首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Arl13b belongs to the ADP-ribosylation factor family within the Ras superfamily of regulatory GTPases. Mutations in Arl13b cause Joubert syndrome, which is characterized by congenital cerebellar ataxia, hypotonia, oculomotor apraxia, and mental retardation. Arl13b is highly enriched in cilia and is required for ciliogenesis in multiple organs. Nevertheless, the precise role of Arl13b remains elusive. Here we report that the exocyst subunits Sec8, Exo70, and Sec5 bind preferentially to the GTP-bound form of Arl13b, consistent with the exocyst being an effector of Arl13b. Moreover, we show that Arl13b binds directly to Sec8 and Sec5. In zebrafish, depletion of arl13b or the exocyst subunit sec10 causes phenotypes characteristic of defective cilia, such as curly tail up, edema, and abnormal pronephric kidney development. We explored this further and found a synergistic genetic interaction between arl13b and sec10 morphants in cilia-dependent phenotypes. Through conditional deletion of Arl13b or Sec10 in mice, we found kidney cysts and decreased ciliogenesis in cells surrounding the cysts. Moreover, we observed a decrease in Arl13b expression in the kidneys from Sec10 conditional knockout mice. Taken together, our results indicate that Arl13b and the exocyst function together in the same pathway leading to functional cilia.  相似文献   

2.
Magnaporthe oryzae is the causal agent of rice blast disease, the most devastating disease of cultivated rice (Oryza sativa) and a continuing threat to global food security. To cause disease, the fungus elaborates a specialized infection cell called an appressorium, which breaches the cuticle of the rice leaf, allowing the fungus entry to plant tissue. Here, we show that the exocyst complex localizes to the tips of growing hyphae during vegetative growth, ahead of the Spitzenkörper, and is required for polarized exocytosis. However, during infection-related development, the exocyst specifically assembles in the appressorium at the point of plant infection. The exocyst components Sec3, Sec5, Sec6, Sec8, and Sec15, and exocyst complex proteins Exo70 and Exo84 localize specifically in a ring formation at the appressorium pore. Targeted gene deletion, or conditional mutation, of genes encoding exocyst components leads to impaired plant infection. We demonstrate that organization of the exocyst complex at the appressorium pore is a septin-dependent process, which also requires regulated synthesis of reactive oxygen species by the NoxR-dependent Nox2 NADPH oxidase complex. We conclude that septin-mediated assembly of the exocyst is necessary for appressorium repolarization and host cell invasion.  相似文献   

3.
In prior studies of exocyst-mediated late secretion in Candida albicans, we have determined that Sec6 contributes to cell wall integrity, secretion, and filamentation. A conditional mutant lacking SEC6 expression exhibits markedly reduced lateral hyphal branching. In addition, lack of the related t-SNAREs Sso2 and Sec9 also leads to defects in secretion and filamentation. To further understand the role of the exocyst in the fundamental processes of polarized secretion and filamentation in C. albicans, we studied the exocyst subunit Sec15. Since Saccharomyces cerevisiae SEC15 is essential for viability, we generated a C. albicans conditional mutant strain in which SEC15 was placed under the control of a tetracycline-regulated promoter. In the repressed state, cell death occurred after 5 h in the tetR-SEC15 strain. Prior to this time point, the tetR-SEC15 mutant was markedly defective in Sap and lipase secretion and demonstrated increased sensitivity to Zymolyase and chitinase. Notably, tetR-SEC15 mutant hyphae were characterized by a hyperbranching phenotype, in direct contrast to strain tetR-SEC6, which had minimal lateral branching. We further studied the localization of the Spitzenkörper, polarisomes, and exocysts in the tetR-SEC15 and tetR-SEC6 mutants during filamentation. Mlc1-GFP (marking the Spitzenkörper), Spa2-GFP (the polarisome), and Exo70-GFP (exocyst) localizations were normal in the tetR-SEC6 mutant, whereas these structures were mislocalized in the tetR-SEC15 mutant. Following alleviation of gene repression by removing doxycycline, first Spitzenkörper, then polarisome, and finally exocyst localizations were recovered sequentially. These results indicate that the exocyst subunits Sec15 and Sec6 have distinct roles in mediating polarized secretion and filamentation in C. albicans.  相似文献   

4.
Remodelling neuronal connections by synaptic activity requires membrane trafficking. We present evidence for a signalling pathway by which synaptic activity and its consequent Ca2+ influx activate the small GTPase Ral and thereby recruit exocyst proteins to postsynaptic zones. In accord with the ability of the exocyst to direct delivery of post-Golgi vesicles, constitutively active Ral expressed in Drosophila muscle causes the exocyst to be concentrated in the region surrounding synaptic boutons and consequently enlarges the membrane folds of the postsynaptic plasma membrane (the subsynaptic reticulum, SSR). SSR growth requires Ral and the exocyst component Sec5 and Ral-induced enlargement of these membrane folds does not occur in sec5−/− muscles. Chronic changes in synaptic activity influence the plastic growth of this membrane in a manner consistent with activity-dependent activation of Ral. Thus, Ral regulation of the exocyst represents a control point for postsynaptic plasticity. This pathway may also function in mammals as expression of activated RalA in hippocampal neurons increases dendritic spine density in an exocyst-dependent manner and increases Sec5 in spines.  相似文献   

5.
In contrast to a single copy of Exo70 in yeast and mammals, the Arabidopsis genome contains 23 paralogues of Exo70 (AtExo70). Using AtExo70E2 and its GFP fusion as probes, we recently identified a novel double-membrane organelle termed exocyst-positive organelle (EXPO) that mediates an unconventional protein secretion in plant cells. Here we further demonstrate that AtExo70E2 is essential for exocyst subunit recruitment and for EXPO formation in both plants and animals. By performing transient expression in Arabidopsis protoplasts, we established that a number of exocyst subunits (especially the members of the Sec family) are unable to be recruited to EXPO in the absence of AtExo70E2. The paralogue AtExo70A1 is unable to substitute for AtExo70E2 in this regard. Fluorescence resonance energy transfer assay and bimolecular fluorescence complementation analyses confirm the interaction between AtExo70E2 and Sec6 and Sec10. AtExo70E2, but not its yeast counterpart, is also capable of inducing EXPO formation in an animal cell line (HEK293A cells). Electron microscopy confirms the presence of double-membraned, EXPO-like structures in HEK293A cells expressing AtExo70E2. Inversely, neither human nor yeast Exo70 homologues cause the formation of EXPO in Arabidopsis protoplasts. These results point to a specific and crucial role for AtExo70E2 in EXPO formation.  相似文献   

6.
The accurate targeting of secretory vesicles to distinct sites on the plasma membrane is necessary to achieve polarized growth and to establish specialized domains at the surface of eukaryotic cells. Members of a protein complex required for exocytosis, the exocyst, have been localized to regions of active secretion in the budding yeast Saccharomyces cerevisiae where they may function to specify sites on the plasma membrane for vesicle docking and fusion. In this study we have addressed the function of one member of the exocyst complex, Sec10p. We have identified two functional domains of Sec10p that act in a dominant-negative manner to inhibit cell growth upon overexpression. Phenotypic and biochemical analysis of the dominant-negative mutants points to a bifunctional role for Sec10p. One domain, consisting of the amino-terminal two-thirds of Sec10p directly interacts with Sec15p, another exocyst component. Overexpression of this domain displaces the full-length Sec10 from the exocyst complex, resulting in a block in exocytosis and an accumulation of secretory vesicles. The carboxy-terminal domain of Sec10p does not interact with other members of the exocyst complex and expression of this domain does not cause a secretory defect. Rather, this mutant results in the formation of elongated cells, suggesting that the second domain of Sec10p is required for morphogenesis, perhaps regulating the reorientation of the secretory pathway from the tip of the emerging daughter cell toward the mother–daughter connection during cell cycle progression.  相似文献   

7.
Sec6p Anchors the Assembled Exocyst Complex at Sites of Secretion   总被引:2,自引:0,他引:2       下载免费PDF全文
The exocyst is an essential protein complex required for targeting and fusion of secretory vesicles to sites of exocytosis at the plasma membrane. To study the function of the exocyst complex, we performed a structure-based mutational analysis of the Saccharomyces cerevisiae exocyst subunit Sec6p. Two “patches” of highly conserved residues are present on the surface of Sec6p; mutation of either patch does not compromise protein stability. Nevertheless, replacement of SEC6 with the patch mutants results in severe temperature-sensitive growth and secretion defects. At nonpermissive conditions, although trafficking of secretory vesicles to the plasma membrane is unimpaired, none of the exocyst subunits are polarized. This is consistent with data from other exocyst temperature-sensitive mutants, which disrupt the integrity of the complex. Surprisingly, however, these patch mutations result in mislocalized exocyst complexes that remain intact. Our results indicate that assembly and polarization of the exocyst are functionally separable events, and that Sec6p is required to anchor exocyst complexes at sites of secretion.  相似文献   

8.
It is generally considered that the bladder is impervious and stores urine in unmodified form on account of the barrier imposed by the highly-specialised uro-epithelial lining. However, recent evidence, including demonstration of aquaporin (AQP) expression by human urothelium, suggests that urothelium may be able to modify urine content. Here we have we applied functional assays to an in vitro-differentiated normal human urothelial cell culture system and examined both whether AQP expression was responsive to changes in osmolality, and the effects of blocking AQP channels on water and urea transport. AQP3 expression was up-regulated by increased osmolality, but only in response to NaCl. A small but similar effect was seen with AQP9, but not AQP4 or AQP7. Differentiated urothelium revealed significant barrier function (mean TER 3862 Ω.cm2), with mean diffusive water and urea permeability coefficients of 6.33×10−5 and 2.45×10−5 cm/s, respectively. AQP blockade with mercuric chloride resulted in decreased water and urea flux. The diffusive permeability of urothelial cell sheets remained constant following conditioning in hyperosmotic NaCl, but there was a significant increase in water and urea flux across an osmotic gradient. Taken collectively with evidence emerging from studies in other species, our results support an active role for human urothelium in sensing and responding to hypertonic salt concentrations through alterations in AQP protein expression, with AQP channels providing a mechanism for modifying urine composition. These observations challenge the traditional concept of an impermeable bladder epithelium and suggest that the urothelium may play a modulatory role in water and salt homeostasis.  相似文献   

9.
Summary A method was developed for the in vitro study of rodent urinary bladders. The method consists of everting and distending the urinary bladder in a manner to allow exposure of the luminal surface of the urothelium during in vitro incubation while maintaining the integrity of the structure and morphology of the bladder. A technique for selectively removing the urothelium with SDS buffer for biochemical analysis was described. Incorporation of [3H]leucine into urothelial protein was linear over a 4 h period in the presence of tissue culture medium, but no significant incorporation occurred when urine was used as incubation medium. Autoradiography indicated the [3H]leucine incorporation was almost exclusively in the urothelial cells with essentially no incorporation by cells below the tunica propria.  相似文献   

10.
The yeast exocyst is a multiprotein complex comprised of eight subunits (Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84) which orchestrates trafficking of exocytic vesicles to specific docking sites on the plasma membrane during polarized secretion. To study SEC6 function in Candida albicans, we generated a conditional mutant strain in which SEC6 was placed under the control of a tetracycline-regulated promoter. In the repressed state, the tetR-SEC6 mutant strain (denoted tSEC6) was viable for up to 27 h; thus, all phenotypic analyses were performed at 24 h or earlier. Strain tSEC6 under repressing conditions had readily apparent defects in cytokinesis and endocytosis and accumulated both post-Golgi apparatus secretory vesicles and structures suggestive of late endosomes. Strain tSEC6 was markedly defective in secretion of aspartyl proteases and lipases as well as filamentation under repressing conditions. Lack of SEC6 expression resulted in markedly reduced lateral hyphal branching, which requires the establishment of a new axis of polarized secretion. Aberrant localization of chitin at the septum and increased resistance to zymolyase activity were observed, suggesting that C. albicans Sec6 plays an important role in mediating trafficking and delivery of cell wall components. The tSEC6 mutant was also markedly defective in macrophage killing, indicating a role of SEC6 in C. albicans virulence. Taken together, these studies indicate that the late secretory protein Sec6 is required for polarized secretion, hyphal morphogenesis, and the pathogenesis of C. albicans.  相似文献   

11.
Germination of Bacillus spores requires degradation of a modified layer of peptidoglycan (PG) termed the spore cortex by two redundant cortex-lytic enzymes (CLEs), CwlJ and SleB, plus SleB''s partner protein, YpeB. In this study, in vitro and in vivo analyses have been used to clarify the roles of individual SleB and YpeB domains in PG degradation. Purified mature Bacillus cereus SleB without its signal sequence (SleBM) and the SleB C-terminal catalytic domain (SleBC) efficiently triggered germination of decoated Bacillus megaterium and Bacillus subtilis spores lacking endogenous CLEs; previously, SleB''s N-terminal domain (SleBN) was shown to bind PG but have no enzymatic activity. YpeB lacking its putative membrane anchoring sequence (YpeBM) or its N- and C-terminal domains (YpeBN and YpeBC) alone did not exhibit degradative activity, but YpeBN inhibited SleBM and SleBC activity in vitro. The severe germination defect of B. subtilis cwlJ sleB or cwlJ sleB ypeB spores was complemented by ectopic expression of full-length sleB [sleB(FL)] and ypeB [ypeB(FL)], but normal levels of SleBFL in spores required normal spore levels of YpeBFL and vice versa. sleB(FL) or ypeB(FL) alone, sleB(FL) plus ypeB(C) or ypeB(N), and sleB(C) or sleB(N) plus ypeB(FL) did not complement the cortex degradation defect in cwlJ sleB ypeB spores. In addition, ectopic expression of sleB(FL) or cwlJ(FL) with a Glu-to-Gln mutation in a predicted active-site residue failed to restore the germination of cwlJ sleB spores, supporting the role of this invariant glutamate as the key catalytic residue in SleB and CwlJ.  相似文献   

12.
13.
Claudin (Cld)-4 is one of the dominant Clds expressed in the kidney and urinary tract, including selective segments of renal nephrons and the entire urothelium from the pelvis to the bladder. We generated Cldn4 −/− mice and found that these mice had increased mortality due to hydronephrosis of relatively late onset. While the renal nephrons of Cldn4 −/− mice showed a concomitant diminution of Cld8 expression at tight junction (TJ), accumulation of Cld3 at TJ was markedly enhanced in compensation and the overall TJ structure was unaffected. Nonetheless, Cldn4 −/− mice showed slightly yet significantly increased fractional excretion of Ca2+ and Cl, suggesting a role of Cld4 in the specific reabsorption of these ions via a paracellular route. Although the urine volume tended to be increased concordantly, Cldn4 −/− mice were capable of concentrating urine normally on dehydration, with no evidence of diabetes insipidus. In the urothelium, the formation of TJs and uroplaques as well as the gross barrier function were also unaffected. However, intravenous pyelography analysis indicated retarded urine flow prior to hydronephrosis. Histological examination revealed diffuse hyperplasia and a thickening of pelvic and ureteral urothelial layers with markedly increased BrdU uptake in vivo. These results suggest that progressive hydronephrosis in Cldn4 −/− mice arises from urinary tract obstruction due to urothelial hyperplasia, and that Cld4 plays an important role in maintaining the homeostatic integrity of normal urothelium.  相似文献   

14.
A screen for mutations that affect the recruitment of the exocyst to secretory vesicles identified genes encoding clathrin and proteins that associate or colocalize with clathrin at sites of endocytosis. However, no significant colocalization of the exocyst with clathrin was seen, arguing against a direct role in exocyst recruitment. Rather, these components are needed to recycle the exocytic vesicle SNAREs Snc1p and Snc2p from the plasma membrane into new secretory vesicles where they act to recruit the exocyst. We observe a direct interaction between the exocyst subunit Sec6p and the latter half of the SNARE motif of Snc2p. An snc2 mutation that specifically disrupts this interaction led to exocyst mislocalization and a block in exocytosis in vivo without affecting liposome fusion in vitro. Overexpression of Sec4p partially suppressed the exocyst localization defects of mutations in clathrin and clathrin-associated components. We propose that the exocyst is recruited to secretory vesicles by the combinatorial signals of Sec4-GTP and the Snc proteins. This could help to confer both specificity and directionality to vesicular traffic.  相似文献   

15.
High transepithelial electrical resistance (TEER) demonstrates a functional permeability barrier of the normal urothelium, which is maintained by a layer of highly differentiated superficial cells. When the barrier is challenged, a quick regeneration is induced. We used side-by-side diffusion chambers as an ex vivo system to determine the time course of functional and structural urothelial regeneration after chitosan-induced injury. The exposure of the urothelium to chitosan caused a 60 % decrease in TEER, the exposure of undifferentiated urothelial cells to the luminal surface and leaky tight junctions. During the regeneration period (350 min), TEER recovered to control values after approximately 200 min, while structural regeneration continued until 350 min after injury. The tight junctions are the earliest and predominant component of the barrier to appear, while complete barrier regeneration is achieved by delayed superficial cell terminal differentiation. The barrier function and the structure of untreated urothelium were unaffected in side-by-side diffusion chambers for at least 6 h. The urinary bladder tissue excised from an animal thus retains the ability to maintain and restore the transepithelial barrier and cellular ultrastructure for a sufficient period to allow for studies of regeneration in ex vivo conditions.  相似文献   

16.
During membrane trafficking, vesicular carriers are transported and tethered to their cognate acceptor compartments before soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)-mediated membrane fusion. The exocyst complex was believed to target and tether post-Golgi secretory vesicles to the plasma membrane during exocytosis. However, no definitive experimental evidence is available to support this notion. We developed an ectopic targeting assay in yeast in which each of the eight exocyst subunits was expressed on the surface of mitochondria. We find that most of the exocyst subunits were able to recruit the other members of the complex there, and mistargeting of the exocyst led to secretion defects in cells. On the other hand, only the ectopically located Sec3p subunit is capable of recruiting secretory vesicles to mitochondria. Our assay also suggests that both cytosolic diffusion and cytoskeleton-based transport mediate the recruitment of exocyst subunits and secretory vesicles during exocytosis. In addition, the Rab GTPase Sec4p and its guanine nucleotide exchange factor Sec2p regulate the assembly of the exocyst complex. Our study helps to establish the role of the exocyst subunits in tethering and allows the investigation of the mechanisms that regulate vesicle tethering during exocytosis.  相似文献   

17.
The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits — Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation.  相似文献   

18.
Bladder cancer represents a significant human tumor burden, accounting for about 7.7% and 2.4% of all cancer cases in males and females, respectively. While men have a higher risk of developing bladder cancer, women tend to present at a later stage of disease and with more aggressive tumors. Previous studies have suggested a promotional role of androgen signaling in enhancing bladder cancer development. To directly assess the role of androgens in bladder tumorigenesis, we have developed a novel transgenic mouse strain, R26hARLoxP/+:Upk3aGCE/+, in which the human AR transgene is conditionally expressed in bladder urothelium. Intriguingly, both male and female R26hARLoxP/+:Upk3aGCE/+ mice display a higher incidence of urothelial cell carcinoma (UCC) than the age and sex matched control littermates in response to the carcinogen, N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). We detect expression of the human AR transgene in CK5-positive and p63-positive basal cells in bladder urothelium. Further analyses of UCC tissues from R26hARLoxP/+:Upk3aGCE/+ mice showed that the majority of tumor cells are of urothelial basal cell origin. Positive immunostaining of transgenic AR protein was observed in the majority of tumor cells of the transgenic mice, providing a link between transgenic AR expression and oncogenic transformation. We observed an increase in Ki67 positive cells within the UCC lesions of transgenic AR mice. Manipulating endogenous androgen levels by castration and androgen supplementation directly affected bladder tumor development in male and female R26hARLoxP/+:Upk3aGCE/+ mice, respectively. Taken together, our data demonstrate for the first time that conditional activation of transgenic AR expression in bladder urothelium enhances carciongen-induced bladder tumor formation in mice. This new AR transgenic mouse line mimics certain features of human bladder cancer and can be used to study bladder tumorigenesis and for drug development.  相似文献   

19.
Most of the hypomorphic Prep1i/i embryos (expressing 3-10% of the Prep1 protein), die between E17.5 and P0, with profound anemia, eye malformations and angiogenic anomalies [Ferretti, E., Villaescusa, J.C., Di Rosa, P., Fernandez-Diaz, L.-C., Longobardi, E., Mazzieri, R., Miccio, A., Micali, N., Selleri, L., Ferrari G., Blasi, F. (2006). Hypomorphic mutation of the TALE gene Prep1 (pKnox1) causes a major reduction of Pbx and Meis proteins and a pleiotropic embryonic phenotype. Mol. Cell. Biol. 26, 5650-5662]. We now report on the hematopoietic phenotype of these embryos. Prep1i/i fetal livers (FL) are hypoplastic, produce less common myeloid progenitors colonies (CFU-GEMM) in cytokine-supplemented methylcellulose and have an increased number of B-cells precursors that differentiate poorly. Prep1i/i FL is able to protect lethally irradiated mice only at high cell doses but the few protected mice show major anomalies in all hematopoietic lineages in both bone marrow (BM) and peripheral organs. Prep1i/i FL cells compete inefficiently with wild type bone marrow in competitive repopulation experiments, suggesting that the major defect lies in long-term repopulating hematopoietic stem cells (LTR-HSC). Indeed, wt embryonic expression of Prep1 in the aorta-gonad-mesonephros (AGM) region, fetal liver (FL), cKit+Sca1+LinAA4.1+ (KSLA) cells and B-lymphocytes precursors agrees with the observed phenotype. We therefore conclude that Prep1 is required for a correct and complete hematopoiesis.  相似文献   

20.
Cell morphogenesis depends on polarized exocytosis. One widely held model posits that long-range transport and exocyst-dependent tethering of exocytic vesicles at the plasma membrane sequentially drive this process. Here, we describe that disruption of either actin-based long-range transport and microtubules or the exocyst did not abolish polarized growth in rod-shaped fission yeast cells. However, disruption of both actin cables and exocyst led to isotropic growth. Exocytic vesicles localized to cell tips in single mutants but were dispersed in double mutants. In contrast, a marker for active Cdc42, a major polarity landmark, localized to discreet cortical sites even in double mutants. Localization and photobleaching studies show that the exocyst subunits Sec6 and Sec8 localize to cell tips largely independently of the actin cytoskeleton, but in a cdc42 and phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2)–dependent manner. Thus in fission yeast long-range cytoskeletal transport and PIP2-dependent exocyst represent parallel morphogenetic modules downstream of Cdc42, raising the possibility of similar mechanisms in other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号