was performed using polymerase chain reaction sequence-specific primers. Data for a control group of 100 healthy individuals typed for HLA by the same method were available from the databank of the Immunology Institute of Latvia. Of the RF patients, 47 had RHD and 8 had Sydenham's chorea. We concluded that HLA class II DRB1*07-DQB1*0401-2 and DRB1*07-DQB1*0302 could be the risk alleles and HLA class II DRB1*06 and DQB1*0602-8, the protective ones. Patients with mitral valve regurgitation more often had DRB1*07 and DQB1*0401-2, and patients with multivalvular lesions more often had DRB1*07 and DQB1*0302. In Sydenham's chorea patients, the DQB1*0401-2 allele was more frequent. Genotyping control showed a high risk of RF and RHD in patients with DRB1*01-DQB1*0301-DRB1*07-DQB1*0302 and DRB1*15-DQB1*0302-DRB1*07-DQB1*0303.  相似文献   

3.
The genetic factors that contribute to the etiology of type 1 diabetes are still largely uncharacterized. However, the genes of the MHC (HLA in humans) have been consistently associated with susceptibility to disease. We have used several transgenic mice generated in our laboratory, bearing susceptible or resistant HLA alleles, in the absence of endogenous MHC class II (Abetao), to study immune responses to the autoantigen glutamic acid decarboxylase (GAD) 65 and its relevance in determining the association between autoreactivity and disease pathogenesis. Mice bearing diabetes-susceptible haplotypes, HLA DR3 (DRB1*0301) or DQ8 (DQB1*0302), singly or in combination showed spontaneous T cell reactivity to rat GAD 65, which is highly homologous to the self Ag, mouse GAD 65. The presence of diabetes-resistant or neutral alleles, such as HLA DQ6 (DQB1*0602) and DR2 (DRB1*1502) prevented the generation of any self-reactive responses to rat GAD. In addition, unmanipulated Abetao/DR3, Abetao/DQ8, and Abetao/DR3/DQ8 mice recognized specific peptides, mainly from the N-terminal region of the GAD 65 molecule. Most of these regions are conserved between human, mouse, and rat GAD 65. Further analysis revealed that the reactivity was mediated primarily by CD4(+) T cells. Stimulation of these T cells by rat GAD 65 resulted in the generation of a mixed Th1/Th2 cytokine profile in the Abetao/DR3/DQ8, Abetao/DR3, and Abetao/DQ8 mice. Thus, the presence of diabetes-associated genes determines whether immune tolerance is maintained to islet autoantigens, but autoreactivity in itself is not sufficient to induce diabetes.  相似文献   

4.
PCR amplification, oligonucleotide probe typing, and sequencing were used to analyze the HLA class II loci (DRB1, DQA1, DQB1, and DPB1) of an isolated South Amerindian tribe. Here we report HLA class II variation, including the identification of a new DRB1 allele, several novel DR/DQ haplotypes, and an unusual distribution of DPB1 alleles, among the Cayapa Indians (N = 100) of Ecuador. A general reduction of HLA class II allelic variation in the Cayapa is consistent with a population bottle-neck during the colonization of the Americas. The new Cayapa DRB1 allele, DRB1*08042, which arose by a G-->T point mutation in the parental DRB1*0802, contains a novel Val codon (GTT) at position 86. The generation of DRB1*08042 (Val-86) from DRB1*0802 (Gly-86) in the Cayapa, by a different mechanism than the (GT-->TG) change in the creation of DRB1*08041 (Val-86) from DRB1*0802 in Africa, implicates selection in the convergent evolution of position 86 DR beta variants. The DRB1*08042 allele has not been found in > 1,800 Amerindian haplotypes and thus presumably arose after the Cayapa separated from other South American Amerindians. Selection pressure for increased haplotype diversity can be inferred in the generation and maintenance of three new DRB1*08042 haplotypes and several novel DR/DQ haplotypes in this population. The DPB1 allelic distribution in the Cayapa is also extraordinary, with two alleles, DPB1*1401, a very rare allele in North American Amerindian populations, and DPB1*0402, the most common Amerindian DPB1 allele, constituting 89% of the Cayapa DPB1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have analyzed the distribution of HLA class II alleles and haplotypes in a Filipino population by PCR amplification of the DRB1, DQB1, and DPB1 second-exon sequences from buccal swabs obtained from 124 family members and 53 unrelated individuals. The amplified DNA was typed by using nonradioactive sequence-specific oligonucleotide probes. Twenty-two different DRB1 alleles, including the novel Filipino *1105, and 46 different DRB1/DQB1 haplotypes, including the unusual DRB1*0405-DQB1*0503, were identified. An unusually high frequency (f = .383) of DPB1*0101, a rare allele in other Asian populations, was also observed. In addition, an unusual distribution of DRB1 alleles and haplotypes was seen in this population, with DR2 (f = .415) and DRB1*1502-DQB1*0502 (f = .233) present at high frequencies. This distribution of DRB1 alleles differs from the typical HLA population distribution, in which the allele frequencies are more evenly balanced. The distribution of HLA class II alleles and haplotypes in this Filipino population is different from that of other Asian and Pacific groups: of those populations studied to date; the Indonesian population is the most similar. DRB1*1502-DQB1*0502 was in strong linkage disequilibrium (D'' = .41) with DPB1*0101 (f = .126, for the extended haplotype), which is consistent with selection for this DR, DQ, DP haplotype being responsible for the high frequency of these three class II alleles in this population.  相似文献   

6.
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.  相似文献   

7.
In humans, HLA-DR alleles sharing amino acids at the third hypervariable region with DRB1*0401(shared epitope) are associated with a predisposition to rheumatoid arthritis, whereas DRB1*0402 is not associated with such a predisposition. Both DRB1*0402 and DRB1*0401 occur in linkage with DQ8 (DQB1*0302). We have previously shown that transgenic (Tg) mice expressing HLA-DRB1*0401 develop collagen-induced arthritis. To delineate the role of "shared epitope" and gene complementation between DR and DQ in arthritis, we generated DRB1*0402, DRB1*0401.DQ8, and DRB1*0402.DQ8 Tg mice lacking endogenous class II molecules, AE(o). DRB1*0402 mice are resistant to develop arthritis. In double-Tg mice, the DRB1*0401 gene contributes to the development of collagen-induced arthritis, whereas DRB1*0402 prevents the disease. Humoral response to type II collagen is not defective in resistant mice, although cellular response to type II collagen is lower in *0402 mice compared with *0401 mice. *0402 mice have lower numbers of T cells in thymus compared with *0401 mice, suggesting that the protective effect could be due to deletion of autoreactive T cells. Additionally, DRB1*0402 mice have a higher number of regulatory T cells and show increased activation-induced cell death, which might contribute toward protection. In DRB1*0401.DQ8 mice, activated CD4(+) T cells express class II genes and can present DR4- and DQ8-restricted peptides in vitro, suggesting a role of class II(+) CD4 T cells locally in the joints. The data suggest that polymorphism in DRB1 genes determines predisposition to develop arthritis by shaping the T cell repertoire in thymus and activating autoreactive or regulatory T cells.  相似文献   

8.
Human leucocyte antigen (HLA) class II molecules have been shown to be associated with predisposition to rheumatoid arthritis (RA). We generated HLA-DR and DQ transgenic mice that lacked endogenous class II molecules to study the interaction between the DR and DQ molecules and define the immunologic mechanisms in rheumatoid arthritis. Using collagen-induced arthritis (CIA) as an experimental model for inflammatory polyarthritis, we show that both DQ and DR are involved in predisposition or resistance to arthritis. Our studies suggest that polymorphism in DQB1 genes may determine predisposition to RA while the DRB1 polymorphism may dictate severity/protection of the disease. These mice provide powerful tools to develop immunotherapeutic protocols.  相似文献   

9.
Human leucocyte antigen (HLA) class II molecules have been shown to be associated with predisposition to rheumatoid arthritis (RA). We generated HLA-DR and DQ transgenic mice that lacked endogenous class II molecules to study the interaction between the DR and DQ molecules and define the immunologic mechanisms in rheumatoid arthritis. Using collagen-induced arthritis (CIA) as an experimental model for inflammatory polyarthritis, we show that both DQ and DR are involved in predisposition or resistance to arthritis. Our studies suggest that polymorphism in DQB1 genes may determine predisposition to RA while the DRB1 polymorphism may dictate severity/protection of the disease. These mice provide powerful tools to develop immunotherapeutic protocols.  相似文献   

10.
The HLA class II region genes DQB1*0602 and DQA1*0102 are currently the best genetic predictors for narcolepsy in humans (1(. The aim of this study was to identify the HLA DQ alleles (DQB1*0602 and DQA1*0102) in Slovene sporadic narcoleptic patients. 11 patients who fulfilled ICSD criteria for narcolepsy entered the study. DRB1*1501 DQB1*0602 was present in all the patients while DQA1*0102 was absent in 2 patients. We propose that DQB1*0602 typing is important in diagnosing narcolepsy in Slovene patients  相似文献   

11.
We report here our analysis of HLA class II alleles in 180 Caucasian nuclear families with at least two children with insulin-dependent diabetes mellitus (IDDM). DRB1, DQA1, DQB1, and DPB1 genotypes were determined with PCR/sequence-specific oligonucleotide probe typing methods. The data allowed unambiguous determination of four-locus haplotypes in all but three of the families. Consistent with other studies, our data indicate an increase in DR3/DR4, DR3/DR3, and DR4/DR4 genotypes in patients compared to controls. In addition, we found an increase in DR1/DR4, DR1/DR3, and DR4/DR8 genotypes. While the frequency of DQB1*0302 on DR4 haplotypes is dramatically increased in DR3/DR4 patients, DR4 haplotypes in DR1/DR4 patients exhibit frequencies of DQB1*0302 and DQB1*0301 more closely resembling those in control populations. The protective effect of DR2 is evident in this data set and is limited to the common DRB1*1501-DQB1*0602 haplotype. Most DR2+ patients carry the less common DR2 haplotype DRB1*1601-DQB1*0502, which is not decreased in patients relative to controls. DPB1 also appears to play a role in disease susceptibility. DPB1*0301 is increased in patients (P < .001) and may contribute to the disease risk of a number of different DR-DQ haplotypes. DPB1*0101, found almost exclusively on DR3 haplotypes in patients, is slightly increased, and maternal transmissions of DRB1*0301-DPB1*0101 haplotypes to affected children occur twice as frequently as do paternal transmissions. Transmissions of DR3 haplotypes carrying other DPB1 alleles occur at approximately equal maternal and paternal frequencies. The complex, multigenic nature of HLA class II-associated IDDM susceptibility is evident from these data.  相似文献   

12.
Human narcolepsy-cataplexy, a sleep disorder associated with a centrally mediated hypocretin (orexin) deficiency, is tightly associated with HLA-DQB1*0602. Few studies have investigated the influence that additional HLA class II alleles have on susceptibility to this disease. In this work, 1,087 control subjects and 420 narcoleptic subjects with cataplexy, from three ethnic groups, were HLA typed, and the effects of HLA-DRB1, -DQA1, and -DQB1 were analyzed. As reported elsewhere, almost all narcoleptic subjects were positive for both HLA-DQA1*0102 and -DQB1*0602. A strong predisposing effect was observed in DQB1*0602 homozygotes, across all ethnic groups. Relative risks for narcolepsy were next calculated for heterozygous DQB1*0602/other HLA class II allelic combinations. Nine HLA class II alleles carried in trans with DQB1*0602 were found to influence disease predisposition. Significantly higher relative risks were observed for heterozygote combinations including DQB1*0301, DQA1*06, DRB1*04, DRB1*08, DRB1*11, and DRB1*12. Three alleles-DQB1*0601, DQB1*0501, and DQA1*01 (non-DQA1*0102)-were found to be protective. The genetic contribution of HLA-DQ to narcolepsy susceptibility was also estimated by use of lambda statistics. Results indicate that complex HLA-DR and -DQ interactions contribute to the genetic predisposition to human narcolepsy but that additional susceptibility loci are also most likely involved. Together with the recent hypocretin discoveries, these findings are consistent with an immunologically mediated destruction of hypocretin-containing cells in human narcolepsy-cataplexy.  相似文献   

13.
We studied nine consecutive DQ2-negative celiacs [from a group of 186 consecutive celiac disease (CD) patients] for the presence of the HLA-DQB1, DRB1, and DRBx alleles. HLA-DR53 was present in only 5 out of 9 (55%) of DQ2-negative patients. DRB4 (DR53) positivity -39% of chromosomes--among Spanish DQ2-negative CD patients is due to both DR4- and DR7-positive cases. Spanish DQ2-positive patients show a high frequency of DR7/DR11 heterozygous carriers of DRB4 (DR53). One-third of our DQ2-negative celiac patients have DRB1*04 (DR4). Six patients are DR4 negative: at least one of the DQ2 alleles (DQA1*0501/DQB1*02) is present in four cases, but none of the alleles of risk, including DR53, were found in the remaining two cases, both of whom carry DQB1*06 alleles (*0602/3 and 0604). The fact that half of our DQ2-negative patients lack DRB4 (DR53) leads us to believe that this gene is not an essential factor to confer CD susceptibility.  相似文献   

14.
The human MHC class II genes are associated with genetic susceptibility to multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the CNS of presumed autoimmune origin. These genes encode for proteins responsible for shaping immune response. The exact role of HLA-DQ and -DR genes in disease pathogenesis is not well-understood due to the high polymorphism, linkage disequilibrium, and heterogeneity of human populations. The advent of HLA class II-transgenic (Tg) mice has helped in answering some of these questions. Previously, using single-Tg mice (expressing the HLA-DR or -DQ gene), we showed that proteolipid protein (PLP)(91-110) peptide induced classical experimental autoimmune encephalomyelitis only in DR3.Abeta degrees mice, suggesting that DR3 (DRB1*0301) is a disease susceptible gene in the context of PLP. Human population studies have suggested that HLA-DQ6 (DQB1*0601) may be a protective gene in MS. To test this disease protection in an experimental model, we generated double-Tg mice expressing both HLA-DR3 and -DQ6. Introduction of DQ6 onto DR3-Tg mice led to a decrease in disease incidence on immunization with PLP(91-110) peptide indicating a dominant protective role of DQ6. This protective effect is due to high levels of IFN-gamma produced by DQ6-restricted T cells, which suppressed proliferation of encephalitogenic DR3-restricted T cells by inducing apoptosis. Our study indicates that DQ6 modifies the PLP(91-110)-specific T cell response in DR3 through anti-inflammatory effects of IFN-gamma, which is protective for experimental autoimmune encephalomyelitis. Thus, our double-Tg mouse provides a novel model in which to study epistatic interactions between HLA class II molecules in MS.  相似文献   

15.
The HLA system is being paid more and more attention because it is very significant in polymorphous immunological reactions. Several studies have suggested that genetic susceptibility to rheumatic fever (RF) and rheumatic heart disease (RHD) is linked to HLA class II alleles. We hypothesized that HLA class II associations within RHD may be more consistent if analysed amongst patients with a relatively homogeneous clinical outcome. A total of 70 RF patients under the age of 18 years were surveyed and analysed in Latvia. HLA genotyping of DQA1, DQB1 and DRB1 was performed using PCR with amplification with sequence-specific primers. We also used results from a previous study of DQB1 and DRB1 genotyping. In the RF patients, HLA class II DQA1*0401 was found more frequently compared to DQA1*0102. In the RF homogeneous patient groups, DQA1*0402 has the highest odds ratio. This is also the case in the multivalvular lesion (MVL) group, together with DQA1*0501 and DQA1*0301. In the chorea minor patients, DQA1*0201 was often found. Significant HLA DQA1 protective genotypes were not detected, although DQA1 genotypes *0103/*0201 and *0301/*0501 were found significantly and frequently. In the distribution of HLA DRB1/DQA1 genotypes, *07/*0201 and *01/*0501 were frequently detected; these also occurred significantly often in the MVL group. The genotype *07/*0201 was frequently found in Sydenhamn's chorea patients that had also acquired RHD, but DRB1*04/DQA1*0401 was often apparent in RF patients without RHD. In the distribution of HLA DQA1/DQB1 genotypes, both in RF patients and in the homogeneous patient groups, the least frequent were *0102/*0602-8. The genotype DQA1*0501 with the DQB1 risk allele *0301 was often found in the MVL group. The genotype *0301/*0401-2 was frequently found in the RF and Sydenhamn's chorea patient groups. The haplotype *07-*0201-*0302 was frequently found in RF and homogeneous patient groups, including the MVL group. In addition, haplotypes *04-*0401-*0301 and *04-*0301-*0401-2 were frequent amongst patients with Sydenhamn's chorea. The protective alleles DQA1*0102 and DQB1*0602-8 in the haplotype DRB1*15 were less frequently found in RF patients. The results of the present study support our hypothesis and indicate that certain HLA class II haplotypes are associated with risk for or protection against RHD and that these associations are more evident in patients in clinically homogeneous groups.  相似文献   

16.
HLA polymorphism in type 1 diabetes Tunisians   总被引:4,自引:0,他引:4  
Several studies of the association between HLA and type 1 diabetes have been carried out revealing differences between ethnic groups. Our study, as part of the studies that should be performed about this association in the rest of the word, aims at elucidating the HLA DRB1, DQB1 polymorphism in Tunisian type 1 diabetes. This study includes 43 unrelated type 1 diabetes patients, and their mean age at onset is less than 15 years. Analysis of the frequency of alleles and haplotypes in these subjects, compared to a reference group (n = 101) led to the following results. 1) The Tunisian insulin-dependent diabetics present similarities as well as differences with other ethnic groups (Caucasians, North Africans). 2) The haplotype DRB1*04 DQ*0302 and DRB1*03 DQB1*0201 is positively associated to type 1 diabetes. 3) The heterozygotic genotype DRB1*04 DQB1*0302 / DRB1*03 DQB1*0201 is strongly associated to type 1 diabetes. 4) The haplotypes DRB1*01501 DQB1*0602 and DRB1*11 DQB1*0301 proved to be protective. In addition, the study of the subtypes DRB1*04 showed that alleles DRB1*0405 predispose to type 1 diabetes, whereas the allele DRB1*0403, which is in linkage disequilibrium with the DQB1*0402 in the Tunisian population, has a protective effect.  相似文献   

17.
Two divergent routes of evolution gave rise to the DRw13 haplotypes   总被引:1,自引:0,他引:1  
The HLA class II genes and haplotypes have evolved over a long period of evolutionary time by mechanisms such as gene conversion, reciprocal recombination and point mutation. The extent of the diversity generated is most clearly evident in an analysis of the HLA class II alleles present within DRw13 haplotypes. This study uses cDNA sequencing to examine the first domains of DRB1, DRB3, DQA1, and DQB1 alleles from several American black individuals expressing seven different DRw13 haplotypes, five with undefined HLA-D specificities (i.e., not Dw18 or Dw19). Two new DRw13 alleles described in this study are the first examples of convergent evolution of DR alleles in which gene conversion has apparently combined segments of DRB1 alleles encoding DRw11 and DRw8 to generate two new DRB1 alleles, DRB1*1303 and DRB1*1304, that encode molecules bearing serologic determinants of a third allele, DRw13. These new DRw13 alleles are found embedded in haplotypes of DRw11 origin distinct from haplotypes encoding previously identified DRw13 alleles, DRB1*1301 and DRB1*1302. These data suggest that two evolutionary pathways may have given rise to two subgroups of alleles encoding molecules that share DRw13 serologic determinants yet which possess different structural and, likely, functional motifs. Reciprocal gene recombination events resulting in different DR, DRw52 and DQ allele combinations also appear to have played a crucial role in augmenting the level of diversity found in DRw13 haplotypes. Recombination has resulted in the association of one of the new DRw13 alleles with a DQw2 allele normally found associated with DR7 and the association of the DRw52c-associated DRw13 allele (DRB1*1302) with three different DQw1 alleles. The seven DRw13 haplotypes that have resulted from the effect of recombination on haplotypes formed by the two pathways of DRw13 allelic diversification have resulted in different repertoires of class II molecules and, most likely, different immune response profiles in individuals with these haplotypes.  相似文献   

18.
MHC class II haplotypes control the specificity of Th immune responses and susceptibility to many autoimmune diseases. Understanding the role of HLA class II haplotypes in immunity is hampered by the lack of animal models expressing these genes as authentic cis-haplotypes. In this study we describe transgenic expression of the autoimmune prone HLA DR3-DQ2 haplotype from a yeast artificial chromosome (YAC) containing an intact similar320-kb region from HLA DRA to DQB2. In YAC-transgenic mice HLA DR and DQ gene products were expressed on B cells, macrophages, and dendritic cells, but not on T cells indicating cell-specific regulation. Positive selection of the CD4 compartment by human class II molecules was 67% efficient in YAC-homozygous mice lacking endogenous class II molecules (Abeta(null/null)) and expressing only murine CD4. A broad range of TCR Vbeta families was used in the peripheral T cell repertoire, which was also purged of Vbeta5-, Vbeta11-, and Vbeta12-bearing T cells by endogenous mouse mammary tumor virus-encoded superantigens. Expression of the HLA DR3-DQ2 haplotype on the Abeta(null/null) background was associated with normal CD8-dependent clearance of virus from influenza-infected mice and development of CD4-dependent protection from otherwise lethal infection with Salmonella typhimurium. HLA DR- and DQ-restricted T cell responses were also elicited following immunization with known T cell determinants presented by these molecules. These findings demonstrate the potential for human MHC class II haplotypes to function efficiently in transgenic mice and should provide valuable tools for developing humanized models of MHC-associated autoimmune diseases.  相似文献   

19.
Human leukocyte antigen (HLA) class I and class II alleles are implicated as genetic risk factors for many autoimmune diseases. However, the role of the HLA loci in human systemic lupus erythematosus (SLE) remains unclear. Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, we identified three distinct haplotypes that encompassed the class II region and exhibited transmission distortion. DRB1 and DQB1 typing of founders showed that the three haplotypes contained DRB1*1501/ DQB1*0602, DRB1*0801/ DQB1*0402, and DRB1*0301/DQB1*0201 alleles, respectively. By visualizing ancestral recombinants, we narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to an approximately 500-kb region. We conclude that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE.  相似文献   

20.
The polymorphism at the HLA DRB1 and DQB1 loci in the population of Vojvodina was studied by PCR-SSP method. A total of 13 DRB1 and 5 DQB1 specificities displaying population-specific frequency distribution pattern were described. The most frequent HLA Class II alleles in Vojvodina population were: HLA-DRB1*11 (af = 0.30), −DRB1*04 (af = 0.28), −DRB1*07 (af = 0.21), −DRB1*13 and −DRB1*16 (af = 0.18), −DQB1*03 (af = 0.64), −DQB1*05 (af = 0.39) and −DQB1*02 (af = 0.35). The haplotypes with high frequencies (≥0.02) included HLA DRB1*11 DQB1*03 (0.0825), DRB1*04DQB1*03 (0.0725), DRB1*07DQB1*02 (0.0475). The allele DRB1*07 showed the strongest association with DQB1*02 (Δ = 0.0261, gC2 = 4.437) and DRB1*13 allele with DQB1*06 (Δ = 0.0222, gC2 = 4.247). The allelic frequencies and populations distance dendrogram revealed the closest relationship of Vojvodina population with Hungarians, Croat, and Greeks which can be the result of turbulent migration within this region and admixture with neighbour populations during the history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号