首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New blue whale ovarian corpora data from illegal Soviet catches in the Southern Hemisphere and northern Indian Ocean were recovered from the original logbooks. Catches north of 52°S were assumed to be pygmy blue whales ( Balaenoptera musculus brevicauda , n = 1,272); those south of 56°S were assumed to be Antarctic (true) blue whales ( B. m. intermedia , n = 153). Three probable Antarctic blue whales north of 52°S were excluded. Lengths at which 50% and 95% of females become sexually mature ( L 50 and L 95) were estimated from a Bayesian logistic model. These estimates are more precise than previous Japanese estimates because Soviet catches below the legal minimum of 70 ft (21.3 m) were 32 times greater. For pygmy blue whales L 50 was 19.2 m (95% interval 19.1–19.3 m) and L 95 was 20.5 m (95% interval 20.4–20.7 m). Antarctic L 50 (23.4 m, 95% interval 22.9–23.9 m) was much longer than L 50 for pygmy blue whale regions (18.4–19.9 m). The median L 50 for the northern Indian Ocean was 0.5–0.6 m shorter than for pygmy blue whales from other regions; although statistically significant, these small length differences provide little support for northern Indian Ocean blue whales being a separate subspecies, B. m. indica .  相似文献   

2.
Pygmy blue whales ( Balaenoptera musculus brevicauda ) are ≤24.1 m and are generally found north of 52°S in summer, whereas the more southerly Antarctic blue whales ( B. m. intermedia ) may exceed 30 m. Previous assessments have assumed that catches and recent surveys south of 60°S recorded Antarctic blue whales, but these may have included pygmy blue whales. Here, we use ovarian corpora, which accumulate with ovulations and hence with length, to separate these subspecies. The resulting Bayesian mixture model, applied to 1,380 Northern Region (north of 52°S and 35°–180°E) and 3,844 Southern Ocean (south of 52°S) blue whales, estimated that only 0.1% (95% credibility intervals 0.0%–0.4%) of the Antarctic region blue whales were pygmy blue whales and, unexpectedly, found significantly lower lifetime ovulation counts for pygmy blue whales than for Antarctic blue whales (7.6 vs . 13.6). Over four decades, despite substantial depletion of Antarctic blue whales, there was no trend in the estimated proportion of pygmy blue whales in the Antarctic. Several lines of investigation found no evidence for sizeable numbers of pygmy blue whales in ovarian corpora data collected in the 1930s, as was previously hypothesized.  相似文献   

3.
In the Southern Hemisphere, blue whales are currently divided into two subspecies, Antarctic blue whales (Balaenoptera musculus intermedia) and pygmy blue whales (B. m. brevicauda), but there is some debate about whether Chilean blue whales should also be considered as a separate subspecies. Here, we provide novel morphometric data to directly address this taxonomic question from a biological survey of 60 blue whales taken during the 1965/1966 Chilean whaling season. The data show that maximum body length and mean body length of both sexually mature females and males for Chilean blue whales are intermediate between pygmy and Antarctic blue whales; and that fluke-anus lengths of Chilean blue whales are significantly different from pygmy blue whales, but not necessarily from Antarctic blue whales. There is also some support from the data that snout-eye measurements are different among all three groups. These data provide further confirmation that Chilean blue whales are a distinct population requiring separate management from other blue whale populations, and are also consistent with suggestions that Chilean blue whales are not the same subspecies as pygmy blue whales.  相似文献   

4.
Understanding the degree of genetic exchange between subspecies and populations is vital for the appropriate management of endangered species. Blue whales (Balaenoptera musculus) have two recognized Southern Hemisphere subspecies that show differences in geographic distribution, morphology, vocalizations and genetics. During the austral summer feeding season, the Antarctic blue whale (B. m. intermedia) is found in polar waters and the pygmy blue whale (B. m. brevicauda) in temperate waters. Here, we genetically analyzed samples collected during the feeding season to report on several cases of hybridization between the two recognized blue whale Southern Hemisphere subspecies in a previously unconfirmed sympatric area off Antarctica. This means the pygmy blue whales using waters off Antarctica may migrate and then breed during the austral winter with the Antarctic subspecies. Alternatively, the subspecies may interbreed off Antarctica outside the expected austral winter breeding season. The genetically estimated recent migration rates from the pygmy to Antarctic subspecies were greater than estimates of evolutionary migration rates and previous estimates based on morphology of whaling catches. This discrepancy may be due to differences in the methods or an increase in the proportion of pygmy blue whales off Antarctica within the last four decades. Potential causes for the latter are whaling, anthropogenic climate change or a combination of these and may have led to hybridization between the subspecies. Our findings challenge the current knowledge about the breeding behaviour of the world's largest animal and provide key information that can be incorporated into management and conservation practices for this endangered species.  相似文献   

5.
EVIDENCE FOR INCREASES IN ANTARCTIC BLUE WHALES BASED ON BAYESIAN MODELLING   总被引:2,自引:1,他引:1  
Antarctic blue whales ( Balaenoptera musculus intermedia ) are the largest and formerly most abundant blue whale subspecies, but were hunted to near extinction last century. Estimated whaling mortality was unsustainable from 1928 to 1972 (except during 1942–1944), depleting them from 239,000 (95% interval 202,000–311,000) to a low of 360 (150–840) in 1973. Obtaining statistical evidence for subsequent increases has proved difficult due to their scarcity. We fitted Bayesian models to three sighting series (1968–2001), constraining maximum rates of increase to 12% per annum. These models indicated that Antarctic blue whales are increasing at a mean rate of 7.3% per annum (1.4%–11.6%). Informative priors based on blue whale biology (4.3%, SD = 1.9%) and a Bayesian hierarchical meta-analysis of increase rates in other blue whale populations (−3%, SD = 11.6%), suggest plausible increase rates are lower (although the latter has wide intervals), but a meta-analysis of other mysticetes obtains similar rates of increase (6.7%, SD = 4.0%). Possible biases affecting the input abundance estimates are discussed. Although Antarctic blue whales appear to have been increasing since Sovier illegal whaling ended in 1972, they still need to be protected-their estimated 1996 population size, 1,700 (860–2,900), was just 0.7% (0.3%–1.3%) of the pre-exploitation level.  相似文献   

6.
Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp) are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four “acoustic populations” occur. Three of these are pygmy blue whale (B.m. brevicauda) populations while the fourth is the Antarctic blue whale (B.m. intermedia). Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.  相似文献   

7.
  • 1 Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of ≥8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings.
  • 2 Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar.
  • 3 Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering.
  • 4 Compared with historical catches, the Antarctic (‘true’) subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic.
  • 5 Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales.
  • 6 South‐east Pacific blue whales have a discrete distribution and high sighting rates compared with the Antarctic. Further work is needed to clarify their subspecific status given their distinctive genetics, acoustics and length frequencies.
  • 7 Antarctic blue whales numbered 1700 (95% Bayesian interval 860–2900) in 1996 (less than 1% of original levels), but are increasing at 7.3% per annum (95% Bayesian interval 1.4–11.6%). The status of other populations in the Southern Hemisphere and northern Indian Ocean is unknown because few abundance estimates are available, but higher recent sighting rates suggest that they are less depleted than Antarctic blue whales.
  相似文献   

8.
A school of 41 sperm whales, Physeter macrocephalus , that stranded near the mouth of the Siuslaw River, Oregon (43°59'N, 124°08'W), on 16 June 1979 consisted of 13 males and 28 females. Their ages were estimated by assuming that each postnatal dentin layer represents one year. The males were all sub-adults, 9.3–11.5 m long and 14–21 yr old. The females were 9.3–11.4 m long, and 11 to about 58 yr old. Ten females were dissected; nine were sexually mature and three were carrying fetuses 2.64–4.62 m long. None of the 28 females was visibly lactating.  相似文献   

9.
The worldwide distribution of blue whales (Balaenoptera musculus) has not prevented this species from becoming endangered due to twentieth century whaling. In Australia there are two known feeding aggregations of blue whales, which most likely are the pygmy subspecies (B. m. brevicauda). It is unknown whether individuals from these feeding aggregations belong to one breeding stock, or multiple breeding stocks that either share or occupy separate feeding grounds. This was investigated using ten microsatellite loci and mitochondrial DNA control region sequences (N = 110). Both sets of markers revealed no significant genetic structure, suggesting that these whales are likely to belong to the same breeding stock.  相似文献   

10.
The occurrence of dwarf minke whales (Balaenoptera acutorostrata subsp.) around the Antarctic Peninsula was examined based on 406 sightings of minke whales recorded during the Chilean Antarctic Scientific Expeditions and other opportunistic cetacean surveys. Identification of the species was made only for the whales sighted in the proximity of the vessels when the specific diagnostic characters could be confirmed. Of the 406 sightings, 296 were assigned to Antarctic (519 individuals), nine (11 individuals) to dwarf and 101 to unidentified minke whales (149 individuals). Dwarf minke whales were identified by the reported external diagnostic characters for this species. Seven animals occurred around the South Shetland Island and four in the Gerlache Strait. In addition, another two animals were identified as dwarf minke whales in the Bellinghausen Sea in winter 1993, being these the most southern records for this species. These results confirm the occurrence of dwarf minke whales around the Antarctic Peninsula during the summer seasons, as well as in the Bellinghausen Sea in winter. The geographical range of these sightings was comprised between 61°03′ and 69°25′S and between 55°29′ and 86°53′W. These results also suggest that some dwarf minke whales remain in the Antarctic during the austral winter.  相似文献   

11.
The sequence of the mitochondrial control region was determined in all 10 extant species commonly assigned to the suborder Mysticeti (baleen or whalebone whales) and to two odontocete (toothed whale) species (the sperm and the pygmy sperm whale). In the mysticetes, both the length and the sequence of the control region were very similar, with differences occurring primarily in the first approximately 160 bp of the 5' end of the L-strand of the region. There were marked differences between the mysticete and sperm whale sequences and also between the two sperm whales. The control region, less its variable portion, was used in a comparison including the 10 mysticete sequences plus the same region of an Antarctic minke whale specimen and the two sperm whales. The difference between the minke whales from the North Atlantic and the Antarctic was greater than that between any acknowledged species belonging to the same genus (Balaenoptera). The difference was similar to that between the families Balaenopteridae (rorquals) and Eschrichtiidae (gray whales). The findings suggest that the Antarctic minke whale should have a full species status, B. bonaerensis. Parsimony analysis separated the bowhead and the right whale (family Balaenidae) from all remaining mysticetes, including the pygmy right whale. The pygmy right whale is usually included in family Balaenidae. The analysis revealed a close relationship between the gray whale (family Eschrichtiidae) sequence and those of the rorquals (family Balaenopteridae). The gray whale was included in a clade together with the sei, Bryde's, fin, blue, and humpback whales. This clade was separated from the two minke whale types, which branched together.   相似文献   

12.
Logbook data from California shore whaling stations at Moss Landing (1919–1922 and 1924) and Trinidad (1920 and 1922–1926) are analyzed. The logs for the two stations record the taking of 2,111 whales, including 1,871 humpbacks, 177 fin whales, 26 sei whales, 3 blue whales, 12 sperm whales, 7 gray whales, 1 right whale, 1 Baird's beaked whale, and 13 whales of unspecified type (probably humpbacks). Most whales were taken from spring to autumn, but catches were made in all months of some years. The sex ratios of humpback, fin, and sei whales (the three species with sufficient sample sizes to test) did not differ from parity. Primary prey, determined from stomach contents, included sardines and euphausiids for both humpback and fin whales, and 'plankton' (probably euphausiids) for sei whales. The prevalence of pregnancy was 0.46 among mature female humpbacks and 0.43 among mature female fin whales, although these values are reported with caution. Information on length distribution for all species is summarized. Analysis of the catch data for this and other areas supports the current view that humpback whales along the west coast of the continental United States comprise a single feeding stock and also suggests that the present population is well below pre-exploitation levels.  相似文献   

13.
Many aspects of blue whale biology are poorly understood. Some of the gaps in our knowledge, such as those regarding their basic taxonomy and seasonal movements, directly affect our ability to monitor and manage blue whale populations. As a step towards filling in some of these gaps, microsatellite and mtDNA sequence analyses were conducted on blue whale samples from the Southern Hemisphere, the eastern tropical Pacific (ETP) and the northeast Pacific. The results indicate that the ETP is differentially used by blue whales from the northern and southern eastern Pacific, with the former showing stronger affinity to the region off Central America known as the Costa Rican Dome, and the latter favouring the waters of Peru and Ecuador. Although the pattern of genetic variation throughout the Southern Hemisphere is compatible with the recently proposed subspecies status of Chilean blue whales, some discrepancies remain between catch lengths and lengths from aerial photography, and not all blue whales in Chilean waters can be assumed to be of this type. Also, the range of the proposed Chilean subspecies, which extends to the Galapagos region of the ETP, at least seasonally, perhaps should include the Costa Rican Dome and the eastern North Pacific as well.  相似文献   

14.
Unusually low genetic diversity can be a warning of an urgent need to mitigate causative anthropogenic activities. However, current low levels of genetic diversity in a population could also be due to natural historical events, including recent evolutionary divergence, or long-term persistence at a small population size. Here, we determine whether the relatively low genetic diversity of pygmy blue whales (Balaenoptera musculus brevicauda) in Australia is due to natural causes or overexploitation. We apply recently developed analytical approaches in the largest genetic dataset ever compiled to study blue whales (297 samples collected after whaling and representing lineages from Australia, Antarctica and Chile). We find that low levels of genetic diversity in Australia are due to a natural founder event from Antarctic blue whales (Balaenoptera musculus intermedia) that occurred around the Last Glacial Maximum, followed by evolutionary divergence. Historical climate change has therefore driven the evolution of blue whales into genetically, phenotypically and behaviourally distinct lineages that will likely be influenced by future climate change.  相似文献   

15.
DNA sequences of the mitochondrial control region of 180 North Atlantic right whales ( Euhalaena glacialis ) and 16 South Atlantic right whales ( E. australis ) have been determined using a combination of direct DNA sequencing and single stranded conformation polymorphism (SSCP) analysis. Five haplotypes were found in E. glacialis , and 10 in E. australis , but none were shared, supporting the reproductive isolation and separate species status of the North and South Atlantic right whales. One haplotype in E, glacialis was found in only three males born before 1982 and this matriline will likely be lost soon. The nucleotide diversity estimates for the five North Atlantic right whale haplotypes was 0.6% and 2.0% for the 10 haplotypes found in the South Atlantic right whales. The average haplotypic diversity was 0.87 in E. glacialis and 0.96 in E. australis , which is consistent with other studies showing a lower level of genetic variation in the North Atlantic right whale. Phylogenetic analysis identified two major assemblages of haplotypes in E. australis from the samples collected from Peninsula Valdes, suggesting a mixing of two historically divergent populations. Using genetic distance measurements with a divergence rate of 0.5%–1.0%/myr, we estimate E. glacialis diverged from E. australis 3–12.5 mya.  相似文献   

16.
The Indian Ocean is an area in which a rich suite of cetacean fauna, including at least two subspecies of blue whale, is found; yet little information beyond stranding data and short‐term surveys for this species is available. Pygmy blue whale (Balaenoptera musculus spp.) call data are presented that provide novel information on the seasonal and geographic distribution of these animals. Acoustic data were recorded from January 2002 to December 2003 by hydrophones at three stations of the International Monitoring System, including two near the subequatorial Diego Garcia Atoll and a third southwest of Cape Leeuwin, Australia. Automated spectrogram correlation methods were used to scan for call types attributed to pygmy blue whales. Sri Lanka calls were the most common and were detected year‐round off Diego Garcia. Madagascar calls were only recorded on the northern Diego Garcia hydrophone during May and July, whereas Australia calls were only recorded at Cape Leeuwin, between December and June. Differences in geographic and seasonal patterns of these three distinct call types suggest that they may represent separate acoustic populations of pygmy blue whales and that these “acoustic populations” should be considered when assessing conservation needs of blue whales in the Indian Ocean.  相似文献   

17.
Mitochondrial DNA control region sequences were analyzed to investigate population structure and possible migratory links of common minke whales (Balaenoptera acutorostrata) in two ocean basins: western South Atlantic (WSA) and western South Pacific (WSP). The results of several different phylogenetic estimations consistently grouped all haplotypes but one (n = 1) from these two ocean basins into two separate clades. South and North Atlantic haplotypes were more closely related to each other than either was to haplotypes from the WSP. The interpopulation genetic distance between WSA and WSP whales was similar to that reported between North Pacific and North Atlantic common minke whales (0.0234). The migration rate between the two ocean basins was estimated at near-zero using MDIV. The genetic evidence presented here was consistent with the hypothesis of migratory links among Brazil, Chilean Patagonia and the Antarctic Peninsula, and between low-latitude and Antarctic waters of the WSP. The results suggest multiple populations of common minke whales in the Southern Hemisphere, which may have conservation as well as taxonomic implications. Our single locus results should be corroborated by additional analyses in a larger number of samples and at more genetic markers.  相似文献   

18.
Blue whales (Balaenoptera musculus) were among the most intensively exploited species of whales in the world. As a consequence of this intense exploitation, blue whale sightings off the coast of Chile were uncommon by the end of the 20th century. In 2004, a feeding and nursing ground was reported in southern Chile (SCh). With the aim to investigate the genetic identity and relationship of these Chilean blue whales to those in other Southern Hemisphere areas, 60 biopsy samples were collected from blue whales in SCh between 2003 and 2009. These samples were genotyped at seven microsatellite loci and the mitochondrial control region was sequenced, allowing us to identify 52 individuals. To investigate the genetic identity of this suspected remnant population, we compared these 52 individuals to blue whales from Antarctica (ANT, n = 96), Northern Chile (NCh, n = 19) and the eastern tropical Pacific (ETP, n = 31). No significant differentiation in haplotype frequencies (mtDNA) or among genotypes (nDNA) was found between SCh, NCh and ETP, while significant differences were found between those three areas and Antarctica for both the mitochondrial and microsatellite analyses. Our results suggest at least two breeding population units or subspecies exist, which is also supported by other lines of evidence such as morphometrics and acoustics. The lack of differences detected between SCh/NCh/ETP areas supports the hypothesis that eastern South Pacific blue whales are using the ETP area as a possible breeding area. Considering the small population sizes previously reported for the SCh area, additional conservation measures and monitoring of this population should be developed and prioritized.  相似文献   

19.
Five mass strandings of Pilot whales, involving from 23 to 40 animals, occurred on the British coast between 1982 and 1985. The sex ratio in all strandings was biased towards females (62% overall), but more than one mature male was present in each group. A multi-male, polygynous social system is suggested. Growth is rapid from a mean body length at birth of 1.78 m to about 3 m at 2–3 years. Thereafter, males grow faster than females and attain a greater body length by some 18–25%. Maximum body lengths in this study were of a 6.3 m male and a 5.5 m female. The greatest ages determined were of a 20-year-old male and a 25-year-old female, but there is a possibility that readable dentine is not deposited in the teeth of older animals and that some whales are thus of a greater age than can be detected. Females become sexually mature at about seven years of age and a body length of 3–4 m. Some reach sexual senility before death. Males mature at a greater age and at about 5 m in length. Annual calf production is about 11% and no seasonality in parturition could be detected. Pollutant levels are generally within the range of those published for odontocetes, but PCB levels are higher than any yet found in other Pilot whale populations. Evidence of squid was found in three digestive tracts. Blubber thickness increases with the size of the animal, reaching 35–65 mm in adults. The existence of an annual, rigid north-south migrational pattern is unlikely.  相似文献   

20.
Understanding species distribution and behavior is essential for conservation programs of migratory species with recovering populations. The critically endangered Antarctic blue whale (Balaenoptera musculus intermedia) was heavily exploited during the whaling era. Because of their low numbers, highly migratory behavior, and occurrence in remote areas, their distribution and range are not fully understood, particularly in the southwest Pacific Ocean. This is the first Antarctic blue whale study covering the southwest Pacific Ocean region from temperate to tropical waters (32°S to 15°S). Passive acoustic data were recorded between 2010 and 2011 across the southwest Pacific (SWPO) and southeast Indian (SEIO) oceans. We detected Antarctic blue whale calls in previously undocumented SWPO locations off eastern Australia (32°S, 152°E) and within the Lau Basin (20°S, 176°W and 15°S, 173°W), and SEIO off northwest Australia (19°S, 115°E).In temperate waters, adjacent ocean basins had similar seasonal occurrence, in that calling Antarctic blue whales were present for long periods, almost year round in some areas. In northern tropical waters, calling whales were mostly present during the austral winter. Clarifying the occurrence and distribution of critically endangered species is fundamental for monitoring population recovery, marine protected area planning, and in mitigating anthropogenic threats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号