首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mutations (cda) leading to non-production of the new calcium-dependent antibiotic (CDA) of Streptomyces coelicolor A3(2) were closely linked on the chromosome. One representative mutation (cda-1) was mapped precisely between nicA and adeC. No cosynthesis of CDA was found in any pairwise combinations of 14 cda mutants. Mutations lacking aerial mycelium (bald mutations), mapping to the four previously described loci (bldA-D), were pleiotropically defective in production of CDA.  相似文献   

4.
The SCO2837 open-reading frame is located within the conserved central core region of the Streptomyces coelicolor A3(2) genome, which contains genes required for essential cellular functions. SCO2837 protein (SCO2837p) expressed by Pichia pastoris is a copper metalloenzyme, catalyzing the oxidation of simple alcohols to aldehydes and reduction of dioxygen to hydrogen peroxide. Distinct optical absorption spectra are observed for oxidized and one-electron reduced holoenzyme, and a free radical EPR signal is present in the oxidized apoprotein, characteristic of the Tyr-Cys redox cofactor previously reported for fungal secretory radical copper oxidases, galactose oxidase and glyoxal oxidase, with which it shares weak sequence similarity. SCO2837p was detected in the growth medium of both S. coelicolor and a recombinant expression host (Streptomyces lividans TK64) by Western blotting, with the expression level dependent on the nature of the carbon source. This represents the first characterized example of a prokaryotic radical copper oxidase.  相似文献   

5.
Rifampicin-resistant mutants of Streptomyces coelicolor A3(2)   总被引:4,自引:0,他引:4  
  相似文献   

6.
Cloning of the galactokinase gene (galK) from Streptomyces coelicolor A3(2)   总被引:6,自引:0,他引:6  
Streptomyces coelicolor A3(2) and Streptomyces lividans 66 strains were shown to be sensitive to the galactose analogue 2-deoxy-D-galactose. Spontaneous resistant mutants were isolated that were Gal- and lacked the enzyme galactokinase. The galK gene (structural gene for galactokinase) from S. coelicolor was cloned into S. lividans using the low copy number vector pIJ922. The resulting plasmid (pMT650), which contained a 14 kb insert, complemented gal mutations in both species. The presence of the galK gene on a 2.8 kb EcoRI fragment was confirmed by expressing it in Escherichia coli where it complemented a well characterized galK mutation.  相似文献   

7.
SCO6571 protein from Streptomyces coelicolor A3(2) was overexpressed and purified using Rhodococcus erythropolis as an expressing host. Crystals of selenomethionine-substituted SCO6571 have been obtained by vapor diffusion method. SCO6571 crystals diffract to 2.3 A and were found to belong to the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters a = 84.5, b = 171.6, c = 184.8 A. Six molecules in the asymmetric unit give a crystal volume per protein mass (V(M)) of 2.97 A (3) Da(-1) and solvent content of 58.6 %. The structure was solved by the single wavelength anomalous diffraction (SAD) method. SCO6571 is a TIM-barrel fold protein that assembles into a hexameric molecule with D(3) symmetry.  相似文献   

8.
9.
10.
11.
12.
Resistance to erythromycin is genetically unstable in strains of Streptomyces coelicolor A3(2). The frequent loss of resistance as well as reversion of sensitive variants to the original unstable resistance phenotype excluded the possibility that plasmid elimination is involved. The spontaneous frequency of occurrence of sensitive clones was 0.14 to 1.5%, the rate of reversion ranging from 1.10(-6) to 1.10(-8). Resistance to erythromycin has been mapped on the chromosomes of two S. coelicolor A3(2) derivatives in different sites: between markers adeC (v 10) and ArgA1 in the strain A617, between pheA1 and SCP1 in the strain S18. It is suggested that genetic instability of erythromycin resistance determinants having chromosomal location is due to transposition of genetic material.  相似文献   

13.
Streptomyces coelicolor A32 produces a 35.6-kDa carbohydrate-binding protein (named CbpC) in the presence of cellobiose, cellulose or chitin as sole carbon source. The protein was found secreted (a typical signal sequence was present at the N-terminus) and linked to the peptidoglycan layer of the mycelia. At its C-terminal end a putative cell-wall sorting signal was identified, consisting of (1) Streptomyces specific recognition site for a transpeptidase (LAETG instead of generic LPXTP consensus), (2) a hydrophobic region and (3) a tail of positively charged residues. The deletion of this sorting signal abolished the cell-wall attachment because the resulting CbpC-form was found extracellular. After purification this protein was shown to interact strongly with crystalline cellulose; different crystalline chitin-forms were recognised moderately and chitosan not. As demonstrated by analysing further truncated CbpC-forms a glycine-aspartate/serine rich region, which separates the carbohydrate-binding module from the sorting signal, plays an important role in protein stability.  相似文献   

14.
New Sporulation Loci in Streptomyces coelicolor A3(2)   总被引:6,自引:0,他引:6       下载免费PDF全文
Sporulation mutants of Streptomyces coelicolor appear white because they are defective in the synthesis of the grey polyketide spore pigment, and such white (whi) mutants had been used to define eight sporulation loci, whiA, whiB, whiD, whiE, whiG, whiH, whiI, and whiJ (K. F. Chater, J. Gen. Microbiol. 72:9-28, 1972; N. J. Ryding, Ph.D. thesis, University of East Anglia, 1995). In an attempt to identify new whi loci, we mutagenized S. coelicolor M145 spores with nitrosoguanidine and identified 770 mutants with colonies ranging from white to medium grey. After excluding unstable strains, we examined the isolates by phase-contrast microscopy and chose 115 whi mutants with clear morphological phenotypes for further study. To exclude mutants representing cloned whi genes, self-transmissible SCP2*-derived plasmids carrying whiA, whiB, whiG, whiH, or whiJ (but not whiD, whiE, or whiI) were introduced into each mutant by conjugation, and strains in which the wild-type phenotype was restored either partially or completely by any of these plasmids were excluded from further analysis. In an attempt to complement some of the remaining 31 whi mutants, an SCP2* library of wild-type S. coelicolor chromosomal DNA was introduced into 19 of the mutants by conjugation. Clones restoring the wild-type phenotype to 12 of the 19 strains were isolated and found to represent five distinct loci, designated whiK, whiL, whiM, whiN, and whiO. Each of the five loci was located on the ordered cosmid library: whiL, whiM, whiN, and whiO occupied positions distinct from previously cloned whi genes; whiK was located on the same cosmid overlap as whiD, but the two loci were shown by complementation to be distinct. The phenotypes resulting from mutations at each of these new loci are described.  相似文献   

15.
RNA polymerase heterogeneity in Streptomyces coelicolor A3(2)   总被引:18,自引:3,他引:18  
  相似文献   

16.
The stringent response in Streptomyces coelicolor A3(2)   总被引:3,自引:0,他引:3  
  相似文献   

17.
The unstable feature of ristomycin resistance in S. coelicolor A3 (2) was studied. It was shown that the frequency of ristomycin-resistant derivatives was high in both chloramphenicol sensitive mutants and their resistant revertants. The 15- and 20-kb DNA sequences capable of amplifying were detected in the chloramphenicol resistant revertants. In the genomes of the studied strains they were represented by 50 and 40 copies, respectively.  相似文献   

18.
19.
SCO5059, encoded in Streptomyces coelicolor A3(2), was identified as a polyphosphate glucokinase. The K m values of SCO5059 for glucose and polyphosphate (poly(P)6) were estimated to be 12 and 4 µM, respectively, and the k cat value was 0.3 s?1 at pH 7.7 at 28 °C. SCO5059 homologs are highly conserved among Streptomyces, and can work as polyphosphate glucokinase as well.  相似文献   

20.
The genome sequence of Streptomyces coelicolor A3(2) contains more than 50 genes coding for putative lipolytic enzymes. Many studies have shown the capacity of this actinomycete to store important reserves of intracellular triacylglycerols in nutrient depletion situations. In the present study, we used genome mining of S. coelicolor to identify genes coding for putative, non-secreted esterases/lipases. Two genes were cloned and successfully overexpressed in E. coli as His-tagged fusion proteins. One of the recombinant enzymes, EstC, showed interesting cold-active esterase activity with a strong potential for the production of valuable esters. The purified enzyme displayed optimal activity at 35°C and was cold-active with retention of 25% relative activity at 10°C. Its optimal pH was 8.5–9 but the enzyme kept more than 75% of its maximal activity between pH 7.5 and 10. EstC also showed remarkable tolerance over a wide range of pH values, retaining almost full residual activity between pH 6–11. The enzyme was active toward short-chain p-nitrophenyl esters (C2–C12), displaying optimal activity with the valerate (C5) ester (k cat/K m = 737±77 s−1 mM−1). The enzyme was also very active toward short chain triglycerides such as triacetin (C2:0) and tributyrin (C4:0), in addition to showing good primary alcohol and organic solvent tolerance, suggesting it could function as an interesting candidate for organic synthesis of short-chain esters such as flavors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号