首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In mice and other sensitive species, PPARalpha mediates the induction of mitochondrial, microsomal, and peroxisomal fatty acid oxidation, peroxisome proliferation, liver enlargement, and tumors by peroxisome proliferators. In order to identify PPARalpha-responsive human genes, HepG2 cells were engineered to express PPARalpha at concentrations similar to mouse liver. This resulted in the dramatic induction of mRNAs encoding the mitochondrial HMG-CoA synthase and increases in fatty acyl-CoA synthetase (3-8-fold) and carnitine palmitoyl-CoA transferase IA (2-4-fold) mRNAs that were dependent on PPARalpha expression and enhanced by exposure to the PPARalpha agonist Wy14643. A PPAR response element was identified in the proximal promoter of the human HMG-CoA synthase gene that is functional in its native context. These data suggest that humans retain a capacity for PPARalpha regulation of mitochondrial fatty acid oxidation and ketogenesis. Human liver is refractory to peroxisome proliferation, and increased expression of mRNAs for the peroxisomal fatty acyl-CoA oxidase, bifunctional enzyme, or thiolase, which accompanies peroxisome proliferation in responsive species, was not evident following Wy14643 treatment of cells expressing elevated levels of PPARalpha. Additionally, no significant differences were seen for the expression of apolipoprotein AI, AII, or CIII; medium chain acyl-CoA dehydrogenase; or stearoyl-CoA desaturase mRNAs.  相似文献   

4.
Ligands of peroxisome proliferator-activated receptors (PPARs) come from a diverse group of chemicals that include pharmaceutical drugs, phthalate plasticizers, steroids, and pesticides. PPAR ligands exhibit a number of effects, including an ability to induce apoptosis in some systems. The mechanism(s) underlying the induction of apoptosis is not known. The current study examined the ability of Wy14643, a fibrate and PPARalpha agonist, and ciglitazone, a thiazolidinedione and PPARgamma agonist, to induce apoptosis as well as the production of oxidants in human Jurkat T cells that express all PPAR isoforms. Treatment with increasing doses of Wy14643 caused a substantial time-dependent increase in the overall oxidant status (as reflected by increased dichlorofluorescein fluorescence) of Jurkat cells without any change in viability except at the highest dose and longest time. Ciglitazone also caused a dose- and time-dependent increase in oxidant production. However, although the extent of this production was less than that seen with Wy14643, ciglitazone caused a dose- and time-dependent increase in apoptosis that could not be inhibited by antioxidants. Confocal micrographs of Jurkat cells loaded with dichlorofluorescein diacetate or dihydrorhodamine 123 and treated with Wy14643 or ciglitazone revealed a punctate pattern of fluorescence at early time points suggestive of a mitochondrial origin for these oxidants. Rotenone and antimycin A prevented Wy14643- but not ciglitazone-induced oxidant production. Other relatively specific PPARgamma agonists (15delta-PGJ2, and troglitazone), but not nonspecific agonists (bezafibrate and conjugated linoleic acid), were also able to induce oxidant production in Jurkat cells. These data, as well as the findings that oxidant production could be induced by Wy14643 in A549 cells that lack PPARalpha, and could not be blocked in Jurkat cells by the PPARalpha inhibitor MK886, indicate oxidant formation is unrelated to PPARalpha. These data also suggest that oxidant production induced by PPARalpha ligands originates in the mitochondria.  相似文献   

5.
6.
Characterization of the CYP4A11 gene,a second CYP4A gene in humans   总被引:2,自引:0,他引:2  
Comparison between the cDNA sequence of CYP4A11 and that deduced from a published genomic clone suggested the presence of an additional CYP4A gene in humans, CYP4A22. PCR amplification of genomic DNA yielded overlapping clones covering 13kb of genomic DNA and extending from 1003bp upstream from CYP4A11 translation initiation to 135bp upstream of the mRNA polyadenylation signal. Sequence and Southern blot analysis showed the presence in humans of two highly homologous CYP4A genes, CYP4A11 and CYP4A22. These two genes share 96% sequence identity and have similar intron/exon sizes and distribution. Short nucleotide insertions (< or =10bp) in introns 1, 3, 9, and 11, and deletions (< or =18bp) in introns 4, 6, and 11 differentiate the two genes. RT-PCR amplification of human kidney RNA followed by restriction fragment analysis showed that CYP4A11 is the predominant isoform expressed in kidney.  相似文献   

7.
8.
Sibutramine is a serotonin–norepine‐phrine reuptake inhibitor that was used for weight‐loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight‐loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine.  相似文献   

9.
10.
J Xu  J Wang  Y Hu  J Qian  B Xu  H Chen  W Zou  J-Y Fang 《Cell death & disease》2014,5(3):e1108
Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes.  相似文献   

11.
Retinoid x receptor alpha (RXRalpha) serves as an active partner of peroxisome proliferator-activated receptor (PPARalpha). In order to dissect the functional role of RXRalpha and PPARalpha in PPARalpha-mediated pathways, the hepatocyte RXRalpha-deficient mice have been challenged with physiological and pharmacological stresses, fasting and Wy14,643, respectively. The data demonstrate that RXRalpha and PPARalpha deficiency are different in several aspects. At the basal untreated level, RXRalpha deficiency resulted in marked induction of apolipoprotein A-I and C-III (apoA-I and apoC-III) mRNA levels and serum cholesterol and triglyceride levels, which was not found in PPARalpha-null mice. Fasting-induced PPARalpha activation was drastically prevented in the absence of hepatocyte RXRalpha. Wy14,643-mediated pleiotropic effects were also altered due to the absence of hepatocyte RXRalpha. Hepatocyte RXRalpha deficiency did not change the basal acyl-CoA oxidase, medium chain acyl-CoA dehydrogenase, and malic enzyme mRNA levels. However, the inducibility of those genes by Wy14,643 was markedly reduced in the mutant mouse livers. In contrast, the basal cytochrome P450 4A1, liver fatty acid-binding protein, and apoA-I and apoC-III mRNA levels were significantly altered in the mutant mouse livers, but the regulatory effect of Wy14,643 on expression of those genes remained the same. Wy14,643-induced hepatomegaly was partially inhibited in hepatocyte RXRalpha-deficient mice. Wy14,643-induced hepatocyte peroxisome proliferation was preserved in the absence of hepatocyte RXRalpha. These data suggested that in comparison to PPARalpha, hepatocyte RXRalpha has its unique role in lipid homeostasis and that the effect of RXRalpha, -beta, and -gamma is redundant in certain aspects.  相似文献   

12.
Glucuronidation, a major metabolic pathway for a large variety of endobiotics and xenobiotics, is catalyzed by enzymes belonging to the UDP-glucuronosyltransferase (UGT) family. Among UGT enzymes, UGT2B4 conjugates a large variety of endogenous and exogenous molecules and is considered to be the major bile acid conjugating UGT enzyme in human liver. In the present study, we identify UGT2B4 as a novel target gene of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR alpha), which mediates the hypolipidemic action of fibrates. Incubation of human hepatocytes or hepatoblastoma HepG2 and Huh7 cells with synthetic PPAR alpha agonists, fenofibric acid, or Wy 14643 resulted in an increase of UGT2B4 mRNA levels. Furthermore, treatment of HepG2 cells with Wy 14643 induced the glucuronidation of hyodeoxycholic acid, a specific bile acid UGT2B4 substrate. Analysis of UGT2B mRNA and protein levels in PPAR alpha wild type and null mice revealed that PPAR alpha regulates both basal and fibrate-induced expression of these enzymes in rodents also. Finally, a PPAR response element was identified in the UGT2B4 promoter by site-directed mutagenesis and electromobility shift assays. These results demonstrate that PPAR alpha agonists may control the catabolism of cytotoxic bile acids and reinforce recent data indicating that PPAR alpha, which has been largely implicated in the control of lipid and cholesterol metabolism, is also an important modulator of the metabolism of endobiotics and xenobiotics in human hepatocytes.  相似文献   

13.
Rat brown adipocytes express mRNAs for Uncoupling Proteins (UCP) 1, 2 and 3 and the Peroxisome Proliferator Activated Receptors (PPAR) alpha and gamma. We have examined the effects of selective PPARalpha or -gamma activation on changes in UCP-1 and UCP-3 mRNA levels in cultured fetal rat brown adipocytes (FBA). Rosiglitazone (1.0 microM), a selective PPARgamma agonist, elicited 5- and 3-fold increases in UCP-1 and UCP-3, respectively. The PPARalpha ligand, Wy14643 (10.0 microM) increased UCP-3 tenfold, but decreased UCP-1. A synergistic effect on UCP-3 expression (30-fold increase; P < 0. 05) was observed when FBA were exposed to a combination of Wy14643 (10.0 microM) and rosiglitazone (10.0 microM). Thus, activation of PPARgamma increases UCP-1 and UCP-3 levels which are differentially regulated by PPARalpha. A synergistic interaction occurs between PPARalpha and PPARgamma in the regulation of UCP-3 in FBA, probably via co-activator recruitment, suppression of co-repressor proteins or through a direct interaction at the level of the PPRE.  相似文献   

14.
Interaction between foods and drugs is an important consideration in pharmaceutical therapy. Therefore, here, we examined the suppressive effects of the extracts from seven edible herbs on the induction of CYP3A4 gene expression in rifampicin-treated HepG2 cells. We evaluated the structure and suppressive activity of the most effective active compound isolated from dried peppermint (Mentha piperita L.). The structure of the compound was identified as that of pheophorbide a based on spectroscopic data. It suppressed the induction of CYP3A4 mRNA expression by rifampicin in a dose-dependent manner. Quantitative high-performance liquid chromatography showed that 2 g of dry leaves 0.43 mg in one cup of peppermint tea. These findings demonstrate that pheophorbide a suppresses the induction of CYP3A4 mRNA expression in rifampicin-treated HepG2 cells. Pheophorbide is known to cause photosensitivity. However, the effective dose of pheophorbide a that had a suppressive effect was very low, indicating a high safety margin.

Abbreviations: DAD: diode array detector; DMEM: Dulbecco’s modified Eagle's medium; ELISA: enzyme-linked immunosorbent assay; HPLC: high-performance liquid chromatography; PCR: polymerase chain reaction; PXR: pregnane X receptor; CAR: constitutive androstane receptor; AHR: aryl hydrocarbon receptor; TLC: thin-layer chromatography  相似文献   


15.
CYP3A4 and CYP3A7 mRNA expression levels were markedly up-regulated by dexamethasone (DEX), but not by rifampicin (RIF). CYP3A5 mRNA level was not increased significantly by DEX, RIF, or phenobarbital. Testosterone 6beta-hydroxylase activity was induced to about 2-fold of control by DEX. However, concomitant treatment with RIF did not alter DEX-mediated induction of CYP3A mRNA expression and testosterone 6beta-hydroxylase activity. DEX-mediated induction of CYP3A mRNA was suppressed in a dose-dependent manner by RU486, a glucocorticoid receptor (GR) antagonist. At 5microM RU486, DEX-mediated induction of CYP3A4, CYP3A5, and CYP3A7 mRNA expression was inhibited almost completely. These results suggest that, in human fetal hepatocytes, PXR is not involved in DEX-mediated induction of CYP3A4 and CYP3A7, and that the induction is mediated directly by GR.  相似文献   

16.
Cytochrome P450 2C9 (CYP2C9) expression is regulated by multiple nuclear receptors including the constitutive androstane receptor (CAR) and pregnane X receptor (PXR). We compared coregulation of CYP2C9 with CYP2B6 and CYP3A4, prototypical target genes for human CAR and PXR using human hepatocyte cultures treated for three days with the PXR activators clotrimazole, rifampin, and ritonavir; the CAR/PXR activator phenobarbital (PB); and the CAR‐selective agonists CITCO, (6‐(4‐chlorophenyl)imidazo[2,1‐β][1,3]thiazole‐5‐carbaldehyde‐O‐(3,4‐dichlorobenzyl)oxime) and phenytoin. Clotrimazole, rifampin, ritonavir, phenytoin, and phenobarbital induced CYP2C9 consistent with previous findings for CYP3A4. We observed EC50 values of 519 μM (phenobarbital), 11 μM (phenytoin), and 0.75 μM (rifampin), similar to those for CYP3A4 induction. Avasimibe, a potent PXR activator, produced nearly identical concentration‐dependent CYP2C9 and CYP3A4 activity profiles and EC50 values. In 17 donors, rifampin increased mean basal CYP2C9 activity from 59 ± 43 to 143 ± 68 pmol/mg protein/min; fold induction ranged from 1.4‐ to 6.4‐fold. Enzyme activity and mRNA measurements after rifampin, CITCO and PB treatment demonstrated potency and efficacy consistent with CYP2C9 regulation being analogous to CYP3A4 rather than CYP2B6. We demonstrate that hepatic CYP2C9 is differentially regulated by agonists of CAR and PXR, and despite sharing common regulatory mechanisms with CYP3A4 and CYP2B6; this enzyme exhibits an induction profile more closely aligned with that of CYP3A4. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:43–58, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20264  相似文献   

17.
Exposure of rats to peroxisome proliferators induces members of the cytochrome P450 4A (CYP4A) family. In rats, the CYP4A family consists of four related genes, CYP4A1, CYP4A2, CYP4A3, and CYP4A8. We are specifically interested in examining CYP4A1, CYP4A2, and CYP4A3, each of which is expressed in a tissue-dependent and sex-dependent manner. While CYP4A1 is sufficiently different from the other two members to enable relatively easy specific quantitation, the close similarity between CYP4A2 and CYP4A3 makes quantitative discrimination difficult. We have combined a fluorescent real-time PCR assay (TaqMan) with the sequence-specific mismatch amplification mutation assay (MAMA) to allow us to carry out specific quantitation of all three members of this family. The assay is designed such that a single fluorescent TaqMan(R) probe binds to all three gene products, while specificity is conferred by sequence-specific primers. This specific MAMA technique takes advantage of the ability of Taq polymerase to distinguish between the two cDNAs based on mismatches at the 3' end of a PCR primer. In the 84-base PCR product used for this assay, there is only a single-base difference between CYP4A2 and CYP4A3. Despite this similarity, there is at least a 1000-fold discrimination between the two sequences, using CYP4A2 or CYP4A3 specific standards. Analysis of rat liver RNA from both sexes demonstrates that this discrimination is also achieved in complex RNA mixtures. This technique should be broadly applicable to other areas of research such as allelic discrimination, detecting mutational hotspots in tumors, and discrimination among closely related members of other gene families.  相似文献   

18.
Clopidogrel is a prodrug used widely as a platelet aggregation inhibitor. After intestinal absorption, approximately 90% is converted to inactive clopidogrel carboxylate and 10% via a two-step procedure to the active metabolite containing a mercapto group. Hepatotoxicity is a rare but potentially serious adverse reaction associated with clopidogrel. The aim of this study was to find out the mechanisms and susceptibility factors for clopidogrel-associated hepatotoxicity. In primary human hepatocytes, clopidogrel (10 and 100 μM) was cytotoxic only after cytochrome P450 (CYP) induction by rifampicin. Clopidogrel (10 and 100 μM) was also toxic for HepG2 cells expressing human CYP3A4 (HepG2/CYP3A4) and HepG2 cells co-incubated with CYP3A4 supersomes (HepG2/CYP3A4 supersome), but not for wild-type HepG2 cells (HepG2/wt). Clopidogrel (100 μM) decreased the cellular glutathione content in HepG2/CYP3A4 supersome and triggered an oxidative stress reaction (10 and 100 µM) in HepG2/CYP3A4, but not in HepG2/wt. Glutathione depletion significantly increased the cytotoxicity of clopidogrel (10 and 100 µM) in HepG2/CYP3A4 supersome. Co-incubation with 1 μM ketoconazole or 10 mM glutathione almost completely prevented the cytotoxic effect of clopidogrel in HepG2/CYP3A4 and HepG2/CYP3A4 supersome. HepG2/CYP3A4 incubated with 100 μM clopidogrel showed mitochondrial damage and cytochrome c release, eventually promoting apoptosis and/or necrosis. In contrast to clopidogrel, clopidogrel carboxylate was not toxic for HepG2/wt or HepG2/CYP3A4 up to 100 µM. In conclusion, clopidogrel incubated with CYP3A4 is associated with the formation of metabolites that are toxic for hepatocytes and can be trapped by glutathione. High CYP3A4 activity and low cellular glutathione stores may be risk factors for clopidogrel-associated hepatocellular toxicity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号