首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Murine IL-10 has been reported originally to be produced by the Th2 subset of CD4+ T cell clones. In this study, we demonstrate that human IL-10 is produced by Th0, Th1-, and Th2-like CD4+ T cell clones after both Ag-specific and polyclonal activation. In purified peripheral blood T cells, low, but significant, levels of IL-10 were found to be produced by the CD4+CD45RA+ population, whereas CD4+CD45RA- "memory" cells secreted 5- to 20-fold higher levels of IL-10. In addition, IL-10 was produced by activated CD8+ peripheral blood T cells. Optimal induction of IL-10 was observed after activation by specific Ag and by the combination of anti-CD3 mAb and the phorbol ester tetradecanoyl phorbol acetate, whereas the combination of calcium ionophore A23187 and 12-O-tetradecanoylphorbol-13-acetate acetate was a poor inducer of IL-10 production. Kinetic studies indicated that IL-10 was produced relatively late as compared with other cytokines. Maximal IL-10 mRNA expression in CD4+ T cell clones and purified peripheral blood T cells was obtained after 24 h, whereas maximal IL-10 protein synthesis occurred between 24 h and 48 h after activation. No differences were observed in the kinetics of IL-10 production among Th0, Th1-, and Th2-like subsets of CD4+ T cell clones. The results indicate a regulatory role for IL-10 in later phases of the immune response.  相似文献   

2.
The functional distinction between CD45RA+ and CD45RO+ cells within the human CD4+ T cell subset is well established. This study was undertaken to investigate whether a similar division can be made within the CD8+ T cell population. A quantitative comparison was made of the requirements for activation and differentiation of CD8+CD45RA+ and CD8+CD45RO+ cells. Stimulation of T lymphocytes with anti-CD3 mAb immobilized at high-density induced strong proliferation and CTL activity in both CD45RA+ and CD45RO+ cells. Suboptimal TCR/CD3 triggering, in contrast, induced substantially higher levels of proliferation and CTL activity in CD8+CD45RO+ cells compared with their CD45RA+ counterparts. Lymphokine secretion (i.e., Il-2 and TNF-alpha) was under any condition more readily induced in CD8+CD45RO+ cells. Markedly, proliferation of both CD8+CD45RA+ and CD8+CD45RO+ T cells initiated by anti-CD3 mAb immobilized at high densities was not inhibited by addition of anti-CD25 mAb, in contrast to proliferation induced by suboptimal anti-CD3 mAb concentrations. These findings show that a functional division between CD45RA+ and CD45RO+ T cells with distinct requirements for activation and differentiation may also be made in the CD8+ subset.  相似文献   

3.
CD27 is a disulfide-linked 120-kDa homodimer expressed on the majority of peripheral T cells at variable density that belongs to the recently defined nerve growth factor receptor family. mAb reactive with CD27 can either enhance or inhibit T cell activation, suggesting a crucial role in the process of T cell activation. We now show that CD27 is preferentially expressed on the CD45RA+CD45RO-CD29low subset of CD4 cells. CD27 expression on this subset is maintained for a prolonged period in culture after PHA activation. In contrast, CD45RA-CD45RO(+)-CD29high subset of CD4 cells express very low level of CD27, and its expression is lost within 2 wk after PHA activation. To further analyze the differential expression of CD27 on these reciprocal subsets of CD4 cells, we developed T cell clones by stimulating isolated CD4+CD45RA+ and CD4+CD45RO+ populations with PHA. T cell clones derived from cells originally CD45RA+ retained both CD45RA and CD27 expression, whereas T cell clones derived from cells originally CD45RO+ were CD45RA- and CD27-. In functional assays, IL-4 production could only be induced in CD45RA-CD27- CD4 clones by stimulation with PMA and ionomycin. Four of six CD45RA+ CD4 clones had suppressor activity in PWM-driven IgG synthesis, whereas five of six CD45RA- CD4 clones had helper activity. Of interest, the suppressor activity of CD45RA+CD27+ clones was partially blocked by pretreatment with anti-CD27 mAb (1A4). Anti-1A4 pretreatment of these T cell clones resulted in elevation of intracellular cAMP levels. Thus, CD27 appears to play a role in the function of CD45RA+CD27+ CD4 cells, and may be involved in suppressor activity of these cells at least in part via its effects on cAMP production.  相似文献   

4.
Activated CD4+ T cells can be classified into distinct subsets; the most divergent among them may be considered to be the IL-2 and IFN-gamma-producing Th1 clones and the IL-4 and IL-5-producing Th2 clones. Because Th1 and Th2 clones can usually be detected only after several months of culture, we used conditions that modulate the IL-2 and IL-4 production in short term culture. Here we show that freshly isolated and subsequently in vitro-activated CD4+ T cells that were cultured for 11 days with rIL-2 and restimulated showed a IFN-gamma+ IL-2+ IL-3+ IL-4- IL-5- pattern. Because these cells were not capable of providing B cell help for IgG1, IgG2a, or IgE in an APC- and TCR-dependent T-B cell assay, they expressed a phenotype typical for most Th1 clones. In contrast, activated T cells that were cultured for 11 days with IL-2 plus a mAb to CD3 and then restimulated produced a IFN-gamma- IL-2- IL-3+ IL-4+ IL-5+ pattern. These cells were capable of providing B cell help for IgG1, IgG2a, and IgE synthesis and thus presented a phenotype typical for Th2 clones. Similar results were observed when mitogenic mAb to Thy-1.2 or to framework determinants of the alpha beta TCR were used. The induction of Th1- and Th2-like cells did not depend on the relative expression of CD44 or CD45 by the T cells before activation in vitro. Because the incubation of activated T cells with anti-CD3/TCR mAb induced high unrestricted lymphokine production, the latter might be responsible for the Th2-like lymphokine pattern observed after restimulation. To address this point, TCR V beta 8+ and V beta 8- T cell blasts were co-cultured in the presence of mAb to V beta 8. After restimulation, V beta 8+ cells had a IL-4high IL-2low phenotype and V beta 8- cells had a IL-4low IL-2high phenotype. This demonstrates that TCR ligation but not lymphokines alone are capable of inducing Th2-like cells, and this points out a central role for the TCR in the generation of T cell subsets.  相似文献   

5.
This study follows our previous investigation describing the production of four cytokines (IL-2, IL-4, IFN-gamma, and TNF-alpha) by subsets of thymocytes defined by the expression of CD3, 4, 8, and 25. Here we investigate in greater detail subpopulations of CD4-CD8- double negative (DN) thymocytes. First we divided immature CD25-CD4-CD8-CD3- (CD25- triple negative) (TN) thymocytes into CD44+ and CD44- subsets. The CD44+ population includes very immature precursor T cells and produced high titers of IL-2, TNF-alpha, and IFN-gamma upon activation with calcium ionophore and phorbol ester. In contrast, the CD44- subset of CD25- TN thymocytes did not produce any of the cytokines studied under similar activation conditions. This observation indicates that the latter subset, which differentiates spontaneously in vitro into CD4+CD8+, already resembles CD4+CD8+ thymocytes (which do not produce any of the tested cytokines). We also subdivided the more mature CD3+ DN thymocytes into TCR-alpha beta- and TCR-gamma delta-bearing subsets. These cells produced cytokines upon activation with solid phase anti-CD3 mAb. gamma delta TCR+ DN thymocytes produced IL-2, IFN-gamma and TNF-alpha, whereas alpha beta TCR+ DN thymocytes produced IL-4, IFN-gamma, and TNF-alpha but not IL-2. We then studied alpha beta TCR+ DN T cells isolated from the spleen and found a similar cytokine production profile. Furthermore, splenic alpha beta TCR+ DN cells showed a TCR V beta gene expression profile reminiscent of alpha beta TCR+ DN thymocytes (predominant use of V beta 8.2). These observations suggest that at least some alpha beta TCR+ DN splenocytes are derived from alpha beta TCR+ DN thymocytes and also raises the possibility that these cells may play a role in the development of Th2 responses through their production of IL-4.  相似文献   

6.
The lymphokines IL-2 and IL-4 promoted the growth of human PHA-triggered T cells, but only IL-2 induced the production of IFN-gamma and TNF. The addition of purified monocytes strongly enhanced the production of IFN-gamma in IL-2-stimulated T cell cultures but did not influence the production of TNF or the level of T cell proliferation. The addition of IL-1 to T cells activated by PHA and optimal concentrations of IL-2 resulted in a strong induction of IFN-gamma production but had no influence on TNF production or T cell proliferation. IL-6 did not influence IFN-gamma or TNF production or T cell proliferation induced by PHA-IL-2 and did not modulate IL-1-induced IFN-gamma production. The production of IFN-gamma by CD4+ 45R+ Th cells was strongly enhanced by IL-1, whereas CD8+ T cells were less responsive to IL-1 and CD4+ 45R+ T cells were unresponsive to IL-1. We demonstrate, at the clonal level, that the optimal production of IFN-gamma by human Th cells requires both IL-1 and IL-2, whereas the production of TNF and T cell proliferation are induced by IL-2 alone. We suggest that IL-1 acts as a second signal for IFN-gamma production and that it may have an important function in regulating the pattern of lymphokines produced by T cell subsets during activation.  相似文献   

7.
The CD4+ helper/inducer T cell population is comprised of functionally distinct subsets identifiable by the HB11 (anti-CD45R) mAb. We have previously shown that the cells that provide help for antibody production express the CD4+CD45R- phenotype. In contrast, CD4+ CD45R+ cells have minimal, if any, helper cell functions; rather, these cells function as inducers of Ts cell activity. The lineal relationship of these phenotypically and functionally distinct CD4+ subsets is unknown. In the present studies, we have examined the hypothesis that the CD4+ subpopulations identifiable with anti-CD45R antibodies represent "virgin" or "memory" T cells sequentially derived from a common differentiation pathway but differing in their relative maturation. When freshly purified cells were tested, CD4+ CD45R+ cells had no Th cell function. However, after in vitro activation with PHA and propagation in IL-2, CD4+CD45R+ cells acquired the ability to provide help for antibody production. Moreover, this functional acquisition by these cells was accompanied by their conversion to the CD4+CD45R- phenotype. Analyses of the activation, growth kinetics, and functional dose-response characteristics of CD4+CD45R+ and CD4+CD45R- cells demonstrated that our findings did not result from the selective growth of CD4+ CD45R- cells contaminating the CD4+CD45R+ preparations. Thus, these data demonstrate that the "helper" and "suppressor-inducer" subsets of CD4+ cells identified by anti-CD45R antibodies are not comprised of fully mature, phenotypically and functionally stable T cells. Rather, these CD4+ subsets appear to represent cells at different maturational stages of an activation-dependent, post-thymic differentiation pathway.  相似文献   

8.
We have characterized the surface phenotype and function of long-lived, Ag-specific memory CD4+ T cells generated in vivo by immunization with keyhole limpet hemocyanin (KLH). CD4+ T cells from the spleens of mice primed more than 2 mo previously with KLH, produced high levels of IL-2 and IL-3, and low levels of IL-4 and IFN-gamma in response to in vitro restimulation with specific Ag. The KLH-primed T cells mediated carrier-specific helper activity for the antibody production by NIP-primed B cells in secondary in vitro responses to NIP-KLH. Subsets of CD4+ T cells from KLH-primed mice were isolated on the basis of surface CD45RB (23G2) by magnetic separation and were examined for functional capacity in several assays of Ag-specific recall. Virtually all of the secretion of IL-2, IL-3, IL-4, and IFN-gamma in response to restimulation with Ag in vitro was associated with, and considerably enriched in, the CD45RB- subset of CD4+ T cells. Similarly, carrier-specific helper function and Ag-specific proliferation in vitro were also confined to the CD45RB-, CD4+ subset of T cells, confirming the previous association of this surface phenotype with memory Th cell activity. We also examined expression of the lymphocyte homing receptor, MEL-14 (gp90MEL), which is required for lymphocyte extravasation to peripheral lymph nodes and is present in high levels on naive T cells. MEL-14 positive and negative subsets of CD4+ T cells from long term KLH-primed mice were evaluated for Ag-specific memory function in terms of lymphokine production, Ag-induced proliferation, and helper activity. Each of these functions was associated exclusively with the MEL-14- subset of CD4+ T cells, which exhibited responses comparable to the CD45RB- subset. These data indicate that memory Th cell function in the spleen is contained within the MEL-14-, CD45RB- subset of CD4+ T cells and suggest that memory helper cells may have different patterns of recirculation from naive T cells.  相似文献   

9.
It has been demonstrated in our previous work that, in the human skin-grafting model, the expression of costimulatory molecule B7H1 (PD-L1) by keratinocytes plays an essential role in inducing local tolerance via activation of IL-10-secreting T cells. This study further analyzes the role of B7H1 in differentiation of type 1 T regulatory (Tr1) cells and explores underlying mechanisms. Mouse fusion protein B7H1-Ig is used, together with immobilized anti-CD3 mAb, to costimulate the purified naive CD4+ T cells. B7H1-Ig-treated CD4+ T cells were found to activate a characteristic Tr1 population possessing a CD4+ CD25- Foxp3- CD45RBlow phenotype. These regulatory T cells strongly inhibited the Th1-dominated MLR by secretion of IL-10 and TGF-beta. Moreover, B7H1-treated Tr1 cells also resulted in suppressed clinical scores and demyelination when adoptively transferred into mice with experimental allergic encephalomyelitis. Furthermore, analysis of the cytokine profile indicated that there were two differential reaction patterns during the B7H1-Ig-induced Tr1 development. These two patterns were characterized by activation of IFN-gammaR+ IL-10R- Th1 and IFN-gammaR+ IL-10R+ Tr1 cells, respectively. Secretion of IFN-gamma by Th1 and the expression of IFN-gammaR on Tr1 were critical for further Tr1 differentiation, as demonstrated by mAb blocking and by analysis in IFN-gamma(-/-) mice. In conclusion, B7H1 is capable of inducing Tr1 differentiation from naive CD4+ T cells by coactivation in an IFN-gamma- or Th1-dependent manner. Our study may shed some light upon the clinical usage of B7H1 as a therapeutic reagent for induction of tolerance.  相似文献   

10.
Complete elimination of CD4 cells by in vivo treatment with anti-CD4 mAb may result in B cell polyclonal activation. Additionally, mice treated with doses of anti-CD4 that eliminate half the CD4 cells produced higher anti-SRBC antibody responses than controls. This suggests that partial CD4 depletion enhances Th2-like function. To test this hypothesis we examined Th1 and Th2 lymphokine potential in mice partially depleted of CD4 cells. We measured IL-4 and IFN-gamma secretion by stimulated unfractionated spleen cells and analyzed activated, purified CD4 cells by RNA in situ hybridization to determine the percentage of IFN-gamma- or IL-4-producing cells. Unfractionated splenocytes from partially CD4-depleted mice secreted more IL-4 and less IFN-gamma than splenocytes from control mice. In situ hybridization proved that CD4 cells from partially depleted mice contained a higher percentage of IL-4 and a lower percentage of IFN-gamma-producing cells than controls. These results indicate that treatment with a dose of mAb resulting in partial CD4 depletion may permit increased Th2-like lymphokine expression. This study also provides evidence that cells committed to Th2-like function exist in vivo in mice.  相似文献   

11.
In these studies, the role of glycosylphosphatidylinositol (GPI)-anchored surface molecules during T cell activation was investigated in fresh T cells and T cell lines obtained from patients with paroxysmal nocturnal hemoglobinuria. For control, GPI-expressing T cells of the same patients were used. Unstimulated GPI- T cells exhibited significantly reduced surface expression of the activation Ag CD45R0, compared with GPI+ T cells. In addition, in measurements of proliferation, IFN-gamma production, and induction of second messengers such as cytoplasmic Ca2+, CD48- lymphocytes showed a similar response to TCR-specific stimulation, compared with CD48+ lymphocytes. In contrast, stimulation with the lectin PHA produced a decreased response of CD48- lymphocytes in these functions. In addition, stimulation with cross-linked CD59 mAb increased the proliferation of GPI-molecule expressing CD48+ T cell lines only. From these data, it can be concluded that GPI-anchored surface molecules play an important role in T lymphocyte activation.  相似文献   

12.
Bone marrow-derived dendritic cell (BMDC) subsets have distinct immunoregulatory functions. Th1 cytokine-induced BMDC (BMDC1), compared with Th2 cytokine-induced BMDC2, have superior activities for the differentiation and expansion of CTL. To evaluate the cellular interactions between dendritic cells and CD8+ T cells for the induction of CTL, BALB/c-derived BMDC subsets were cocultured with purified CD8+ T cells from C57BL/6 mice. Our results demonstrate that BMDC1 support the generation of allogeneic CD8+ CTL in the absence of CD4+ Th cells. In contrast, BMDC0 (GM-CSF- plus IL-3-induced BMDC) and BMDC2 failed to promote the differentiation of CD8+ CTL. Using Ab-blocking experiments and studies with gene knockout mice, IL-2 and LFA-1 are demonstrated to be critical for BMDC1-induced CTL differentiation. Unexpectedly, BMDC1 were able to induce CTL from CD8+ T cells isolated from IFN-gamma-/- and IFN-gamma receptor-/- mice. However, BMDC1 produced higher levels of IFN-beta than other BMDC subsets, and anti-IFN-beta mAb blocked BMDC1-dependent CTL generation. These results indicated an indispensable role of IFN-beta, but not IFN-gamma, during BMDC1-induced CTL differentiation. We conclude that Th1-cytokine-conditioned BMDC1 can bypass Th cell function for the differentiation of naive CD8+ T cells into CTL.  相似文献   

13.
Previous studies involving the function and development of peripheral T cells have proposed that, in the rat, CD4(+)CD45RC(+)RT6(-) and CD4(+)CD45RC(-)RT6(+) T-cell subsets may represent Th1 and Th2 cells, respectively. Here we tested this hypothesis directly by analyzing frequencies of IFN-gamma- and IL-4-producing cells in these two subpopulations using ELISPOT assays. We found that the CD4(+)CD45RC(-)RT6(+) subset showed higher numbers of IL-4-producing cells than the CD4(+)CD45RC(+)RT6(-) subset and, though less pronounced, that the latter demonstrated higher numbers of IFN-gamma producers. Therefore, we conclude that our results provide evidence for the existence of phenotypically defined Th1 and Th2 cells in the rat. This is supported by the finding that the ratios of IFN-gamma/IL-4 and CD45RC/RT6 correlated positively among various rat strains. Finally, rat strains susceptible to induction of a Th1-mediated autoimmune disease showed the highest CD45RC/RT6 ratio, whereas the reverse was true for strains susceptible to a Th2-mediated autoimmune disease.  相似文献   

14.
The role of the accessory molecule ICAM-1 in activation of subpopulations of human T cells was examined using the bacterial superantigen staphylococcal enterotoxin A (SEA) as a MHC class II and TCR-dependent polyclonal T cell activator. Human T cells responded with different sensitivity to SEA when presented on mouse accessory cells expressing a human transfected MHC class II gene product. Mouse L cells cotransfected with both MHC class II (DR2A or DR7) and ICAM-1-stimulated T cells at 100-fold lower concentrations of SEA as compared to the single transfected cells. mAb reacting with the CD11a, CD18, or ICAM-1 molecules efficiently inhibited T cell activation with the cotransfected HLA-DR2A/ICAM-1 cell but did not influence T cell activation with the HLA-DR2A single transfected cell. Analysis of the ICAM-1 requirement on CD4+ memory (CD4+45RO+) and naive (CD4+45RA+) T cells revealed that CD4+45RA+ naive Th cells were hyporesponsive to SEA-induced activation with the HLA-DR2A single transfectant. However, cotransfection of ICAM-1 enabled these cells to respond to low doses of SEA implicating that they are more dependent on accessory molecules than the CD4+45RO+ cells. rICAM-1 immobilized on a plastic surface, was able to strongly costimulate SEA-induced T cell activation with the HLA-DR2A single transfectant, suggesting that costimulatory signals mediated to the T cells through LFA-1 can be delivered physically separated from the TCR signal. CD4+45RO+ memory and CD4+45RA+ naive Th cells apparently differ in their capacities to be activated by SEA bound to HLA-DR. Although the TCR molecule densities are similar in these two subsets, costimulation with ICAM-1 is required for activation of the CD4+45RA+, but not the CD4+45RO+ T cell subset at 1 to 10,000 ng/ml concentrations of SEA. This observation indicates different activation thresholds of naive and memory Th cells when triggering the TCR over a wide dose interval of superantigen.  相似文献   

15.
Human peripheral blood CD8+ T cells constitutively express a low level of IL-2-R beta chains which were shown in this study to be preferentially carried by the CD45R0+ subset. Such receptors can transduce signals for in vitro IL-2-induced cytolytic function and for the initiation of soluble anti-CD3 and IL-2-induced cell proliferation. Using these stimulation models, a comparison was made between the responsiveness of resting, small CD45R0+ and CD45RA+ subpopulations of CD8+ T cells, both of them being isolated by negative selection and rigorously depleted of monocytes and of IL-2-inducible non-MHC-restricted CTL. Strong proliferation was induced in CD8+/CD45R0+ cells in response to IL-2 and soluble anti-CD3 (each of these stimuli being by itself ineffective), while in contrast, CD8+/CD45RA+ cells manifested, in this system, little reactivity. Accordingly, no conversion to the CD45R0 phenotype occurred in single stained CD45RA+ T cells following their incubation with the stimuli. A similar restriction of reactivity to CD8+/CD45R0+ T cells was observed with respect to IL-2-induced targetable T cell cytotoxicity. The CTL activity induced by IL-2 alone occurred without cell division. In contrast, the additional increase in CTL activity occurring upon the synergistic actions of anti-CD3 mAb and IL-2 coincided with intense cell proliferation, with no generation of LAK activity. The inhibition exerted by anti-IL-2-R beta mAb in the cytolytic and the proliferative activities induced by these stimuli in resting CD8+/CD45R0+ T cells emphasizes the importance of constitutive IL-2-R beta chains in the biology of these cells.  相似文献   

16.
Immunization with serological identification of Ags by recombinant expression cloning (SEREX)-defined self-Ags leads to generation/activation of CD4+ CD25+ regulatory T cells with suppressive activities and enhanced expression of Foxp3. This is associated with increased susceptibility to pulmonary metastasis following challenge with syngeneic tumor cells and enhanced development of 3-methylcholanthrene-induced primary tumors. In contrast, coimmunization with the same SEREX-defined self-Ags mixed with a CTL epitope results in augmented CTL activity and heightened resistance to pulmonary metastasis, both of which depend on CD4+ Th cells. These active regulatory T cells and Th cells were derived from two distinct CD4+ T cell subsets, CD4+ CD25+ T cells and CD4+ CD25- T cells, respectively. In the present study, IFN-gamma was found to abrogate the generation/activation of CD4+ CD25+ regulatory T cells by immunization with SEREX-defined self-Ag. CD4+ CD25+ T cells from these IFN-gamma-treated mice failed to exhibit immunosuppressive activity as measured by 1) increased number of pulmonary metastasis, 2) enhanced development of 3-methylcholanthrene-induced primary tumors, 3) suppression of peptide-specific T cell proliferation, and 4) enhanced expression of Foxp3. The important role of IFN-gamma produced by CD8+ T cells was shown in experiments demonstrating that CD4+ CD25+ T cells cotransferred with CD8+ T cells from IFN-gamma(-/-) mice, but not from wild-type BALB/c mice, became immunosuppressive and enhanced pulmonary metastasis when recipient animals were subsequently immunized with a SEREX-defined self-Ag and a CTL epitope. These findings support the idea that IFN-gamma regulates the generation/activation of CD4+ CD25+ regulatory T cells.  相似文献   

17.
CD4+45RB- rat T cells were shown to respond strongly to recall antigens and produce IFN and TNF after polyclonal activation. Compared to CD4+45RB- cells, CD4+45RB+ cells showed a very weak response to recall antigens but produced higher amounts of IFN and TNF after polyclonal activation. Addition of rIL-2 reduced the difference between the subsets with respect to the level of IFN produced at 48 and 72 hr after activation, but did not influence the level of TNF production. The CD4+45RB- cells clearly showed a faster response to polyclonal activation than that of CD4+45RB+ cells detected as an earlier IFN production and CD25 expression. The earlier IFN production by the CD45RB- population could not only be explained by their faster production of IL-2, since the difference persisted when rIL-2 was added to both populations at the beginning of culture. We conclude that the CD4+45RB- rat T cell population resemble the CD4+45RA-0+ human T cell subset with respect to a good responsiveness to recall antigen and efficient production of IFN. However, the CD4+45RB+ rat T cell subset functionally differs from the CD4+45RA+0- human T cell subset. We suggest that the CD4+45RB+ subset comprises a major CD4+45RA+B+0- and a minor CD4+4+45A-B+0+ T cell subpopulation, the latter possibly mediating a response to recall antigen and the production of IFN.  相似文献   

18.
A subset of T cells in human peripheral blood expresses CD161 (NKR-P1A) receptors that are primarily associated with NK cells. In the current study we isolated blood T cell subsets according to the expression of CD161 and examined their contents of naive, central memory, and effector memory cells and their capacities for proliferation, cytokine secretion, and natural cytolysis. We found that CD4+CD161- and CD8+CD161- subsets contained predominantly naive T cells that secreted high levels of IL-2 after in vitro stimulation, and CD4+CD161int and CD8+CD161int subsets contained predominantly effector and central memory T cells that secreted high levels of IFN-gamma and TNF-alpha. All of these subsets showed vigorous proliferation after stimulation in vitro, but none had NK lytic activity. Unexpectedly, the CD8+CD161+ cells contained an anergic CD8alpha+CD8betalow/-CD161high T cell subset that failed to proliferate, secrete cytokines, or mediate NK lytic activity.  相似文献   

19.
Purified peripheral blood T lymphocytes and the CD8-CD4+ and CD4-CD8+ T cell subsets, exhaustively depleted of APC have been studied for their capacity to respond to mAb directed against the CD3-Ti Ag-specific TCR complex and against the CD2 SRBCR. It is demonstrated that high affinity IL-2R can be readily induced by either anti-CD3 and/or anti-CD2 stimulation. However, IL-2 production can be observed only in the CD4+CD8- T cell subset. These results clearly contrast data obtained with purified CD4-CD8+ T cells, which are able to proliferate when the CD3-Ti complex is activated in the presence of APC. The data presented in the present study demonstrate that a simplified model for T cell activation and clonal expansion of the two major T cell subsets involve only the CD3-Ti complex and the CD2 Ag. Under conditions where the activation signals for the T cells are restricted only to the activation of CD3-Ti and CD2, the CD4+CD8- T cells respond with IL-2 production and expression of high affinity IL-2R, whereas the CD4-CD8+ T cell subset depends on exogenous IL-2 provided by the CD4+CD8- cells. These data do not, however, exclude an involvement of other cell-surface signals for regulation and control of T cell activation and T cell effector functions.  相似文献   

20.
The expression of lymphokine mRNA by human CD4+CD45R+ and CD4+CD45R- Th cells was assessed after mitogen stimulation. These Ag have previously been shown to relate closely to virgin and primed T cells, respectively. CD4+CD45R+ (virgin) and CD4+CD45R- (primed) cell fractions were isolated by sorting double-labeled cells with a fluorescence-activated cell sorter. CD4+CD45R+ cells produced high levels of IL-2 mRNA when stimulated with either PMA together with calcium ionophore, or with PHA, but they expressed only trace quantities of mRNA for IL-4 or IFN-gamma. In contrast, CD4+CD45R- cells produced high levels of mRNA for IL-2, IL-4, and IFN-gamma. After 14 days of continuous culture, CD4+CD45R+ Th cells lost expression of the CD45R Ag, but gained high level expression of CDw29, such that they were indistinguishable from the cell population which originally expressed this Ag. At the same time, they acquired the ability to synthesize IL-4 mRNA. It seemed likely that the broad lymphokine profile of primed Th cells might mask clonal heterogeneity. Analysis of 122 CD4+ T cell clones showed that all of them synthesized IL-2 mRNA. One clone failed to express IL-4 mRNA, but did produce those for IL-2 and IFN-gamma. A total of 34 of the clones was investigated to determine expression of IFN-gamma mRNA; two of these clones were negative for IFN-gamma mRNA, and both expressed IL-2 and IL-4 message. These data suggest that while fresh virgin and primed peripheral blood T cells show a clear resolution of lymphokine production, a simple subdivision of human CD4+ T cell clones on the basis of their lymphokine production (such as that reported for mouse Th cell clones) is not possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号