首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis.  相似文献   

2.
3.
B Beall  M Lowe    J Lutkenhaus 《Journal of bacteriology》1988,170(10):4855-4864
The Bacillus subtilis homolog of the Escherichia coli ftsZ gene was isolated by screening a B. subtilis genomic library with anti-E. coli FtsZ antiserum. DNA sequence analysis of a 4-kilobase region revealed three open reading frames. One of these coded for a protein that was about 50% homologous to the E. coli FtsZ protein. The open reading frame just upstream of ftsZ coded for a protein that was 34% homologous to the E. coli FtsA protein. The open reading frames flanking these two B. subtilis genes showed no relationship to those found in E. coli. Expression of the B. subtilis ftsZ and ftsA genes in E. coli was lethal, since neither of these genes could be cloned on plasmid vectors unless promoter sequences were first removed. Cloning the B. subtilis ftsZ gene under the control of the lac promoter resulted in an IPTGs phenotype that could be suppressed by overproduction of E. coli FtsZ. These genes mapped at 135 degrees on the B. subtilis genetic map near previously identified cell division mutations.  相似文献   

4.
5.
A cluster of Bacillus subtilis fatty acid synthetic genes was isolated by complementation of an Escherichia coli fabD mutant encoding a thermosensitive malonyl coenzyme A-acyl carrier protein transacylase. The B. subtilis genomic segment contains genes that encode three fatty acid synthetic proteins, malonyl coenzyme A-acyl carrier protein transacylase (fabD), 3-ketoacyl-acyl carrier protein reductase (fabG), and the N-terminal 14 amino acid residues of acyl carrier protein (acpP). Also present is a sequence that encodes a homolog of E. coli plsX, a gene that plays a poorly understood role in phospholipid synthesis. The B. subtilis plsX gene weakly complemented an E. coli plsX mutant. The order of genes in the cluster is plsX fabD fabG acpP, the same order found in E. coli, except that in E. coli the fabH gene lies between plsX and fabD. The absence of fabH in the B. subtilis cluster is consistent with the different fatty acid compositions of the two organisms. The amino acid sequence of B. subtilis acyl carrier protein was obtained by sequencing the purified protein, and the sequence obtained strongly resembled that of E. coli acyl carrier protein, except that most of the protein retained the initiating methionine residue. The B. subtilis fab cluster was mapped to the 135 to 145 degrees region of the chromosome.  相似文献   

6.
Two recombinant plasmids, pSNL1 and pSNL2, carrying structural genes for L-arabinose utilization were isolated from a Bacillus subtilis gene library. Both plasmids complemented araD mutations in a Rec- B. subtilis strain and in Escherichia coli. Moreover, pSNL1 also complemented araB mutations in both species and efficiently transformed araA Rec+ B. subtilis strains to Ara+. Detailed physical mapping of both plasmids in addition to transformation experiments involving defined restriction fragments from the pSNL1 insert unambiguously determined the gene order to be araD, araB, and araA, an order different from that found in E. coli.  相似文献   

7.
Two regions involved in catechol biosynthesis (cbs) of Erwinia carotovora W3C105 were cloned by functional complementation of Escherichia coli mutants that were deficient in the biosynthesis of the catechol siderophore enterobactin (ent). A 4.3-kb region of genomic DNA of E. carotovora complemented the entB402 mutation of E. coli. A second genomic region of 12.8 kb complemented entD, entC147, entE405, and entA403 mutations of E. coli. Although functions encoded by catechol biosynthesis genes (cbsA, cbsB, cbsC, cbsD, and cbsE) of E. carotovora were interchangeable with those encoded by corresponding enterobactin biosynthesis genes (entA, entB, entC, entD, and entE), only cbsE hybridized to its functional counterpart (entE) in E. coli. The cbsEA region of E. carotovora W3C105 hybridized to genomic DNA of 21 diverse strains of E. carotovora but did not hybridize to that of a chrysobactin-producing strain of Erwinia chrysanthemi. Strains of E. carotovora fell into nine groups on the basis of sizes of restriction fragments that hybridized to the cbsEA region, indicating that catechol biosynthesis genes were highly polymorphic among strains of E. carotovora.  相似文献   

8.
The genes that encode the two subunits of Bacillus subtilis phenylalanyl-tRNA synthetase were cloned from alpha lambda library of chromosomal B. subtilis DNA by specific complementation of a thermosensitive Escherichia coli pheS mutation. Both genes (we named them pheS and pheT, analogous to the corresponding genes of E. coli) are carried by a 6.6-kilobase-pair PstI fragment which also complements E. coli pheT mutations. This fragment directs the synthesis of two proteins identical in size to the purified alpha and beta subunits of the phenylalanyl-tRNA synthetase of B. subtilis with Mrs of 42,000 and 97,000, respectively. A recombinant shuttle plasmid carrying the genes caused 10-fold overproduction of functional phenylalanyl-tRNA synthetase in B. subtilis.  相似文献   

9.
10.
11.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

12.
13.
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene.  相似文献   

14.
The genes ptsI and ptsH, which encode, respectively, enzyme I and Hpr, cytoplasmic proteins involved in the phosphoenolpyruvate:sugar phosphotransferase system, were cloned from Bacillus subtilis. A plasmid containing a 4.1-kilobase DNA fragment was shown to complement Escherichia coli mutations affecting the ptsH and ptsI genes. In minicells this plasmid expressed two proteins with the molecular weights expected for Hpr and enzyme I. Therefore, ptsH and ptsI are adjacent in B. subtilis, as in E. coli. In E. coli a third gene (crr), involved in glucose translocation and also in catabolite repression, is located downstream from the ptsHI operon. The 4.1-kilobase fragment from B. subtilis was shown to contain a gene that enables an E. coli crr mutant to use glucose. This gene, unlike the E. coli crr gene, was located to the left of ptsH.  相似文献   

15.
The Bacillus subtilis birA gene, which regulates biotin biosynthesis, has been cloned and characterized. The birA gene maps at 202 degrees on the B. subtilis chromosome and encodes a 36,200-Da protein that is 27% identical to Escherichia coli BirA protein. Three independent mutations in birA that lead to deregulation of biotin synthesis alter single amino acids in the amino-terminal end of the protein. The amino-terminal region that is affected by these three birA mutations shows sequence similarity to the helix-turn-helix DNA binding motif previously identified in E. coli BirA protein. B. subtilis BirA protein also possesses biotin-protein ligase activity, as judged by its ability to complement a conditional lethal birA mutant of E. coli.  相似文献   

16.
The structural relationship between the transfer ribonucleic acid (tRNA) and the ribosomal RNA (rRNA) genes of Bacillus subtilis has been studied by restriction endonuclease analysis of total chromosomal deoxyribonucleic acid (DNA) and characterization of DNA fragments cloned in Escherichia coli. The DNA sequences encoding rRNA and tRNA were assayed by hybridization to radioactive RNA. The results support the conclusion that the tRNA genes are interspersed between and closely linked to the rRNA genes of B. subtilis. They probably do not appear between the 16S and 23S rRNA genes as in E. coli.  相似文献   

17.
18.
Chromosomal insertions defining Bordetella bronchiseptica siderophore phenotypic complementation group III mutants BRM3 and BRM5 were found to reside approximately 200 to 300 bp apart by restriction mapping of cloned genomic regions associated with the insertion markers. DNA hybridization analysis using B. bronchiseptica genomic DNA sequences flanking the cloned BRM3 insertion marker identified homologous Bordetella pertussis UT25 cosmids that complemented the siderophore biosynthesis defect of the group III B. bronchiseptica mutants. Subcloning and complementation analysis localized the complementing activity to a 2.8-kb B. pertussis genomic DNA region. Nucleotide sequencing identified an open reading frame predicted to encode a polypeptide exhibiting strong similarity at the primary amino acid level with several pyridoxal phosphate-dependent amino acid decarboxylases. Alcaligin production was fully restored to group III mutants by supplementation of iron-depleted culture media with putrescine (1,4-diaminobutane), consistent with defects in an ornithine decarboxylase activity required for alcaligin siderophore biosynthesis. Concordantly, the alcaligin biosynthesis defect of BRM3 was functionally complemented by the heterologous Escherichia coli speC gene encoding an ornithine decarboxylase activity. Enzyme assays confirmed that group III B. bronchiseptica siderophore-deficient mutants lack an ornithine decarboxylase activity required for the biosynthesis of alcaligin. Siderophore production by an analogous mutant of B. pertussis constructed by allelic exchange was undetectable. We propose the designation odc for the gene defined by these mutations that abrogate alcaligin siderophore production. Putrescine is an essential precursor of alcaligin in Bordetella spp.  相似文献   

19.
Histidine biosynthesis genes in Lactococcus lactis subsp. lactis.   总被引:9,自引:5,他引:4       下载免费PDF全文
The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases.  相似文献   

20.
We quantitated the induction of the Bacillus subtilis Rec protein (the analog of Escherichia coli RecA protein) and the B. subtilis din-22 operon (representative of a set of DNA damage-inducible operons in B. subtilis) following DNA damage in Rec+ and DNA repair-deficient strains. After exposure to mitomycin C or UV irradiation, each of four distinct rec (recA1, recB2, recE4, and recM13) mutations reduced to the same extent the rates of both Rec protein induction (determined by densitometric scanning of immunoblot transfers) and din-22 operon induction (determined by assaying beta-galactosidase activity in din-22::Tn917-lacZ fusion strains). The induction deficiencies in recA1 and recE4 strains were partially complemented by the E. coli RecA protein, which was expressed on a plasmid in B. subtilis; the E. coli RecA protein had no effect on either induction event in Rec+, recB2, or recM13 strains. These results suggest that (i) the expression of both the B. subtilis Rec protein and the din-22 operon share a common regulatory component, (ii) the recA1 and recE4 mutations affect the regulation and/or activity of the B. subtilis Rec protein, and (iii) an SOS regulatory system like the E. coli system is highly conserved in B. subtilis. We also showed that the basal level of B. subtilis Rec protein is about 4,500 molecules per cell and that maximum induction by DNA damage causes an approximately fivefold increase in the rate of Rec protein accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号