首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J P Cooper  P J Hagerman 《Biochemistry》1990,29(39):9261-9268
Nonradiative fluorescence energy transfer (FET) is thought to be a highly sensitive measure of distance, occurring through a dipole coupling (Forster) mechanism in which the efficiency of FET depends on the inverse sixth power of the distance between fluorophores. The current work assesses the utility of FET for measuring distances in duplex and branched DNA molecules. The apparent efficiencies of FET between donor (fluorescein) and acceptor (eosin) fluorophores attached to opposite ends of oligonucleotide duplexes of varying length were determined; the results suggest that FET is a useful qualitative indicator of distance in DNA molecules. However, the apparent FET efficiency values cannot be fit to the Forster equation without the specification of highly extended DNA-to-fluorophore tethers and motionally restricted fluorophores, conditions that are unlikely to coexist. Three other lines of evidence further suggest that factors in addition to Forster transfer contribute to apparent FET in DNA: (1) The efficiency of FET appears to depend on the base sequence in some instances. (2) Donor fluorescence changes with the extent of thermally induced DNA melting in a sequence-dependent fashion, indicating dye-DNA interactions. (3) The distances between the ends of various pairwise combinations of arms of a DNA four-way junction do not vary as much as expected from previous work. Thus, the occurrence of any nondipolar effects on energy transfer in oligonucleotide systems must be defined before distances in DNA molecules can be quantified by using FET.  相似文献   

2.
A novel technique for modelling intramolecular energy transfer is presented. Brownian dynamics calculations are used to compute the trajectories of donor and acceptor species, and the instantaneous orientation factor is calculated during each temporal iteration. In this work, several model systems are considered. Trajectories were computed for energy transfer between a flexible donor and a rigidly fixed acceptor. We have considered configurations where the donor is, (1) tethered to a fixed point in space, but free to diffuse rotationally, and (2) constrained to wobble in a cone. The luminescence decay of the donor is ‘measured’, and a non-single-exponential decay is observed for configurations of efficient energy transfer. Luminescence anisotropy measurements of constrained and unconstrained donors reflect the contribution of both energy transfer and rotational diffusion to the shape of the anisotropy decay curve.  相似文献   

3.
Resonance energy transfer (RET) is typically limited to distances below 60 A, which can be too short for some biomedical assays. We examined a new method for increasing the RET distances by placing donor- and acceptor-labeled DNA oligomers between two slides coated with metallic silver particles. A N,N'-(dipropyl)-tetramethylindocarbocyanine donor and a N,N'-(dipropyl)-tetramethylindodicarbocyanine acceptor were covalently bound to opposite 5' ends of complementary 23 base pair DNA oligomers. The transfer efficiency was 25% in the absence of silver particles or if only one slide was silvered, and it increased to an average value near 64% between two silvered slides. The average value of the Forster distance increased from 58 to 77 A. The energy transfer data were analyzed with a model assuming two populations of donor-acceptor pairs: unaffected and affected by silver island films. In an affected fraction of about 28%, the apparent energy transfer efficiency is near 87% and the Forster distance increases to 119 A. These results suggest the use of metallic silver particles to increase the distances over which RET occurs in biomedical and biotechnology assays.  相似文献   

4.
The effect of ruthenium on the performance of porphyrin dye and porphyrin–fullerene (PF) dyad solar cells is investigated by using density functional theory and time-dependant density functional theory calculations. The results reveal that ruthenium facilitates rapid electron injection from porphyrin to fullerene, narrows the band gaps of porphyrin dye and PF dyad and alters the density of states near the corresponding Fermi levels. The HOMOs are localised on the donor moieties and the LUMOs on the acceptor moieties. The donor and acceptor dyads form good donor–acceptor pairs for photo-to-current conversion under the effect of ruthenium. HOMOs of porphyrin and ruthenium metalloporphyrin dyes fall within the (TiO2)60 and Ti38O76 gaps, and support the issue of typical interfacial electron transfer reaction. The calculated transition energies of porphyrin are almost insensitive to ethanol solvent effects. The introduction of ruthenium to the porphyrin ring leads to more active nonlinear optical performance, stronger response to the external electric field and induces higher photo-to-current conversion efficiency. Moreover, ruthenium shifts the absorption bands of porphyrin and makes it a potential candidate for harvesting light for photovoltaic applications.  相似文献   

5.
Fluorescence energy transfer is potentially a useful technique for obtaining structural and dynamic information on duplex and branched DNA molecules suitably labeled with donor and acceptor dyes. We have assessed the accuracy and limitations of FET measurements in nucleic acids with respect to the localization of the dyes and the flexibility of the dye-DNA linkages. A nine base-pair duplex oligonucleotide was synthesized with donor and acceptor dyes linked at the opposing 5' termini by alkyl chains. A careful analysis of the fluorescence decay of the donor revealed that the donor-acceptor distance in this molecule was not well defined, but was described by a rather broad distribution. The mean donor-acceptor distance and the distribution of distances have been recovered from the donor decay. Orientational effects on energy transfer have been included in the analysis. The implications of these findings for FET measurements in nucleic acids are considered.  相似文献   

6.
J V Mersol  H Wang  A Gafni    D G Steel 《Biophysical journal》1992,61(6):1647-1655
Dipole-dipole energy transfer between suitable donor and acceptor chromophores is an important luminescence quenching mechanism and has been shown to be useful for distance determination at the molecular level. In the rapid diffusion limit, where the excited-state lifetime of the donor is long enough to allow the donor and acceptor to diffuse many times their average separation before deexcitation, it is usually assumed that the relative dipolar orientation is completely averaged due to rotational Brownian motion. Under this simplifying assumption, analytical expressions have been derived earlier for the energy transfer rate between donor and acceptor characterized by different geometries. Most such expressions, however, are only approximate because complete angular averaging is permitted only in a geometry that possesses spherical symmetry surrounding each chromophore. In this paper analytical expressions that correctly account for incomplete angle averaging due to steric hindrance are presented for several geometries. Each of the equations reveals a dependence of the energy transfer rate on chromophore orientation. It is shown that correctly accounting for this effect can lead to improvements in estimates of the distance of closest approach from measured quenching rates based on energy transfer experiments.  相似文献   

7.
We examined the effects of metallic silver particles on resonance energy transfer (RET) between fluorophores covalently bound to DNA. A coumarin donor and a Cy3 acceptor were positioned at opposite ends of a 23-bp double helical DNA oligomer. In the absence of silver particles the extent of RET is near 9%, consistent with a Forster distance R(0) near 50 A and a donor to acceptor distance near 75 A. The transfer efficiency increased when the solution of AMCA-DNA-Cy3 was placed between two quartz plates coated with silver island films to near 64%, as determined by both steady-state and time-resolved measurements. The apparent R(0) in the presence of silver island films increases to about 110 A. These values of the transfer efficiency and R(0) represent weighted averages for donor-acceptor pairs near and distant from the metallic surfaces, so that the values at an optimal distance are likely to be larger. The increased energy transfer is observed only between two sandwiched silvered slides. When we replaced one silvered slide with a quartz plate the effect vanished. Also, the increased energy transfer was not observed for silvered slides separated more than a few micrometers. These results suggest the use of metal-enhanced RET in PCR, hybridization, and other DNA assays, and the possibility of controlling energy transfer by the distance between silver surfaces.  相似文献   

8.
A series DNA helices of twenty-four base pairs has been prepared for the study of fluorescence resonance energy transfer. Each of the DNA helices contains two phosphorothioate diesters (one in each strand) at pre-selected sites for introduction of the desired donor and acceptor fluorophores. The phosphorothioate-containing oligodeoxynucleotides have been prepared as pure Rp or Sp derivatives or as deastereomeric mixtures. Fluorescein and eosin are employed as the respective donor and acceptor fluorophores. A series of donor-acceptor pairs was generated by labeling of the appropriate phosphorothioate diester with the desired fluorophore and annealing the two complementary DNA strands (one containing the acceptor and one containing the donor fluorophore) to form the double-stranded helix. The 24-mer helices containing two covalently attached fluorophores exhibited some thermal destabilization and the extent of this destabilization was dependent upon the stereochemical orientation of the fluorophore. The Sp derivatives direct the fluorophore out, away from the the DNA helix, while the Rp derivatives direct the fluorophore toward the major groove. As expected, the Sp labeled duplexes were more stable than the corresponding Rp labeled sequences. However, all of the duplex structures formed were stable under the conditions used to measure energy transfer. Energy transfer could be observed with these complexes from the quenching of the donor fluorescence in the presence of the acceptor fluorophore. Using F?rster's theories, distances separating the fluorophores could be calculated that were generally in reasonable agreement with the distances expected in an idealized B-form DNA helix. However anomalous results were obtained for one donor/acceptor pair where the expected distance was less than 20 A. Fluorescence anisotropy values determined in solutions of varying viscosity were quite high suggesting that the fluorophores did not experience complete freedom of movement when attached to the DNA helix.  相似文献   

9.
BACKGROUND: Modern drug discovery has been based on high-throughput screening using whole-cell assays. A prominent role has been assigned to the reporter gene technology based on a beta-lactamase and the fluorogenic substrate CCF2. Successful application of this technology requires fluorescence-activated cell sorting. We describe the preparation and characterization of calibration beads for sorting cells expressing the beta-lactamase gene using the CCF2 substrate. METHODS: To model Forster resonance energy transfer (FRET) between the coumarin donor and the fluorescein acceptor of the CCF2 reporting dye, we used activated polystyrene beads with primary amino groups. Donor and acceptor fluorophores were attached to the beads at different ratios via succinimidyl esters. The beads were characterized with a fluorescence plate reader and a flow cytometer. RESULTS: We prepared polystyrene beads with five different ratios of donor and acceptor fluorophores and beads that carried a donor or a receptor fluorophore alone. Fluorescence measurements demonstrated that the prepared beads well represent the FRET of CCF2 substrate. CONCLUSION: We have demonstrated that the prepared beads can be successfully used for the setup of fluorescence-activated cell sorting to sort cells with CCF2 reporter substrate and the beta-lactamase reporter gene.  相似文献   

10.
Fluorescence resonance energy transfer on DNA has been studied for the estimation of distances between specific sites. Two kind of fluorophores, donor and acceptor, were incorporated on double-stranded DNA via phosphorothioate linkage (Sp, Rp, or racemic mixture). The thermal stability of labeled DNA's was slightly dependent on the stereochemical orientation of fluorophore, however all of the duplex structures were stable under the conditions for fluorescence study. The distances between donor and acceptor fluorophores, estimated from fluorescence energy transfer, generally agreed with the expected distance in a B-type DNA for the limiting distance.  相似文献   

11.
The location of chicken erythrocyte H5 histone relative to the axis the 30 nm chromatin fibre axis has been investigated by diffusion-enhanced energy transfer. In this investigation, a neutral lanthanide chelate as donor and a fluorescent probe specific to H5 as acceptor have been used. The acceptor probe consists of H5 antibody Fab' fragment, which has been labeled with 5-iodoacetamidofluorescein (5-IAF). Using H5 fragments we have shown by ELISA that the antibodies recognized the N- and C-terminal ends of this histone. A neutral chelate of terbium (TbHED3A) was chosen as a suitable donor for energy transfer with IAF-labelled Fab' (Fab'-IAF) bound to H5 in various chromatin structures. The ionic strength dependence of the energy transfer from TbHED3A to chromatin-bound Fab'-IAF was used to estimate the accessibility and the location of the Fab' in chromatin. The rate constants for energy transfer, obtained from the lifetimes of the TbHED3A excited state in presence and absence of acceptor, indicated a decrease in transfer efficiency upon increase of salt concentration from 5 to 80 mM NaCl. This can be correlated with the chromatin folding occurring in this ionic strength range and is consistent with the location of at least some of the N and C-termini of H5 within the condensed chromatin structure.  相似文献   

12.
Fluorescence energy transfer is widely used for determination of intramolecular distances in macromolecules. The time dependence of the rate of energy transfer is a function of the donor/acceptor distance distribution and fluctuations between the various conformations which may occur during the lifetime of the excited state. Previous attempts to recover both distance distributions and segmental diffusion from time-resolved experiments have been unsuccessful due to the extreme correlation between fitting parameters. A method has been developed, based on global analysis of both donor and acceptor fluorescence decay curves, which overcomes this extreme cross-correlation and allows the parameters of the equilibrium distance distributions and intramolecular diffusion constants to be recovered with high statistical significance and accuracy. Simulation studies of typical intramolecular energy transfer experiments reveal that both static and dynamic conformational distribution information can thus be obtained at a single temperature and viscosity.  相似文献   

13.
Biochemical reactions involving electron transfer between substrates or enzyme cofactors are both common and physiologically important; they have been studied by means of a variety of techniques. In this paper we review the application of photochemical methods to the study of intramolecular electron transfer in hemoproteins, thus selecting a small, well-defined sector of this otherwise enormous field. Photoexcitation of the heme populates short-lived excited states which decay by thermal conversion and do not usually transfer electrons, even when a suitable electron acceptor is readily available, e.g., in the form of a second oxidized heme group in the same protein; because of this, the experimental setup demands some manipulation of the hemoprotein. In this paper we review three approaches that have been studied in detail: (i) the covalent conjugation to the protein moiety of an organic ruthenium complex, which serves as the photoexcitable electron donor (in this case the heme acts as the electron acceptor); (ii) the replacement of the heme group with a phosphorescent metal-substituted porphyrin, which on photoexcitation populates long-lived excited states, capable of acting as electron donors (clearly the protein must contain some other cofactor acting as the electron acceptor, most often a second heme group in the oxidized state); (iii) the combination of the reduced heme with CO (the photochemical breakdown of the iron-CO bond yields transiently the ground-state reduced heme which is able to transfer one electron (or a fraction of it) to an oxidized electron acceptor in the protein; this method uses a "mixed-valence hybrid" state of the redox active hemoprotein and has the great advantage of populating on photoexcitation an electron donor at physiological redox potential).  相似文献   

14.
Liu L  Wei G  Liu Z  He Z  Xiao S  Wang Q 《Bioconjugate chemistry》2008,19(2):574-579
A fluorescence resonance energy transfer (FRET) model using two-photon excitable small organic molecule DMAHAS as energy donor has been constructed and tried in an assay for avidin. In the FRET model, biotin was conjugated to the FRET donor, and avidin was labeled with a dark quencher DABS-Cl. Binding of DABS-Cl labeled avidin to biotinylated DMAHAS resulted in the quenching of fluorescence emission of the donor, based on which a competitive assay for free avidin was established. With using such donors that are excited in IR region, it is capable of overcoming some primary shortcomings of conventional one-photon FRET methods, especially in bioassays, such as the interference from background fluorescence or scattering light, the coexcitation of the energy acceptor with the donor. And such small molecules also show advantages over inorganic up-converting particles that also give anti-Stokes photoluminescence and have been applied as FRET donor recently. The results of this work suggest that two-photon excitable small molecules could be a promising energy donor for FRET-based bioassays.  相似文献   

15.
Unconjugated bilirubin (bilirubin-IX alpha), the hydrophobic end product of heme degradation, is esterified in the hepatocyte endoplasmic reticulum to water-soluble conjugates prior to excretion in bile. To characterize the process of intracellular bilirubin transport, the kinetic and thermodynamic activation parameters for the spontaneous transfer of bilirubin between small unilamellar egg lecithin vesicles were determined. Bilirubin-IX alpha was added to donor vesicles labeled with the fluorescent phospholipid probe, (5-(dimethylamino)naphthalene-1-sulfonyl) dipalmitoyl-L-alpha-phosphatidylethanolamine (dansyl-PE). When bound to the donor vesicles, bilirubin quenches the dansyl probe fluorescence through resonance energy transfer. The movement of bilirubin from dansyl-labeled donor vesicles to unlabeled acceptor vesicles was monitored directly by the reemergence of dansyl fluorescence over time. Vesicle fusion and intervesicle transfer of the dansyl-PE probe were excluded by quasielastic light scattering and fluorescence resonance energy transfer studies. Stopped-flow analysis demonstrated that the transfer of bilirubin was described by a single-exponential function with a mean half-time of 2.0 +/- 0.1 ms (+/- SD) at 37 degrees C. The rate of bilirubin transfer was independent of acceptor vesicle concentration and decreased with increasing buffer ionic strength, indicating that intermembrane transfer occurred via aqueous diffusion, rather than vesicle collisions. The free energy of activation (delta G++) for the dissociation of bilirubin from donor vesicles was 14.2 kcal.mol-1. These studies suggest that bilirubin is associated with phospholipid bilayers at the membrane-water interface. We postulate that the movement of unconjugated bilirubin between intracellular membranes occurs via spontaneous transfer through the aqueous phase.  相似文献   

16.
A general model is developed to simulate dipole-dipole resonance energy transfer in spatially restricted systems. At low concentrations of acceptor molecule, the overall quantum yield of a donor population can be defined quantitatively in terms of transfer to multiple defined acceptor regions. Energy transfer at higher acceptor concentrations can be approximated by assuming an exponential dependence of relative quantum yield on the acceptor concentrations. Through geometrical manipulations, this algorithm has been applied using an electronic calculator to systems in which donor-acceptor interaction is limited by unique steric restriction on donor and acceptor distribution within lipid aggregates. The systems that have been analyzed include monomolecular films, bilayer membranes, small cliscoidal lipid-protein complexes and plasma lipoproteins. The observed energy transfer from N-(2-naphthyl)-23.24-dinor-5-cholen-22-amide-3β-ol to N-dansyldimyristoylphosphatidyl-ethanolamine in a dimyristoylphosphatidylcholine bilayer agrees with that predicted by this model.  相似文献   

17.
We describe practical aspects of photobleaching fluorescence energy transfer measurements on individual living cells. The method introduced by T. M. Jovin and co-workers (see, most recently, Kubitscheck et al. 1993. Biophys. J. 64:110) is based on the reduced rate of irreversible photobleaching of donor fluorophores when acceptor fluorophores are present. Measuring differences in donor photobleaching rates on cells labeled with donor only (fluorescein isothiocyanate-conjugated proteins) and with both donor and acceptor (tetramethylrhodamine-conjugated proteins) allows calculation of the fluorescence energy transfer efficiency. We assess possible methods of data analysis in light of the underlying processes of photobleaching and energy transfer and suggest optimum strategies for this purpose. Single murine B lymphocytes binding various ratios of donor and acceptor conjugates of tetravalent concanavalin A (Con A) and divalent succinyl Con A were examined for interlectin energy transfer by these methods. For Con A, a maximum transfer efficiency of 0.49 +/- 0.02 was observed. Under similar conditions flow cytometric measurements of donor quenching yielded a value of 0.54 +/- 0.03. For succinyl Con A, the maximum transfer efficiency was 0.36. To provide concrete examples of quantities arising in such energy transfer determinations, we present examples of individual cell data and kinetic analyses, population rate constant distributions, and error estimates for the various quantities involved.  相似文献   

18.
Structurally controlled zinc porphyrin-anthracene dyads, syn-arranged 1 and anti-arranged 2, were newly synthesized employing a diarylurea linkage, and the excitation energy transfer (EET) from the anthracene to the zinc porphyrin chromophore was investigated by steady-state fluorescence emission spectroscopy as well as fluorescence lifetime measurement, especially focusing on the effect of the chromophoric orientation on the EET. In both of the dyads, intramolecular EET was facilitated upon excitation of the anthracene chromophore (lamda(ex)= 401 nm), and the zinc porphyrin S1-S0 emission (580-720 nm) was enhanced. The EET in the syn-arranged dyad 1 was more efficient than in the anti-arranged 2: the S1-S0 emission in 1 was 1.8 times larger than that in the zinc porphyrin reference compound 3, whereas that in 2 was enhanced by 1.6 times, compared to that in 3. In the fluorescence lifetime measurement, the quiet short-lived component assignable to the EET was observed for the dyads 1 and 2 beyond the analysis limit (<25 ps). The EET rate constants in the dyads 1 and 2 were estimated as not less than 4.0 x 10(10) s-1. However, in the case of 2, the residual long-lived component assigned to the anthracene emission was also observed at 425 nm. These results showed that the syn-arrangement of the zinc porphyrin and anthracene chromophores was more preferred for intramolecular EET to the anti-arrangement.  相似文献   

19.
A lipid transfer protein, purified from bovine brain (23.7 kDa, 208 amino acids) and specific for glycolipids, has been used to develop a fluorescence resonance energy transfer assay (anthrylvinyl-labeled lipids; energy donors and perylenoyl-labeled lipids; energy acceptors) for monitoring the transfer of lipids between membranes. Small unilamellar vesicles composed of 1 mol% anthrylvinyl-galactosylceramide, 1.5 mol% perylenoyl-triglyceride, and 97.5% 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) served as donor membranes. Acceptor membranes were 100% POPC vesicles. Addition of glycolipid transfer protein to mixtures of donor and acceptor vesicles resulted in increasing emission intensity of anthrylvinyl-galactosylceramide and decreasing emission intensity of the nontransferable perylenoyl-triglyceride as a function of time. The behavior was consistent with anthrylvinyl-galactosylceramide being transferred from donor to acceptor vesicles. The anthrylvinyl and perylenoyl energy transfer pair offers advantages over frequently used energy transfer pairs such as NBD and rhodamine. The anthrylvinyl emission overlaps effectively the perylenoyl excitation spectrum and the fluorescence parameters of the anthrylvinyl fluorophore are nearly independent of the medium polarity. The nonpolar fluorophores are localized in the hydrophobic region of the bilayer thus producing minimal disturbance of the bilayer polar region. Our results indicate that this method is suitable for assay of lipid transfer proteins including mechanistic studies of transfer protein function.  相似文献   

20.
An assay named Cell TR-FRET based on time-resolved fluorescence resonance energy transfer, here utilized for detection of receptor proteins on intact cells, is described. In this assay, intact membrane-biotinylated Sf9 cells expressing human interleukin-2Ralpha due to infection with a recombinant baculovirus were prelabeled with a streptavidin-europium (Eu(3+)) chelate, the donor. These prelabeled cells were used in a homogeneous assay by addition of a fluorochrome-labeled anti-hIL-2Ralpha-specific antibody, 7G7B6-Cy5, the acceptor. Binding of 7G7B6-Cy5 to hIL-2Ralpha expressed on the cell surface and europium-labeled streptavidin to surface biotin esters brings the donor and the acceptor in close proximity, allowing transfer of energy from the excited state donor to the acceptor. This energy transfer was specifically inhibited by unlabeled antibody and by free biotin. The described assay constitutes a general method since no specific component of the cell membrane is labeled, thereby allowing a number of binding studies on the cell membrane, including receptor density determinations, to be performed. In addition, due to the rapid fashion in which the Cell TR-FRET assay is accomplished, it can be a valuable method not only for identifying novel membrane-associated proteins, but also for drug screening of large samples in high-throughput format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号