首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.

Background

Detailed knowledge of the subcellular location of each expressed protein is critical to a full understanding of its function. Fluorescence microscopy, in combination with methods for fluorescent tagging, is the most suitable current method for proteome-wide determination of subcellular location. Previous work has shown that neural network classifiers can distinguish all major protein subcellular location patterns in both 2D and 3D fluorescence microscope images. Building on these results, we evaluate here new classifiers and features to improve the recognition of protein subcellular location patterns in both 2D and 3D fluorescence microscope images.

Results

We report here a thorough comparison of the performance on this problem of eight different state-of-the-art classification methods, including neural networks, support vector machines with linear, polynomial, radial basis, and exponential radial basis kernel functions, and ensemble methods such as AdaBoost, Bagging, and Mixtures-of-Experts. Ten-fold cross validation was used to evaluate each classifier with various parameters on different Subcellular Location Feature sets representing both 2D and 3D fluorescence microscope images, including new feature sets incorporating features derived from Gabor and Daubechies wavelet transforms. After optimal parameters were chosen for each of the eight classifiers, optimal majority-voting ensemble classifiers were formed for each feature set. Comparison of results for each image for all eight classifiers permits estimation of the lower bound classification error rate for each subcellular pattern, which we interpret to reflect the fraction of cells whose patterns are distorted by mitosis, cell death or acquisition errors. Overall, we obtained statistically significant improvements in classification accuracy over the best previously published results, with the overall error rate being reduced by one-third to one-half and with the average accuracy for single 2D images being higher than 90% for the first time. In particular, the classification accuracy for the easily confused endomembrane compartments (endoplasmic reticulum, Golgi, endosomes, lysosomes) was improved by 5–15%. We achieved further improvements when classification was conducted on image sets rather than on individual cell images.

Conclusions

The availability of accurate, fast, automated classification systems for protein location patterns in conjunction with high throughput fluorescence microscope imaging techniques enables a new subfield of proteomics, location proteomics. The accuracy and sensitivity of this approach represents an important alternative to low-resolution assignments by curation or sequence-based prediction.
  相似文献   

2.

Background  

Knowledge of the subcellular location of a protein is critical to understanding how that protein works in a cell. This location is frequently determined by the interpretation of fluorescence microscope images. In recent years, automated systems have been developed for consistent and objective interpretation of such images so that the protein pattern in a single cell can be assigned to a known location category. While these systems perform with nearly perfect accuracy for single cell images of all major subcellular structures, their ability to distinguish subpatterns of an organelle (such as two Golgi proteins) is not perfect. Our goal in the work described here was to improve the ability of an automated system to decide which of two similar patterns is present in a field of cells by considering more than one cell at a time. Since cells displaying the same location pattern are often clustered together, considering multiple cells may be expected to improve discrimination between similar patterns.  相似文献   

3.

Background  

There is increasing interest in the development of computational methods to analyze fluorescent microscopy images and enable automated large-scale analysis of the subcellular localization of proteins. Determining the subcellular localization is an integral part of identifying a protein's function, and the application of bioinformatics to this problem provides a valuable tool for the annotation of proteomes. Training and validating algorithms used in image analysis research typically rely on large sets of image data, and would benefit from a large, well-annotated and highly-available database of images and associated metadata.  相似文献   

4.

Background  

The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction.  相似文献   

5.

Background  

Knowing the subcellular location of proteins provides clues to their function as well as the interconnectivity of biological processes. Dozens of tools are available for predicting protein location in the eukaryotic cell. Each tool performs well on certain data sets, but their predictions often disagree for a given protein. Since the individual tools each have particular strengths, we set out to integrate them in a way that optimally exploits their potential. The method we present here is applicable to various subcellular locations, but tailored for predicting whether or not a protein is localized in mitochondria. Knowledge of the mitochondrial proteome is relevant to understanding the role of this organelle in global cellular processes.  相似文献   

6.

Background  

Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed.  相似文献   

7.

Background  

Gene Ontology (GO) annotation, which describes the function of genes and gene products across species, has recently been used to predict protein subcellular and subnuclear localization. Existing GO-based prediction methods for protein subcellular localization use the known accession numbers of query proteins to obtain their annotated GO terms. An accurate prediction method for predicting subcellular localization of novel proteins without known accession numbers, using only the input sequence, is worth developing.  相似文献   

8.

Background  

Protein subcellular localization is crucial for genome annotation, protein function prediction, and drug discovery. Determination of subcellular localization using experimental approaches is time-consuming; thus, computational approaches become highly desirable. Extensive studies of localization prediction have led to the development of several methods including composition-based and homology-based methods. However, their performance might be significantly degraded if homologous sequences are not detected. Moreover, methods that integrate various features could suffer from the problem of low coverage in high-throughput proteomic analyses due to the lack of information to characterize unknown proteins.  相似文献   

9.

Background  

The objective of this study was to investigate the viability of level set image segmentation methods for the detection of corpora lutea (corpus luteum, CL) boundaries in ultrasonographic ovarian images. It was hypothesized that bovine CL boundaries could be located within 1–2 mm by a level set image segmentation methodology.  相似文献   

10.

Background  

The availability of genome sequences, and inferred protein coding genes, has led to several proteome-wide studies of isoelectric points. Generally, isoelectric points are distributed following variations on a biomodal theme that originates from the predominant acid and base amino acid sidechain pKas. The relative populations of the peaks in such distributions may correlate with environment, either for a whole organism or for subcellular compartments. There is also a tendency for isoelectric points averaged over a subcellular location to not coincide with the local pH, which could be related to solubility. We now calculate the correlation of other pH-dependent properties, calculated from 3D structure, with subcellular pH.  相似文献   

11.

Background  

The development of mass spectrometric techniques and fractionation methods now allows the investigation of very complex protein mixtures ranging from subcellular structures to tissues. Nevertheless, this work is particularly difficult due to the wide dynamic range of protein concentration in eukaryotic tissues. In this paper, we present a shotgun method whereby the peptides are fractionated using OFFGEL electrophoresis after iTRAQ labelling.  相似文献   

12.

Background  

Knowing the submitochondria localization of a mitochondria protein is an important step to understand its function. We develop a method which is based on an extended version of pseudo-amino acid composition to predict the protein localization within mitochondria. This work goes one step further than predicting protein subcellular location. We also try to predict the membrane protein type for mitochondrial inner membrane proteins.  相似文献   

13.

Background  

The computational prediction of mycobacterial proteins' subcellular localization is of key importance for proteome annotation and for the identification of new drug targets and vaccine candidates. Several subcellular localization classifiers have been developed over the past few years, which have comprised both general localization and feature-based classifiers. Here, we have validated the ability of different bioinformatics approaches, through the use of SignalP 2.0, TatP 1.0, LipoP 1.0, Phobius, PA-SUB 2.5, PSORTb v.2.0.4 and Gpos-PLoc, to predict secreted bacterial proteins. These computational tools were compared in terms of sensitivity, specificity and Matthew's correlation coefficient (MCC) using a set of mycobacterial proteins having less than 40% identity, none of which are included in the training data sets of the validated tools and whose subcellular localization have been experimentally confirmed. These proteins belong to the TBpred training data set, a computational tool specifically designed to predict mycobacterial proteins.  相似文献   

14.

Background  

Subcellular location prediction of proteins is an important and well-studied problem in bioinformatics. This is a problem of predicting which part in a cell a given protein is transported to, where an amino acid sequence of the protein is given as an input. This problem is becoming more important since information on subcellular location is helpful for annotation of proteins and genes and the number of complete genomes is rapidly increasing. Since existing predictors are based on various heuristics, it is important to develop a simple method with high prediction accuracies.  相似文献   

15.
16.

Background  

The success of radiation therapy depends critically on accurately delineating the target volume, which is the region of known or suspected disease in a patient. Methods that can compute a contour set defining a target volume on a set of patient images will contribute greatly to the success of radiation therapy and dramatically reduce the workload of radiation oncologists, who currently draw the target by hand on the images using simple computer drawing tools. The most challenging part of this process is to estimate where there is microscopic spread of disease.  相似文献   

17.

Background  

Polymorphonuclear neutrophils (PMN) constitute an essential cellular component of innate host defense against microbial invasion and exhibit a wide array of responses both to particulate and soluble stimuli. As the cells recruited earliest during acute inflammation, PMN respond rapidly and release a variety of potent cytotoxic agents within minutes of exposure to microbes or their products. PMN rely on the redistribution of functionally important proteins, from intracellular compartments to the plasma membrane and phagosome, as the means by which to respond quickly. To determine the range of membrane proteins available for rapid recruitment during PMN activation, we analyzed the proteins in subcellular fractions enriched for plasma membrane and secretory vesicles recovered from the light membrane fraction of resting PMN after Percoll gradient centrifugation and free-flow electrophoresis purification using mass spectrometry-based proteomics methods.  相似文献   

18.

Background  

The aim of this study was to determine the intra- and inter-observer variability in the evaluation of embryo quality. Multilevel images of embryos on day 1, day 2 and day 3, were analysed using different morphological parameters.  相似文献   

19.

Background  

Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy.  相似文献   

20.

Background  

In eukaryotic cells, oxidative phosphorylation (OXPHOS) uses the products of both nuclear and mitochondrial genes to generate cellular ATP. Interspecies comparative analysis of these genes, which appear to be under strong functional constraints, may shed light on the evolutionary mechanisms that act on a set of genes correlated by function and subcellular localization of their products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号