首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Latitudinal patterns of biodiversity have been studied for centuries, but it is only during the last decades that species interaction networks have been used to examine the proposed latitudinal gradient of biotic specialization. These studies have given idiosyncratic results, which may either be because of genuine biological differences between systems, different concepts and scales used to quantify biotic specialization or because the methodological approaches used to compare interaction networks were inappropriate. Here we carefully examine the latitudinal specialization gradient using a global dataset of avian plant–frugivore assemblages and interaction networks. In particular, we test whether network‐derived specialization patterns differ from patterns based on assemblage‐level information on avian dietary preferences on specific food types. We found that network‐derived measures of specialization (complementary specialization H2′ and < d’>, modularity Q) increased with latitude, i.e. frugivorous birds divide the niche of fruiting plants most finely at high latitudes where they also formed more modular interaction networks than at tropical latitudes. However, the strength and significance of the relationship between specialization metrics and latitude was influenced by the methodological approach. On the other hand, assemblage‐level information on avian specialization on fruit diet (i.e. the proportion of obligate frugivorous bird species feeding primarily on fruit) revealed an opposed latitudinal pattern as more bird species were specialized on fruit diet in tropical than in temperate assemblages. This difference in the latitudinal specialization gradient reflects that obligate frugivores require a high diversity of fruit plants, as observed in tropical systems, and fulfil more generalized roles in plant–frugivore networks than bird species feeding on different food types. Future research should focus on revealing the underlying ecological, historical and evolutionary mechanisms shaping these patterns. Our results highlight the necessity of comparing different scales of biotic specialization for a better understanding of geographical patterns of specialization in resource–consumer interactions.  相似文献   

3.
There is a strong trend of declining populations in many species of both animals and plants. Dwindling numbers of species can eventually lead to their functional extinction. Functional, or ecological, extinction occurs when a species becomes too rare to fulfill its ecological, interactive role in the ecosystem, leading to true (numerical) extinction of other depending species. Recent theoretical work on food webs suggests that the frequency of functional extinction might be surprisingly high. However, little is known about the risk of functional species extinctions in networks with other types of interactions than trophic ones. Here, we explore the frequency of functional extinctions in model ecological networks having different proportions of antagonistic and mutualistic links. Furthermore, we investigate the topological relationship between functionally and numerically extinct species. We find that (1) the frequency of functional extinctions is higher in networks containing a mixture of antagonistic and mutualistic interactions than in networks with only one type of interaction, (2) increased mortality rate of species having both mutualistic and antagonistic links is more likely to lead to extinction of another species than to extinction of the species itself compared to species having only mutualistic or antagonistic links, and (3) trophic distance (shortest path) between functionally and numerically extinct species is, on average, longer than one, indicating the importance of indirect effects. These results generalize the findings of an earlier study on food webs, demonstrating the potential importance of functional extinction in a variety of ecological network types.  相似文献   

4.
韩丹  王成  殷鲁秦 《生态学报》2021,41(22):8892-8905
物种间相互作用网络研究能为物种多样性的保护、城市生态系统稳定性的维持提供指导。基于群落水平的城市蝴蝶蜜源植物互作网络的研究较少,对城市蝴蝶蜜源网络结构缺乏深入认识。研究在国内城市生态系统中构建蝴蝶蜜源网络,并探讨不同类型植物对网络特征的影响。2020年6-9月,在北京26个城市公园中记录访花蝴蝶和蜜源植物物种及互作频次,采用交互多样性(ID)、交互均匀性(IE)、专业化程度(H2'')定量化生态网络结构特征,采用Kruskal-Wallis秩和检验和变差分解分析不同生长型、起源、栽培方式的植物类型对网络结构的影响差异。采用物种的伙伴多样性(PD)和专业化程度(d'')识别重要蜜源植物。研究结果表明:(1)北京城市公园中22种蝴蝶与81种开花植物的交互作用,形成趋于泛化的生态网络结构;(2)不同生长型及不同起源的植物-蝴蝶网络的交互多样性及专业化程度有显著差异,草本及乡土植物对丰富网络中交互多样性和支持专业性更高的蝴蝶物种具重要作用,而植物的栽培方式对蜜源网络结构影响较小;(3)伙伴多样性高且专业化程度高的植物可被视为重要蜜源植物。基于蝴蝶多样性保护的目标,在城市生态系统中,绿色空间应注重构建乡土草本植物群落,优先选择重要蜜源植物。我们的发现印证了蝴蝶-蜜源植物生态网络方法作为联结生态研究和城市绿地实践管理的有效工具,能为城市生态系统中生物多样性保护提供科学策略,具有重要意义。  相似文献   

5.
6.
Specialization of species in interaction networks influences network stability and ecosystem functioning. Spatial and temporal variation in resource availability may provide insight into how ecological factors, such as resource abundance, and evolutionary factors, such as phylogenetically conserved morphological traits, influence specialization within mutualistic networks. We used independent measures of hummingbird abundance and resources (nectar), information on hummingbird traits and plant–hummingbird interactions to examine how resource availability and species' morphology influence the specialization of hummingbirds in three habitat types (forest, shrubs, cattle ranch) sampled over 10 sessions across two years in the southern Andes of Ecuador. Specialization of hummingbird species in the networks was measured by three indices: d' (related to niche partitioning), generality (related to niche width) and PSI (related to pollination services). Specialization indices d', generality and PSI of hummingbird species were influenced by resource availability. All indices indicated that specialization of hummingbirds increased when the availability of resources decreased. Variation in d' was also explained by an interaction between resource availability and bill length; hummingbirds with a long bill switched from being more specialized than other species when resource availability was low to being similarly specialized when availability was high. Overall, our results highlight the importance of ecological and evolutionary factors determining the specialization of species in interaction networks. We demonstrate in particular that ecological gradients in resource availability cause substantial changes in consumers' foraging behavior contingent on their morphology. Changes in pollinator specialization along resource gradients can have impacts on ecosystem functions, such as pollination by animals.  相似文献   

7.
The group model is a useful tool to understand broad-scale patterns of interaction in a network, but it has previously been limited in use to food webs, which contain only predator-prey interactions. Natural populations interact with each other in a variety of ways and, although most published ecological networks only include information about a single interaction type (e.g., feeding, pollination), ecologists are beginning to consider networks which combine multiple interaction types. Here we extend the group model to signed directed networks such as ecological interaction webs. As a specific application of this method, we examine the effects of including or excluding specific interaction types on our understanding of species roles in ecological networks. We consider all three currently available interaction webs, two of which are extended plant-mutualist networks with herbivores and parasitoids added, and one of which is an extended intertidal food web with interactions of all possible sign structures (+/+, -/0, etc.). Species in the extended food web grouped similarly with all interactions, only trophic links, and only nontrophic links. However, removing mutualism or herbivory had a much larger effect in the extended plant-pollinator webs. Species removal even affected groups that were not directly connected to those that were removed, as we found by excluding a small number of parasitoids. These results suggest that including additional species in the network provides far more information than additional interactions for this aspect of network structure. Our methods provide a useful framework for simplifying networks to their essential structure, allowing us to identify generalities in network structure and better understand the roles species play in their communities.  相似文献   

8.
Seasonal turnover in plant and floral visitor communities changes the structure of the network of interactions they are involved in. Despite the dynamic nature of plant–visitor networks, a usual procedure is to pool year‐round interaction data into a single network which may result in a biased depiction of the real structure of the interaction network. The annual temporal dynamics and the effect of merging monthly data have previously been described for qualitative data (i.e. describing the occurrence of interactions) alone, while its quantitative aspect (i.e. the actual frequency with which interactions occur) remain little explored. For this, we built a set of 12 monthly networks describing year‐round plant–floral visitor interactions in a 30‐hectare planted forest and its adjacent agricultural landscape at Bahauddin Zakariya University Multan, Pakistan. A total of 80 plant and 162 insect species, which engaged in 1573 unique interactions, were recorded. Most network properties (particularly the number of plants, visitors and unique interactions) varied markedly during the year. Data aggregation showed that while animal species, plant species, unique interaction, weighted nestedness, interaction diversity and robustness increased, connectance and specialization decreased. The only metric which seemed relatively unaffected by data pooling was interaction evenness. In general, quantitative metrics were relatively less affected by temporal data aggregation than qualitative ones. Avoiding data aggregation not only gives a more realistic depiction of the dynamic nature of plant–visitor community networks, but also avoids biasing network metrics and, consequently, their expected response to disturbances such as the loss of species.  相似文献   

9.
Network analysis has in recent years improved our understanding of pollination systems. However, there is very little information about how functionally specialized plants and pollinators interact directly and indirectly in pollination networks. We have developed a parameter, Functional specialization index, to quantify functional specialization in pollination networks. Using this parameter, we examined whether different sized hummingbirds visit a distinct set of flowers in five hummingbird-pollinated plant assemblages from the Lesser Antilles, obtaining a simple relationship between hummingbird body size, network parameter and ecological function. In the Lesser Antilles, functionally specialized hummingbird pollination is distinct for plant species pollinated by the largest hummingbird species, whereas the pollination niche gradually integrates with the insect pollinator community as hummingbird body size decreases. The network approach applied in this study can be used to validate functional specialization and community-level interdependence between plants and pollinators, and it is therefore useful for evaluating and predicting plant resilience to pollinator loss, presently a global concern.  相似文献   

10.
Food webs typically quantify interactions between species, whereas evolution operates through the success of alleles within populations of a single species. To bridge this gap, we quantify genotypic interaction networks among individuals of a single specialized parasitoid species and its obligate to cyclically parthenogenetic aphid host along a climatic gradient. As a case study for the kinds of questions genotype food webs could be used to answer, we show that genetically similar parasitoids became more likely to attack genetically similar hosts in warmer sites (i.e. there was network‐wide congruence between the within‐species shared allelic distance of the parasitoid and that of its host). Narrowing of host‐genotype‐niche breadth by parasitoids could reduce resilience of the network to changes in host genetic structure or invasion by novel host genotypes and inhibit biological control. Thus, our approach can be easily used to detect changes to sub‐species‐level food webs, which may have important ecological and evolutionary implications, such as promoting host‐race specialization or the accelerated loss of functional diversity following extinctions of closely related genotypes.  相似文献   

11.
Large, complex networks of ecological interactions with random structure tend invariably to instability. This mathematical relationship between complexity and local stability ignited a debate that has populated ecological literature for more than three decades. Here we show that, when species interact as predators and prey, systems as complex as the ones observed in nature can still be stable. Moreover, stability is highly robust to perturbations of interaction strength, and is largely a property of structure driven by predator–prey loops with the stability of these small modules cascading into that of the whole network. These results apply to empirical food webs and models that mimic the structure of natural systems as well. These findings are also robust to the inclusion of other types of ecological links, such as mutualism and interference competition, as long as consumer–resource interactions predominate. These considerations underscore the influence of food web structure on ecological dynamics and challenge the current view of interaction strength and long cycles as main drivers of stability in natural communities. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The strength of interactions is crucial to the stability of ecological networks. However, the patterns of interaction strengths in mathematical models of ecosystems have not yet been based upon independent observations of balanced material fluxes. Here we analyse two Antarctic ecosystems for which the interaction strengths are obtained: (1) directly, from independently measured material fluxes, (2) for the complete ecosystem and (3) with a close match between species and ‘trophic groups’. We analyse the role of recycling, predation and competition and find that ecosystem stability can be estimated by the strengths of the shortest positive and negative predator‐prey feedbacks in the network. We show the generality of our explanation with another 21 observed food webs, comparing random‐type parameterisations of interaction strengths with empirical ones. Our results show how functional relationships dominate over average‐network topology. They make clear that the classic complexity‐instability paradox is essentially an artificial interaction‐strength result.  相似文献   

13.
Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant–pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats.  相似文献   

14.
The architecture and properties of many complex networks play a significant role in the functioning of the systems they describe. Recently, complex network theory has been applied to ecological entities, like food webs or mutualistic plant-animal interactions. Unfortunately, we still lack an accurate view of the relationship between the architecture and functioning of ecological networks. In this study we explore this link by building individual-based pollination networks from eight Erysimum mediohispanicum (Brassicaceae) populations. In these individual-based networks, each individual plant in a population was considered a node, and was connected by means of undirected links to conspecifics sharing pollinators. The architecture of these unipartite networks was described by means of nestedness, connectivity and transitivity. Network functioning was estimated by quantifying the performance of the population described by each network as the number of per-capita juvenile plants produced per population. We found a consistent relationship between the topology of the networks and their functioning, since variation across populations in the average per-capita production of juvenile plants was positively and significantly related with network nestedness, connectivity and clustering. Subtle changes in the composition of diverse pollinator assemblages can drive major consequences for plant population performance and local persistence through modifications in the structure of the inter-plant pollination networks.  相似文献   

15.
Specialization of species is often studied in ecology but its quantification and meaning is disputed. More recently, ecological network analysis has been widely used as a tool to quantify specialization, but here its true meaning is also debated. However, irrespective of the tool used, the geographic scale at which specialization is measured remains central. Consequently, we use data sets of plant–pollinator networks from Brazil and the Canary Islands to explore specialization at local and regional scales. We ask how local specialization of a species is related to its regional specialization, and whether or not species tend to interact with a non‐random set of partners in local communities. Local and regional specialization were strongly correlated around the 1:1 line, indicating that species conserve their specialization levels across spatial scales. Furthermore, most plants and pollinators also showed link conservatism repeatedly across local communities, and thus seem to be constrained in their fundamental niche. However, some species are more constrained than others, indicating true specialists. We argue that several geographically separated populations should be evaluated in order to provide a robust evaluation of species specialization.  相似文献   

16.
Confined within a volcanic caldera at 2000 m a.s.l., the sub-alpine desert of Tenerife, Canary Islands, harbors a distinct biota. At this altitude the climate is harsh and the growing season short. Hence, plant and animal communities, constituting the sub-alpine plant–flower-visitor network, are clearly delimited, both spatially and temporally. We investigated species composition and interaction structure of this system. A total of 11 plant species (91% endemics) and 37 flower-visiting animal species (62% endemics) formed 108 interactions. Numbers of interactions among species varied ten-fold within both plant and animal communities. Generalization level of a species was positively correlated with its local abundance. Two separate network analyses revealed a significantly nested structure. In relation to a plant–flower-visitor system, nestedness implies that specialized species (animals or plants) interact with a subset of the species pool visiting (animals) or being visited (plants) by more generalized species. Therefore, specialized, locally rare plants tend to be visited by generalized, locally abundant animals, and specialized, locally rare animals tend to utilize generalized, locally abundant food plants. Such patterns could have implications for conservation of the sub-alpine network, and stress the importance of preserving not only rare species, but also the more abundant ones, which may be key food resources or pollinators in the plant–flower-visitor network.  相似文献   

17.
Generalization of pollination systems is widely accepted by ecologists in the studies of plant–pollinator interaction networks at the community level, but the degree of generalization of pollination networks remains largely unknown at the individual pollinator level. Using potential legitimate pollinators that were constantly visiting flowers in two alpine meadow communities, we analyzed the differences in the pollination network structure between the pollinator individual level and species level. The results showed that compared to the pollinator species‐based networks, the linkage density, interaction diversity, interaction evenness, the average plant linkage level, and interaction diversity increased, but connectance, degree of nestedness, the average of pollinator linkage level, and interaction diversity decreased in the pollinator individual‐based networks, indicating that pollinator individuals had a narrower food niche than their counterpart species. Pollination networks at the pollinator individual level were more specialized at the network level (H2) and the plant species node level (d′) than at the pollinator species‐level networks, reducing the chance of underestimating levels of specialization in pollination systems. The results emphasize that research into pollinator individual‐based pollination networks will improve our understanding of the pollination networks at the pollinator species level and the coevolution of flowering plants and pollinators.  相似文献   

18.
Trophic interaction modifications, where a consumer–resource link is affected by additional species, are widespread and significant causes of non-trophic effects in ecological networks. The sheer number of potential interaction modifications in ecological systems poses a considerable challenge, making prioritisation for empirical study essential. Here, we introduce measures to quantify the topological relationship of individual interaction modifications relative to the underlying network. We use these, together with measures for the strength of trophic interaction modifications, to identify features of modifications that are most likely to exert significant effects on the dynamics of whole systems. Using a set of simulated food webs and randomly distributed interaction modifications, we test whether a subset of interaction modifications important for the local stability and direction of species responses to perturbation of complex networks can be identified. We show that trophic interaction modifications have particular importance for dynamics when they affect interactions with a high biomass flux, connect species otherwise distantly linked, and where high trophic-level species modify interactions lower in the food web. In contrast, the centrality of modifications in the network provided little information. This work demonstrates that analyses of interaction modifications can be tractable at the network scale and highlights the importance of understanding the relationship between the distributions of trophic and non-trophic effects.  相似文献   

19.
While macroscopic interkingdom relationships have been intensively investigated in various ecosystems, the above–belowground ecology in natural ecosystems has been poorly understood, especially for the plant–microbe associations at a regional scale. In this study, we proposed a workflow to construct interdomain ecological networks (IDEN) between multiple plants and various microbes (bacteria and archaea in this study). Across 30 latitudinal forests in China, the regional IDEN showed particular topological features, including high connectance, nested structure, asymmetric specialization and modularity. Also, plant species exhibited strong preference to specific microbial groups, and the observed network was significantly different from randomly rewired networks. Network module analysis indicated that a majority of microbes associated with plants within modules rather than across modules, suggesting specialized associations between plants and microorganisms. Consistent plant–microbe associations were captured via IDENs constructed within individual forest locations, which reinforced the validity of IDEN analysis. In addition, the plant–forest link distribution showed the geographical distribution of plants had higher endemicity than that of microorganisms. With cautious experimental design and data processing, this study shows interdomain species associations between plants and microbes in natural forest ecosystems and provides new insights into our understanding of meta‐communities across different domain species.  相似文献   

20.
We analysed the dynamics of a plant-pollinator interaction network of a scrub community surveyed over four consecutive years. Species composition within the annual networks showed high temporal variation. Temporal dynamics were also evident in the topology of the network, as interactions among plants and pollinators did not remain constant through time. This change involved both the number and the identity of interacting partners. Strikingly, few species and interactions were consistently present in all four annual plant-pollinator networks (53% of the plant species, 21% of the pollinator species and 4.9% of the interactions). The high turnover in species-to-species interactions was mainly the effect of species turnover (c. 70% in pairwise comparisons among years), and less the effect of species flexibility to interact with new partners (c. 30%). We conclude that specialization in plant-pollinator interactions might be highly overestimated when measured over short periods of time. This is because many plant or pollinator species appear as specialists in 1 year, but tend to be generalists or to interact with different partner species when observed in other years. The high temporal plasticity in species composition and interaction identity coupled with the low variation in network structure properties (e.g. degree centralization, connectance, nestedness, average distance and network diameter) imply (i) that tight and specialized coevolution might not be as important as previously suggested and (ii) that plant-pollinator interaction networks might be less prone to detrimental effects of disturbance than previously thought. We suggest that this may be due to the opportunistic nature of plant and animal species regarding the available partner resources they depend upon at any particular time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号