首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Human‐driven impacts constantly threat amphibians, even in largely protected regions such as the Amazon. The Brazilian Amazon is home to a great diversity of amphibians, several of them currently threatened with extinction. We investigated how climate change, deforestation and establishment of hydroelectric dams could affect the geographic distribution of Amazonian amphibians by 2030 and midcentury.

Location

The Brazilian Amazon.

Methods

We overlapped the geographic distribution of 255 species with the location of hydroelectric dams, models of deforestation and climate change scenarios for the future.

Results

We found that nearly 67% of all species and 54% of species with high degree of endemism within the Legal Brazilian Amazon would lose habitats due to the hydroelectric overlapping. In addition, deforestation is also a potential threat to amphibians, but had a smaller impact compared to the likely changes in climate. The largest potential range loss would be caused by the likely increase in temperature. We found that five amphibian families would have at least half of the species with over 50% of potential distribution range within the Legal Brazilian Amazon limits threatened by climate change between 2030 and 2050.

Main conclusions

Amphibians in the Amazon are highly vulnerable to climate change, which may cause, directly or indirectly, deleterious biological changes for the group. Under modelled scenarios, the Brazilian Government needs to plan for the development of the Amazon prioritizing landscape changes of low environmental impact and economic development to ensure that such changes do not cause major impacts on amphibian species while reducing the emission of greenhouse gases.
  相似文献   

2.

Aim

To identify traits related to the severity and type of environmental impacts generated by alien bird species, in order to improve our ability to predict which species may have the most damaging impacts.

Location

Global.

Methods

Information on traits hypothesized to influence the severity and type of alien bird impacts was collated for 113 bird species. These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species.

Results

The severity and type of impacts generated by alien bird species are not randomly distributed with respect to their traits. Alien range size and habitat breadth were strongly associated with impact severity. Predation impacts were strongly associated with dietary preference, but also with alien range size, relative brain size and residence time. Impacts mediated by interactions with other alien species were related to alien range size and diet breadth.

Main conclusions

Widely distributed generalist alien birds have the most severe environmental impacts. This may be because these species have greater opportunity to cause environmental impacts through their sheer number and ubiquity, but this could also be because they are more likely to be identified and studied. Our study found little evidence for an effect of per capita impact on impact severity.
  相似文献   

3.

Aim

To assess how habitat loss and climate change interact in affecting the range dynamics of species and to quantify how predicted range dynamics depend on demographic properties of species and the severity of environmental change.

Location

South African Cape Floristic Region.

Methods

We use data‐driven demographic models to assess the impacts of past habitat loss and future climate change on range size, range filing and abundances of eight species of woody plants (Proteaceae). The species‐specific models employ a hybrid approach that simulates population dynamics and long‐distance dispersal on top of expected spatio‐temporal dynamics of suitable habitat.

Results

Climate change was mainly predicted to reduce range size and range filling (because of a combination of strong habitat shifts with low migration ability). In contrast, habitat loss mostly decreased mean local abundance. For most species and response measures, the combination of habitat loss and climate change had the most severe effect. Yet, this combined effect was mostly smaller than expected from adding or multiplying effects of the individual environmental drivers. This seems to be because climate change shifts suitable habitats to regions less affected by habitat loss. Interspecific variation in range size responses depended mostly on the severity of environmental change, whereas responses in range filling and local abundance depended mostly on demographic properties of species. While most surviving populations concentrated in areas that remain climatically suitable, refugia for multiple species were overestimated by simply overlying habitat models and ignoring demography.

Main conclusions

Demographic models of range dynamics can simultaneously predict the response of range size, abundance and range filling to multiple drivers of environmental change. Demographic knowledge is particularly needed to predict abundance responses and to identify areas that can serve as biodiversity refugia under climate change. These findings highlight the need for data‐driven, demographic assessments in conservation biogeography.
  相似文献   

4.

Aim

To collect and identify the issues that may affect the future global and local management of biological invasions in the next 20–50 years and provide guidance for the prioritization of actions and policies responding to the management challenges of the future.

Location

Global

Methods

We used an open online survey to poll specialists and stakeholders from around the world as to their opinion on the three most important future issues both globally and at their respective local working level.

Results

The 240 respondents identified 629 global issues that we categorized into topics. We summarized the highest rated topics into five broad thematic areas: (1) environmental change, particularly climate change, (2) the spread of species through trade, (3) public awareness, (4) the development of new technologies to enhance management and (5) the need to strengthen policies. The respondents also identified 596 issues at their respective local working levels. Management, early detection, prevention and funding‐related issues all ranked higher than at the global level. Our global audience of practitioners, policymakers and researchers also elicited topics not identified in horizon scanning exercises led by scientists including potential human health impacts, the need for better risk assessments and legislation, the role of human migration and water management.

Main conclusions

The topic areas identified in this horizon scan provide guidance where future policy priorities for invasive alien species should be set. First, to reduce the magnitude and speed of environmental change and its impacts on biological invasions; second, to restrict the movement of potentially invasive alien species via trade; third, to raise awareness with the general public and empower them to act; and finally, to invest in innovative technologies that can detect and mitigate adverse impacts of introduced species.
  相似文献   

5.

Aim

Many alien species experience a lag phase between arriving in a region and becoming invasive, which can provide a valuable window of opportunity for management. Our ability to predict which species are experiencing lags has major implications for management decisions that are worth billions of dollars and that may determine the survival of some native species. To date, timing and causes of lag and release have been identified post hoc, based on historical narratives.

Location

Global.

Methods

We use a simple but realistic simulation of population spread over a fragmented landscape. To break the invasion lag, we introduce a sudden, discrete change in dispersal.

Results

We show that the ability to predict invasion lags is minimal even under controlled circumstances. We also show a non‐negligible risk of falsely attributing lag breaks to mechanisms based on invasion trajectories and coincidences in timing.

Main conclusions

We suggest that post hoc narratives may lead us to erroneously believe we can predict lags and that a precautionary approach is the only sound management practice for most alien species.
  相似文献   

6.

Aim

When modelling the distribution of animals under current and future conditions, both their response to environmental constraints and their resources’ response to these environmental constraints need to be taken into account. Here, we develop a framework to predict the distribution of large herbivores under global change, while accounting for changes in their main resources. We applied it to Rupicapra rupicapra, the chamois of the European Alps.

Location

The Bauges Regional Park (French Alps).

Methods

We built sixteen plant functional groups (PFGs) that account for the chamois’ diet (estimated from sequenced environmental DNA found in the faeces), climatic requirements, dispersal limitations, successional stage and interaction for light. These PFGs were then simulated using a dynamic vegetation model, under current and future climatic conditions up to 2100. Finally, we modelled the spatial distribution of the chamois under both current and future conditions using a point‐process model applied to either climate‐only variables or climate and simulated vegetation structure variables.

Results

Both the climate‐only and the climate and vegetation models successfully predicted the current distribution of the chamois species. However, when applied into the future, the predictions differed widely. While the climate‐only models predicted an 80% decrease in total species occupancy, including vegetation structure and plant resources for chamois in the model provided more optimistic predictions because they account for the transient dynamics of the vegetation (?20% in species occupancy).

Main conclusions

Applying our framework to the chamois shows that the inclusion of ecological mechanisms (i.e., plant resources) produces more realistic predictions under current conditions and should prove useful for anticipating future impacts. We have shown that discounting the pure effects of vegetation on chamois might lead to overpessimistic predictions under climate change. Our approach paves the way for improved synergies between different fields to produce biodiversity scenarios.
  相似文献   

7.

Aim

Urban floras are composed of species of different origin, both native and alien, and with various traits and niches. It is likely that these species will respond to the ongoing climate change in different ways, resulting in future species compositions with no analogues in current European cities. Our goal was to estimate potential shifts in plant species composition in European cities under different scenarios of climate change for the 21st century.

Location

Europe.

Methods

Potential changes in the distribution of 375 species currently growing in 60 large cities in Southern, Central and Western Europe were modelled using generalized linear models and four climate change projections for two future periods (2041–2060 and 2061–2080). These projections were based on two global climate models (CCSM4 and MIROC‐ESM) and two Representative Concentration Pathways (2.6 and 8.5).

Results

Results were similar across all climate projections, suggesting that the composition of urban plant communities will change considerably due to future climate change. However, even under the most severe climate change scenario, native and alien species will respond to climate change similarly. Many currently established species will decline and others, especially annuals currently restricted to Southern Europe, will spread to northern cities. In contrast, perennial herbs, woody plants and most species with temperate continental and oceanic distribution ranges will make up a smaller proportion of future European urban plant communities in comparison with the present communities.

Main conclusions

The projected 21st century climate change will lead to considerable changes in the species composition of urban floras. These changes will affect the structure and functioning of urban plant communities.
  相似文献   

8.

Aim

Life history traits and range size are key correlates of genetic diversity in trees. We used a standardized sampling protocol to explore how life history traits and range size relate to the magnitude, variance and structuring (both between‐ and within‐population) of genetic diversity in Neotropical tree species.

Location

The Neotropics

Methods

We present a meta‐analysis of new population genetic data generated for 23 Neotropical tree species (=2,966 trees, 86 populations) across a shared and broad geographic area. We compared established population genetic metrics across these species (e.g., genetic diversity, population structure, fine‐scale genetic structure), plus we estimated the rarely used variance in genetic diversity among populations. We used a multivariate, maximum likelihood, multimodel inference approach to explore the relative influence of life history traits and range size on patterns of neutral genetic diversity.

Results

We found that pioneer and narrow range species had lower levels but greater variance in genetic diversity—signs of founder effects and stronger genetic drift. Animal‐dispersed species had lower population differentiation, indicating extensive gene flow. Abiotically dispersed and pioneer species had stronger fine‐scale genetic structure, suggesting restricted seed dispersal and family cohort establishment.

Main conclusions

Our multivariable and multispecies approach allows ecologically relevant conclusions, since knowing whether one parameter has an effect, or one species shows a response in isolation, is dependent on the combination of traits expressed by a species. Our study demonstrates the influence of ecological processes on the distribution of genetic variation in tropical trees, and will help guide genetic resource management, and contribute to predicting the impacts of land use change.
  相似文献   

9.

Aim

Studies of species' range shifts have become increasingly relevant for understanding ecology and biogeography in the face of accelerated global change. The combination of limited mobility and imperilled status places some species at a potentially greater risk of range loss, extirpation or extinction due to climate change. To assess the ability of organisms with limited movement and dispersal capabilities to track shifts associated with climate change, we evaluated reproductive and dispersal traits of freshwater mussels (Unionida), sessile invertebrates that require species‐specific fish for larval dispersal.

Location

North American Atlantic Slope rivers.

Methods

To understand how unionid mussels may cope with and adapt to current and future warming trends, we identified mechanisms that facilitated their colonization of the northern Atlantic Slope river basins in North America after the Last Glacial Maximum. We compiled species occurrence and life history trait information for each of 55 species, and then selected life history traits for which ample data were available (larval brooding duration, host fish specificity, host infection strategy, and body size) and analysed whether the trait state for each was related to mussel distribution in Atlantic Slope rivers.

Results

Brooding duration (p < .01) and host fish specificity (p = .02) were significantly related to mussel species distribution. Long‐term brooders were more likely than short‐term brooders to colonize formerly glaciated rivers, as were host generalists compared to specialists. Body size and host infection strategy were not predictive of movement into formerly glaciated rivers (p > .10).

Main conclusions

Our results are potentially applicable to many species for which life history traits have not been well‐documented, because reproductive and dispersal traits in unionid mussels typically follow phylogenetic relationships. These findings may help resource managers prioritize species according to climate change vulnerability and predict which species might become further imperilled with climate warming. Finally, we suggest that similar trait‐based decision support frameworks may be applicable for other movement limited taxa.
  相似文献   

10.

Aim

To test whether native and non‐native species have similar diversity–area relationships (species–area relationships [SARs] and phylogenetic diversity–area relationships [PDARs]) and whether they respond similarly to environmental variables.

Location

United States.

Methods

Using lists of native and non‐native species as well as environmental variables for >250 US national parks, we compared SARs and PDARs of native and non‐native species to test whether they respond similarly to environmental conditions. We then used multiple regressions involving climate, land cover and anthropogenic variables to further explore underlying predictors of diversity for plants and birds in US national parks.

Results

Native and non‐native species had different slopes for SARs and PDARs, with significantly higher slopes for native species. Corroborating this pattern, multiple regressions showed that native and non‐native diversity of plants and birds responded differently to a greater number of environmental variables than expected by chance. For native species richness, park area and longitude were the most important variables while the number of park visitors, temperature and the percentage of natural area were among the most important ones for non‐native species richness. Interestingly, the most important predictor of native and non‐native plant phylogenetic diversity, temperature, had positive effects on non‐native plants but negative effects on natives.

Main conclusions

SARs, PDARs and multiple regressions all suggest that native and non‐native plants and birds responded differently to environmental factors that influence their diversity. The agreement between diversity–area relationships and multiple regressions with environmental variables suggests that SARs and PDARs can be both used as quick proxies of overall responses of species to environmental conditions. However, more importantly, our results suggest that global change will have different effects on native and non‐native species, making it inappropriate to apply the large body of knowledge on native species to understand patterns of community assembly of non‐native species.
  相似文献   

11.

Aim

We investigate whether (1) environmental predictors allow to delineate the distribution of discrete community types at the continental scale and (2) how data completeness influences model generalization in relation to the compositional variation of the modelled entities.

Location

Europe.

Methods

We used comprehensive datasets of two community types of conservation concern in Europe: acidophilous beech forests and base‐rich fens. We computed community distribution models (CDMs) calibrated with environmental predictors to predict the occurrence of both community types, evaluating geographical transferability, interpolation and extrapolation under different scenarios of sampling bias. We used generalized dissimilarity modelling (GDM) to assess the role of geographical and environmental drivers in compositional variation within the predicted distributions.

Results

For the two community types, CDMs computed for the whole study area provided good performance when evaluated by random cross‐validation and external validation. Geographical transferability provided lower but relatively good performance, while model extrapolation performed poorly when compared with interpolation. Generalized dissimilarity modelling showed a predominant effect of geographical distance on compositional variation, complemented with the environmental predictors that also influenced habitat suitability.

Main conclusions

Correlative approaches typically used for modelling the distribution of individual species are also useful for delineating the potential area of occupancy of community types at the continental scale, when using consistent definitions of the modelled entity and high data completeness. The combination of CDMs with GDM further improves the understanding of diversity patterns of plant communities, providing spatially explicit information for mapping vegetation diversity and related habitat types at large scales.
  相似文献   

12.

Aim

Farmland abandonment or “ecological rewilding” shapes species distribution and ecological process ultimately affecting the biodiversity and functionality of ecosystems. Land abandonment predictions based on alternative future socioeconomic scenarios allow foretell the future of biota in Europe. From here, we predict how these forecasts may affect large‐scale distribution of the Cinereous vulture (Aegypius monachus), an apex scavenger closely linked to Mediterranean agro‐grazing systems.

Location

Iberian Peninsula.

Methods

Firstly, we modelled nest‐site and foraging habitat selection in relation to variables quantifying physiography, trophic resources and human disturbance. Secondly, we evaluate to what extent land abandonment may affect the life traits of the species and finally we determined how potential future distribution of the species would vary according to asymmetric socioeconomic land‐abandonment predictions for year 2040.

Results

Cinereous vultures selected breeding areas with steep slopes and low human presence whereas foraging areas are characterized by high abundance of European rabbits (Oryctolagus cuniculus) and wild ungulates. Liberalization of the Common Agricultural Policy (CAP) could potentially transform positively 66% of the current nesting habitat, favouring the recovery of mature forest. Contrarily, land abandonment would negatively affect the 63% of the current foraging habitat reducing the availability of preferred food resources (wild European rabbit). On the other hand, the maintenance of the CAP would determine lower frequencies (24%–22%) of nesting and foraging habitat change.

Main conclusions

Land abandonment may result into opposite effects on the focal species because of the increase in nesting habitats and wild ungulates populations and, on the other hand, lower availability of open areas with poorer densities of European rabbits. Land‐abandonment models’ scenarios are still coarse‐grained; the apparition of new human uses in natural areas may take place at small‐sized and medium‐sized scales, ultimately adding complexity to the prediction on the future of biota and ecosystems.
  相似文献   

13.

Aim

Biogeographic approaches usually have been developed apart from population ecology, resulting in predictive models without key parameters needed to account for reproductive and behavioural limitations on dispersal. Our aim was to incorporate fully spatially explicit population traits into a classic species distribution model (SDM) using Geographic Information Systems (GIS), aiming at conservation purposes.

Location

Southern South America.

Methods

Our analysis incorporates the effects of habitat loss and fragmentation on population viability and therefore provides insights into how much spatially explicit population traits can improve the SDM prediction of habitable habitat. We utilized a well‐studied focal endemic bird of South American temperate rainforests (Scelorchilus rubecula). First, at a large scale, we assessed the historical extent habitat based on climate envelopes in an SDM. Second, we used a land cover change analysis at a regional scale to account for recent habitat loss and fragmentation. Third, we used empirically derived criteria to predict population responses to fragmented forest landscapes to identify actual losses of habitat and population. Then we selected three sites of high conservation value in southern Chile and applied our population model. Finally, we discuss the degree to which spatially explicit population traits can improve the SDM output without intervening in the modelling process itself.

Results

We found a historical habitat loss of 39.12% and an additional forest cover loss of 3.03% during 2000–2014; the latter occurred with a high degree of fragmentation, reducing the overall estimation of (1) carrying capacity by ?82.4%, ?33.1% and ?45.1% and (2) estimated number of pairs on viable populations by ?84.1%, ?33.0% and ?54.6% on the three selected sites.

Main conclusion

We conclude that our approach sharpened the SDM prediction on environmental suitability by 54.4%, adjusting the habitable area by adding population parameters through GIS, and allowing to incorporate other phenomena as fragmentation and habitat loss.
  相似文献   

14.

Aim

We develop a novel modelling framework for analysing the spatio‐temporal spread of biological invasions. The framework integrates different invasion drivers and disentangles their roles in determining observed invasion patterns by fitting models to historical distribution data. As a case study application, we analyse the spread of common ragweed (Ambrosia artemisiifolia).

Location

Central Europe.

Methods

A lattice system represents actual landscapes with environmental heterogeneity. Modelling covers the spatio‐temporal invasion sequence in this grid and integrates the effects of environmental conditions on local invasion suitability, the role of invaded cells and spatially implicit “background” introductions as propagule sources, within‐cell invasion level bulk‐up and multiple dispersal means. A modular framework design facilitates flexible numerical representation of the modelled invasion processes and customization of the model complexity. We used the framework to build and contrast increasingly complex models, and fitted them using a Bayesian inference approach with parameters estimated by Markov chain Monte Carlo (MCMC).

Results

All modelled invasion drivers codetermined the Aartemisiifolia invasion pattern. Inferences about individual drivers depended on which processes were modelled concurrently, and hence changed both quantitatively and qualitatively between models. Among others, the roles of environmental variables were assessed substantially differently subject to whether models included explicit source‐recipient cell relationships, spatio‐temporal variability in source cell strength and human‐mediated dispersal means. The largest fit improvements were found by integrating filtering effects of the environment and spatio‐temporal availability of propagule sources.

Main conclusions

Our modelling framework provides a straightforward means to build integrated invasion models and address hypotheses about the roles and mutual relationships of different putative invasion drivers. Its statistical nature and generic design make it suitable for studying many observed invasions. For efficient invasion modelling, it is important to represent changes in spatio‐temporal propagule supply by explicitly tracking the species’ colonization sequence and establishment of new populations.
  相似文献   

15.

Aim

Understanding how climate affects species distributions remains a major challenge, with the relative importance of direct physiological effects versus biotic interactions still poorly understood. We focus on three species of resource specialists (crossbill Loxia finches) to assess the role of climate in determining the seasonal availability of their food, the importance of climate and the occurrence of their food plants for explaining their current distributions, and to predict changes in their distributions under future climate change scenarios.

Location

Europe.

Methods

We used datasets on the timing of seed fall in European Scots pine Pinus sylvestris forests (where different crossbill species occur) to estimate seed fall phenology and climate data to determine its influence on spatial and temporal variation in the timing of seed fall to provide a link between climate and seed scarcity for crossbills. We used large‐scale datasets on crossbill distribution, cover of the conifers relied on by the three crossbill species and climate variables associated with timing of seed fall, to assess their relative importance for predicting crossbill distributions. We used species distribution modelling to predict changes in their distributions under climate change projections for 2070.

Results

We found that seed fall occurred 1.5–2 months earlier in southern Europe than in Sweden and Scotland and was associated with variation in spring maximum temperatures and precipitation. These climate variables and area covered with conifers relied on by the crossbills explained much of their observed distributions. Projections under global change scenarios revealed reductions in potential crossbill distributions, especially for parrot crossbills.

Main conclusions

Ranges of resource specialists are directly influenced by the presence of their food plants, with climate conditions further affecting resource availability and the window of food scarcity indirectly. Future distributions will be determined by tree responses to changing climatic conditions and the impact of climate on seed fall phenology.
  相似文献   

16.

Aim

The risk climate change poses to biodiversity is often estimated by forecasting the areas that will be climatically suitable for species in the future and measuring the distance of the “range shifts” species would have to make to reach these areas. Species’ traits could indicate their capacity to undergo range shifts. However, it is not clear how range‐shift capacity influences risk. We used traits from a recent evidence review to measure the relative potential of species to track changing climatic conditions.

Location

Europe.

Time period

Baseline period (1961–1990) and forecast period (2035–2064).

Major taxa studied

62 mammal species.

Methods

We modelled species distributions using two general circulation models and two representative concentration pathways (RCPs) to calculate three metrics of “exposure” to climate change: range area gained, range area lost and distance moved by the range margin. We identified traits that could inform species’ range‐shift capacity (i.e., potential to establish new populations and proliferate, and thus undertake range shifts), from a recent evidence‐based framework. The traits represent ecological generalization and reproductive strategy. We ranked species according to each metric of exposure and range‐shift capacity, calculating sensitivity to ranking methods, and synthesized both exposure and range‐shift capacity into “risk syndromes.”

Results

Many species studied whose survival depends on colonizing new areas were relatively unlikely to undergo range shifts. Under the worst‐case scenario, 62% of species studied were relatively highly exposed. 47% were highly exposed and had relatively low range‐shift capacity. Only 14% of species faced both low exposure and high range‐shift capacity. Both range‐shift and exposure metrics had a greater effect on risk assessments than climate models.

Main conclusions

The degree to which species’ potential ranges will be altered by climate change often does not correspond to species’ range‐shift capacities. Both exposure and range‐shift capacity should be considered when evaluating biodiversity risk from climate change.
  相似文献   

17.

Aim

We compare the present‐day global ocean climate with future climatologies based on Intergovernmental Panel on Climate Change (IPCC) models and examine whether changes in global ocean climate will affect the environmental similarity of New Zealand's (NZ) coastal environments to those of the rest of the world. Our underlying rationale is that environmental changes to source and recipient regions may result in changes to the risk of non‐indigenous species survival and establishment.

Location

Coastlines of global continents and islands.

Methods

We determined the environmental similarity (Euclidean distance) between global coastlines and north‐east NZ for 2005 and 2050 using data on coastal seawater surface temperature and salinity. Anticipated climate models from the SRES A1B scenario family were used to derive coastal climatologies for 2050.

Results

During the next decades, most global regions will experience an increase in coastal seawater surface temperatures and a decline or increase in salinity. This will result in changes in the similarity of other coastal environments to north‐east NZ's coastal areas. Global regions that presently have high environmental similarity to north‐east NZ will variously retain this level of similarity, become more similar or decrease in environmental similarity. Some regions that presently have a low level of similarity will become more similar to NZ. Our models predict a widespread decrease in the seasonal variation in environmental similarity to NZ.

Main conclusions

Anticipated changes in the global ocean climate have the potential to change the risk of survival and establishment of non‐indigenous marine species arriving to NZ from some global regions. Predicted changes to global human transport networks over the coming decades highlight the importance of incorporating climate change into conservation planning and modelling.
  相似文献   

18.

Aim

Climate is considered a major driver of species distributions. Long‐term climatic means are commonly used as predictors in correlative species distribution models (SDMs). However, this coarse temporal resolution does not reflect local conditions that populations experience, such as short‐term weather extremes, which may have a strong impact on population dynamics and local distributions. We here compare the performance of climate‐ and weather‐based predictors in regional SDMs and their influence on future predictions, which are increasingly used in conservation planning.

Location

South‐western Germany.

Methods

We built different SDMs for 20 Orthoptera species based on three predictor sets at a regional scale for current and future climate scenarios. We calculated standard bioclimatic variables and yearly and seasonal sets of climate change indicating variables of weather extremes. As the impact of extreme events may be stronger for habitat specialists than for generalists, we distinguished species’ degrees of specialization. We computed linear mixed‐effects models to identify significant effects of algorithm, predictor set and specialization on model performance and calculated correlations and geographical niche overlap between spatial predictions.

Results

Current predictions were rather similar among all predictor sets, but highly variable for future climate scenarios. Bioclimatic and seasonal weather predictors performed slightly better than yearly weather predictors, though performance differences were minor. We found no evidence that specialists are more sensitive to weather extremes than generalists.

Main conclusions

For future projections of species distributions, SDM predictor selection should not solely be based on current performances and predictions. As long‐term climate and short‐term weather predictors represent different environmental drivers of a species’ distribution, we argue to interpret diverging future projections as complements. Even if similar current performances and predictions might imply their equivalency, favouring one predictor set neglects important aspects of future distributions and might mislead conservation decisions based on them.
  相似文献   

19.

Aim

Although the negative effects of habitat fragmentation have been widely documented at the landscape scale, much less is known about its impacts on species distributions at the biogeographical scale. We hypothesize that fragmentation influences the large‐scale distribution of area‐ and edge‐sensitive species by limiting their occurrence in regions with fragmented habitats , despite otherwise favourable environmental conditions. We test this hypothesis by assessing the interplay of climate and landscape factors influencing the distribution of the calandra lark, a grassland specialist that is highly sensitive to habitat fragmentation.

Location

Iberia Peninsula, Europe.

Methods

Ecological niche modelling was used to investigate the relative influence of climate/topography, landscape fragmentation and spatial structure on calandra lark distribution. Modelling assumed explicitly a hierarchically structured effect among explanatory variables, with climate/topography operating at broader spatial scales than landscape variables. An eigenvector‐based spatial filtering approach was used to cancel bias introduced by spatial autocorrelation. The information theoretic approach was used in model selection, and variation partitioning was used to isolate the unique and shared effects of sets of explanatory variables.

Results

Climate and topography were the most influential variables shaping the distribution of calandra lark, but incorporating landscape metrics contributed significantly to model improvement. The probability of calandra lark occurrence increased with total habitat area and declined with the number of patches and edge density. Variation partitioning showed a strong overlap between variation explained by climate/topography and landscape variables. After accounting for spatial structure in species distribution, the explanatory power of environmental variables remained largely unchanged.

Main conclusions

We have shown here that landscape fragmentation can influence species distributions at the biogeographical scale. Incorporating fragmentation metrics into large‐scale ecological niche models may contribute for a better understanding of mechanism driving species distributions and for improving predictive modelling of range shifts associated with land use and climate changes.
  相似文献   

20.

Aim

As a result of their ecological traits, woodpeckers (Picidae, Aves) are highly sensitive to forest cover change. We explored the current land cover in areas of high species richness of woodpeckers to determinate regions where urgent conservation actions are needed. In addition, we identified woodpecker species that are sensitive to forest loss and that have high levels of human habitat modification and low levels of protection (through protected areas) in their distribution ranges.

Location

Global.

Methods

We joined available range maps for all extant 254 woodpecker species with information of their conservation status and tolerances to human habitat modifications and generated a richness map of woodpecker species worldwide. Then, we associated this information (the richness pattern and individual species’ maps) with land cover and protected areas (PAs) maps.

Result

We found that the foremost woodpecker species richness hotspot is in Southeast Asia and is highly modified. At the second species richness hotspot in the eastern Andes, we observed a front of deforestation at its southern extreme and a greater deforested area in its northern extreme but most of its area remains with forest coverage. At the species level, 17 species that are sensitive to forest modification experience extensive deforestation and have low extents of PAs in their ranges.

Main conclusions

The most diverse woodpecker hotspots are mostly occupied by human‐modified landscapes, and a large portion of the species there avoids anthropogenic environments. The level of representation of woodpecker species in PAs is low as a global general pattern, although slightly better in Asia. Our global analysis of threats to woodpecker from land use patterns reiterates the urgent conservation needs for Southeast Asian forests. Finally, based on our results, we recommend a re‐evaluation for inclusion in the Red List of five woodpecker species.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号