首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We investigated the claim (J. Daniel, J. Bacteriol. 157:940-941, 1984) that nonphosphorylated enzyme IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system is required for full synthesis of bacterial cyclic AMP (cAMP). In crp strains of Salmonella typhimurium, cAMP synthesis by intact cells was regulated by the phosphorylation state of enzyme IIIGlc. Introduction of either a pstHI deletion mutation or a crr::Tn10 mutation resulted in a low level of cAMP synthesis. In contrast, crp strains containing a leaky pstI mutation exhibited a high level of cAMP synthesis which was inhibited by phosphotransferase system carbohydrates. From these results, we conclude that phosphorylated enzyme IIIGlc rather than nonphosphorylated enzyme IIIGlc is required for full cAMP synthesis.  相似文献   

2.
In Salmonella typhimurium, glucose, mannose, and fructose are normally transported and phosphorylated by the phosphoenolpyruvate:sugar phosphotransferase system. We have investigated the transport of these sugars and their non-metabolizable analogs in mutant strains lacking the phospho-carrier proteins of the phosphoenolpyruvate:sugar phosphotransferase system, the enzymes I and HPr, to determine whether the sugar-specific, membrane-bound components of the phosphonenolpyruvate: sugar phosphotransferase system, the enzymes II, can catalyze the uptake of these sugars in the absence of phosphorylation. This process does not occur. We have also isolated mutant strains which lack enzyme I and HPr, but have regained the ability to grow on mannose or fructose. These mutants contained elevated levels of mannokinase (fructokinase). In addition, growth on mannose required constitutive synthesis of the galactose permease. When strains were constructed which lacked the galactose permease, they were unable to grow even on high concentrations of mannose, although elevated levels of mannokinase (fructokinase) were present. These results substantiate the conclusion that the enzymes II of the phosphoenolpyruvate:sugar phosphotransferase system are unable to carry out facilitated diffusion.  相似文献   

3.
Transport and phosphorylation of glucose via enzymes II-A/II-B and II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system are tightly coupled in Salmonella typhimurium. Mutant strains (pts) that lack the phosphorylating proteins of this system, enzyme I and HPr, are unable to transport or to grow on glucose. From ptsHI deletion strains of S. typhimurium, mutants were isolated that regained growth on and transport of glucose. Several lines of evidence suggest that these Glc+ mutants have an altered enzyme II-BGlc as follows. (i) Insertion of a ptsG::Tn10 mutation (resulting in a defective II-BGlc) abolished growth on and transport of glucose in these Glc+ strains. Introduction of a ptsM mutation, on the other hand, which abolishes II-A/II-B activity, had no effect. (ii) Methyl alpha-glucoside transport and phosphorylation (specific for II-BGlc) was lowered or absent in ptsH+,I+ transductants of these Glc+ strains. Transport and phosphorylation of other phosphoenolpyurate:sugar phosphotransferase system sugars were normal. (iii) Membranes isolated from these Glc+ mutants were unable to catalyze transphosphorylation of methyl alpha-glucoside by glucose 6-phosphate, but transphosphorylation of mannose by glucose 6-phosphate was normal. (iv) The mutation was in the ptsG gene or closely linked to it. We conclude that the altered enzyme II-BGlc has acquired the capacity to transport glucose in the absence of phosphoenolpyruvate:sugar phosphotransferase system-mediated phosphorylation. However, the affinity for glucose decreased at least 1,000-fold as compared to the wild-type strain. At the same time the mutated enzyme II-BGlc lost the ability to catalyze the phosphorylation of its substrates via IIIGlc.  相似文献   

4.
5.
Regulation of the synthesis of the proteins of the phosphoenolpyruvate:sugar phosphotransferase system was systematically studied in wild-type and mutant strains of Salmonella typhimurium and Escherichia coli. The results suggest that enzyme I and HPr as well as the glucose-specific and the mannose-specific enzymes II are synthesized by a mechanism which depends on (i) cyclic adenosine monophosphate and its receptor protein; (ii) extracellular inducer; (iii) the sugar-specific enzyme II complex which recognizes the inducing sugar; and (iv) the general energy-coupling proteins of the phosphotransferase system, enzyme I and HPr.  相似文献   

6.
A model for the regulation of the activity of Escherichia coli adenylate cyclase is presented. It is proposed that Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) interacts in a regulatory sense with the catalytic unit of adenylate cyclase. The phosphoenolpyruvate (PEP)-dependent phosphorylation of Enzyme I is assumed to be associated with a high activity state of adenylate cyclase. The pyruvate or sugar-dependent dephosphorylation of Enzyme I is correlated with a low activity state of adenylate cyclase. Evidence in support of the proposed model involves the observation that Enzyme I mutants have low cAMP levels and that PEP increases cellular cAMP levels and, under certain conditions, activates adenylate cyclase, Kinetic studies indicate that various ligands have opposing effects on adenylate cyclase. While PEP activates the enzyme, either glucose or pyruvate inhibit it. The unique relationships of PEP and Enzyme I to adenylate cyclase activity are discussed.  相似文献   

7.
Purified IIIGlc of the phosphoenolpyruvate:sugar phosphotransferase system of Salmonella typhimurium inhibits glycerol kinase. Phosphorylation of IIIGlc via phosphoenolpyruvate, enzyme I, and HPr abolishes this inhibition. The glycerol facilitator is not inhibited by IIIGlc. It is proposed that regulation of glycerol metabolism by the phosphoenolpyruvate:sugar phosphotransferase system is at the level of glycerol kinase.  相似文献   

8.
Several carbohydrate permease systems in Salmonella typhimurium and Escherichia coli are sensitive to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. Mutant Salmonella strains were isolated in which individual transport systems had been rendered insensitive to regulation by sugar substrates of the phosphotransferase system. In one such strain, glycerol uptake was insensitive to regulation; in another, the maltose transport system was resistant to inhibition; and in a third, the regulatory mutation specifically rendered the melibiose permease insensitive to regulation. An analogous mutation in E. coli abolished inhibition of the transport of beta-galactosides via the lactose permease system. The mutations were mapped near the genes which code for the affected transport proteins. The regulatory mutations rendered utilization of the particular carbohydrates resistant to inhibition and synthesis of the corresponding catabolic enzymes partially insensitive to repressive control by sugar substrates of the phosphotransferase system. Studies of repression of beta-galactosidase synthesis in E. coli were conducted with both lactose and isopropyl beta-thiogalactoside as exogenous sources of inducer. Employing high concentrations of isopropyl beta-thiogalactoside, repression of beta-galactosidase synthesis was not altered by the lactose-specific transport regulation-resistant mutation. By contrast, the more severe repression observed with lactose as the exogenous source of inducer was partially abolished by this regulatory mutation. The results support the conclusions that several transport systems, including the lactose permease system, are subject to allosteric regulation and that inhibition of inducer uptake is a primary cause of the repression of catabolic enzyme synthesis.  相似文献   

9.
The components and properties of a phosphoenolpyruvate: glucose phosphotransferase system are reviewed, along with the evidence implicating this system in sugar transport across bacterial membranes. Some possible physiological implications of sugar transport mediated by the phosphotransferase system are also considered.  相似文献   

10.
The transport of alpha-methylglucoside (MG) in the wild type cells of Escherichia coli K12 and the isogenic mutant strains, defective in the activity of phosphoenolpyruvate: sugar phosphotransferase system components was studied. It was shown that the enzyme IIB' in the absence of enzyme I and HPr is able to transport MG into the cells by a "facilitated" diffusion mechanism. Compounds which dissipate the energy of membrane protone potential such as NaN3, carbonylcyanide-m-chlorophenylhydrasone, dicyclohexylcarbodiimide, enhance the utilization of MG by the wild-type cells. However, the cells retaining intact enzyme IIB' but deficient in the phospho approximately HPr-generating system, were not sensitive to the action of poisons. The cells possessing the intact phospho HPr-generating system and inactive enzyme IIB' are also unaffected by the poisons. It seems that these results do not confirm the hypothesis of the direct delta mu H+ involvement in the regulation of transmembrane phosphorylation. The hypothesis is postulated that the energy metabolism inhibitors influence the phosphatase activity of factor III of the phosphotransferase system. The present data are well explained by this hypothesis.  相似文献   

11.
The overall stereochemical course of the reactions leading to the phosphorylation of methyl alpha-D-glucopyranoside by the glucose-specific enzyme II (enzyme IIGlc) of the Escherichia coli phosphotransferase system has been investigated. With [(R)-16O,17O,18O]phosphoenolpyruvate as the phosphoryl donor and in the presence of enzyme I, HPr, and enzyme IIIGlc of the phosphotransferase system, membranes from E. coli containing enzyme IIGlc catalyzed the formation of methyl alpha-D-glucopyranoside 6-phosphate with overall inversion of the configuration at phosphorus (with respect to phosphoenolpyruvate). It has previously been shown that sequential covalent transfer of the phosphoryl group of phosphoenolpyruvate to enzyme I, to HPr, and to enzyme IIIGlc occurs before the final transfer from phospho-enzyme IIIGlc to the sugar, catalyzed by enzyme IIGlc. Because overall inversion of the configuration of the chiral phospho group of phosphoenolpyruvate implies an odd number of transfer steps, the phospho group has been transferred at least five times, and transfer from phospho-enzyme IIIGlc to the sugar must occur in two steps (or a multiple thereof). On the basis that no membrane protein other than enzyme IIGlc is directly involved in the final phospho transfer steps, our results imply that a covalent phospho-enzyme IIGlc is an intermediate during transport and phosphorylation of glucose by the E. coli phosphotransferase system.  相似文献   

12.
The membrane-bound component of the phosphotransferase system of Escherichia coli, responsible for the phosphorylative uptake of methyl-alpha-D-glucoside has an essential thiol group which becomes available to inactivation by thiol reagents in the presence of the phosphate-accepting sugar or when phosphoenolpyruvate synthesis is inhibited. The form resistant to the thiol reagent requires not only the absence of sugar and an intact phosphoenolpyruvate generating system, but also an intact system generating phosphorylated Hpr which is impaired by heating of a thermosensitive enzyme I mutant.  相似文献   

13.
Inhibition of cellular adenylate cyclase activity by sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system was reliant on the activities of the protein components of this enzyme system and on a gene designated crrA. In bacterial strains containing very low enzyme I activity, inhibition could be elicited by nanomolar concentrations of sugar. An antagonistic effect between methyl alpha-glucoside and phosphoenolpyruvate was observed in permeabilized Escherichia coli cells containing normal activities of the phosphotransferase system enzymes. In contrast, phosphoenolpyruvate could not overcome the inhibitory effect of this sugar in strains deficient for enzyme I or HPr. Although the in vivo sensitivity of adenylate cyclase to inhibition correlated with sensitivity of carbohydrate permease function to inhibition in most strains studied, a few mutant strains were isolated in which sensitivity of carbohydrate uptake to inhibition was lost and sensitivity of adenylate cyclase to regulation was retained. These results are consistent with the conclusions that adenylate cyclase and the carbohydrate permeases were regulated by a common mechanism involving phosphorylation of a cellular constituent by the phosphotransferase system, but that bacterial cells possess mechanisms for selectively uncoupling carbohydrate transport from regulation.  相似文献   

14.
Adenylate cyclase and a number of carbohydrate transport systems are subject to regulation by the phosphoenolpyruvate:sugar phosphotransferase system. These sensitive carbohydrate transport systems are desensitized to regulation by the phosphotransferase system, and adenylate cyclase is deactivated when cells are grown in medium containing cyclic AMP. These effects are specific for cyclic AMP and are potentiated by the genetic loss of cyclic AMP phosphodiesterase. Inclusion in the growth medium of an inducer of a sensitive transport system also promotes desensitization of that particular transport system. Inducer-promoted desensitization is specific for the particular target transport system, while cyclic AMP-promoted desensitization is general and affects several systems. Desensitization of the permeases to regulation, and inactivation of adenylate cyclase, are slow processes which are blocked by chloramphenicol and are therefore presumably dependent on protein synthesis. Several sugar substrates of the phosphotransferase system are capable of regulating the sensitive carbohydrate transport systems. The evidence suggests that desensitization to this regulation does not result from a direct effect on the functioning of Enzyme I, a small heat-stable protein of the phosphotransferase system, HPr, or an Enzyme II of the phosphotransferase system, but specifically uncouples the permease systems from regulation.  相似文献   

15.
Expression of catabolite sensitive operons is repressed in E. coli mutants devoid of HPr--a component of glucose transport system. The ptsH mutants do not utilize the substrates for phosphoenolpyruvate dependent phosphotransferase system (PTS) except for fructose. Besides that, the mutants are deficient in utilization of many substrates entering the bacteria via the other transport systems. The ptsS mutation mapped in the region of the fructose regulon on the 46th min of the chromosomal map restores the growth of ptsH mutants on all substrates. The accumulation and PEP-dependent phosphorylation of proteins substrates of PTS is also restored. The synthesis of the fructose specific phosphotransferase system becomes constitutive under the effect of ptsS mutation. The mutation is supposed to impair the regulatory region of the fructose regulon.  相似文献   

16.
Defects in phosphotransferase chemotaxis in cya and cpd mutants previously cited as evidence of a cyclic GMP or cyclic AMP intermediate in signal transduction were not reproduced in a study of chemotaxis in Escherichia coli and Salmonella typhimurium. In cya mutants, which lack adenylate cyclase, the addition of cyclic AMP was required for synthesis of proteins that were necessary for phosphotransferase transport and chemotaxis. However, the induced cells retained normal phosphotransferase chemotaxis after cyclic AMP was removed. Phosphotransferase chemotaxis was normal in a cpd mutant of S. typhimurium that has elevated levels of cyclic GMP and cyclic AMP. S. typhimurium crr mutants are deficient in enzyme III glucose, which is a component of the glucose transport system, and a regulator of adenylate cyclase. After preincubation with cyclic AMP, the crr mutants were deficient in enzyme II glucose-mediated transport and chemotaxis, but other chemotactic responses were normal. It is concluded that cyclic GMP does not determine the frequency of tumbling and is probably not a component of the transduction pathway. The only known role of cyclic AMP is in the synthesis of some proteins that are subject to catabolite repression.  相似文献   

17.
The transport of fructose in Bacillus subtilis was studied in various mutant strains lacking the following activities: ATP-dependent fructokinase (fruC), the fructose 1-phosphate kinase (fruB) the phosphofructokinase (pfk), the enzyme I of the phosphoenolpyruvate phosphotransferase system (the thermosensitive mutation ptsI1), and a transport activity (fruA). Combinations of these mutations indicated that the transport of fructose in Bacillus subtilis is tightly coupled to its phosphorylation either in fructose 1-phosphate, identified in vivo and in vitro or in fructose 6-phosphate identified by indirect lines of evidence. These steps of fructose metabolism were shown to depend on the activity of the enzyme I of the phosphoenolpyruvate phosphotransferase systems. The fruA mutations affect the transport of fructose when the bacteria are submitted to catabolite repression. The mutations were localized on the chromosome of Bacillus subtilis in a cluster including the fruB gene. When grown in a medium supplemented by a mixture of potassium glutamate and succinate the fruA mutants are able to carry on the two vectorial metabolisms generating fructose 6-phosphate as well as fructose 1-phosphate. A negative search of strictly negative transport mutants in fruA strains indicated that more than two structural genes are involved in the transport of fructose.  相似文献   

18.
Summary We have studied the regulation of the synthesis and activity of a major galactose transport system, that of methyl -galactoside (MglP), in mutants of Salmonella typhimurium. Two classes of mutation that result in a (partially) defective phosphoenolpyruvate: sugar phosphotransferase system (PTS) interfere with MglP synthesis. pts mutations, which eliminate the general proteins of the PTS Enzyme I and/or HPr and crr mutations, which result in a defective glucose-specific factor IIIGle of the PTS, lead to a low MglP activity, as measured by methyl -galactoside transport. In both ptsH,I, and crr mutants the amount of galactose binding protein, one of the components of MglP, is only 5%–20% of that in wild-type cells, as measured with a specific antibody. We conclude that synthesis of MglP is inhibited in pts and crr mutants. Once the transport system is synthesized, its transport activity is not sensitive to PTS sugars (i.e., no inducer exclusion occurs). The defect in pts and crr mutants with respect to MglP synthesis can be relieved in two ways: by externally added cyclic adenosine 3, 5-monophosphate (cAMP) or by a mutation in the cAMP binding protein. The conclusion that MglP synthesis is dependent on cAMP is supported by the finding that its synthesis is also defective in mutants that lack adenylate cyclase. pts and crr mutations do not affect growth of S. typhimurium on galactose, however, since the synthesis and activity of the other major galactose transport system, the galactose permease (GalP), is not sensitive to these mutations. If the galactose permease is eliminated by mutation, growth of pts and crr mutants on low concentrations of galactose becomes very slow due to inhibited MglP synthesis. Residual growth observed at high galactose concentrations is the result of yet another transport system with low affinity for galactose.  相似文献   

19.
The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) includes a collection of proteins that accomplish phosphoryl transfer from phosphoenolpyruvate (PEP) to a sugar in the course of transport. The soluble proteins of the glucose transport pathway also function as regulators of diverse systems. The mechanism of interaction of the phosphoryl carrier proteins with each other as well as with their regulation targets has been amenable to study by nuclear magnetic resonance (NMR) spectroscopy. The three-dimensional solution structures of the complexes between the N-terminal domain of enzyme I and HPr and between HPr and enzyme IIA(Glc) have been elucidated. An analysis of the binding interfaces of HPr with enzyme I, IIA(Glc) and glycogen phosphorylase revealed that a common surface on HPr is involved in all these interactions. Similarly, a common surface on IIA(Glc) interacts with HPr, IIB(Glc) and glycerol kinase. Thus, there is a common motif for the protein-protein interactions characteristic of the PTS.  相似文献   

20.
Escherichia coli K-12 mutants lacking the adenosine 5'-monophosphate-activated pyruvate kinase have been isolated accidentally and used to prepare further mutants additionally devoid of the fructose bisphosphate-activated pyruvate kinase. Such double mutants totally devoid of pyruvate kinase activity still grow well under aerobic conditions on sugars that are catabolized by the phosphoenolpyruvate (PEP):sugar phosphotransferase system, but they grow poorly on non-phosphotransferase system sugars. This suggests that although pyruvate kinase plays a major role in the formation of pyruvate from PEP during growth on non-phosphotransferase system sugars, the operation of the PEP:sugar phosphotransferase system can contribute significantly to pyruvate production from PEP. In the absence of pyruvate kinase and an active PEP:sugar phosphotransferase system the methylglyoxal glycolytic bypass may also function to some extent for the formation of pyruvate during the catabolism of simple hexose sugars. No unique physiological role can yet be ascribed to the adenosine 5'-monophosphate-activated pyruvate kinase as a result of these studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号