首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Z-DNA, the left-handed conformer of DNA, is stabilized by the negative supercoiling generated during the movement of an RNA polymerase through a gene. Recently, we have shown that the editing enzyme ADAR1 (double-stranded RNA adenosine deaminase, type 1) has two Z-DNA binding motifs, Zalpha and Zbeta, the function of which is currently unknown. Here we show that a peptide containing the Zalpha motif binds with high affinity to Z-DNA as a dimer, that the binding site is no larger than 6 bp and that the Zalpha domain can flip a range of sequences, including d(TA)3, into the Z-DNAconformation. Evidence is also presented to show that Zalpha and Zbeta interact to form a functional DNA binding site. Studies with atomic force microscopy reveal that binding of Zalpha to supercoiled plasmids is associated with relaxation of the plasmid. Pronounced kinking of DNA is observed, and appears to be induced by binding of Zalpha. The results reported here support a model where the Z-DNA binding motifs target ADAR1 to regions of negative supercoiling in actively transcribing genes. In this situation, binding by Zalpha would be dependent upon the local level of negative superhelicity rather than the presence of any particular sequence.  相似文献   

2.
The A form RNA double helix can be transformed to a left-handed helix, called Z-RNA. Currently, little is known about the detailed structural features of Z-RNA or its involvement in cellular processes. The discovery that certain interferon-response proteins have domains that can stabilize Z-RNA as well as Z-DNA opens the way for the study of Z-RNA. Here, we present the 2.25 A crystal structure of the Zalpha domain of the RNA-editing enzyme ADAR1 (double-stranded RNA adenosine deaminase) complexed to a dUr(CG)(3) duplex RNA. The Z-RNA helix is associated with a unique solvent pattern that distinguishes it from the otherwise similar conformation of Z-DNA. Based on the structure, we propose a model suggesting how differences in solvation lead to two types of Z-RNA structures. The interaction of Zalpha with Z-RNA demonstrates how the interferon-induced isoform of ADAR1 could be targeted toward selected dsRNAs containing purine-pyrimidine repeats, possibly of viral origin.  相似文献   

3.
Zab is a structurally defined protein domain that binds specifically to DNA in the Z conformation. It consists of amino acids 133-368 from the N terminus of human double-stranded RNA adenosine deaminase, which is implicated in RNA editing. Zab contains two motifs with related sequence, Zalpha and Zbeta. Zalpha alone is capable of binding Z-DNA with high affinity, whereas Zbeta alone has little DNA binding activity. Instead, Zbeta modulates Zalpha binding, resulting in increased sequence specificity for alternating (dCdG)n as compared with (dCdA/dTdG)n. This relative specificity has previously been demonstrated with short oligonucleotides. Here we demonstrate that Zab can also bind tightly to (dCdG)n stabilized in the Z form in supercoiled plasmids. Binding was assayed by monitoring cleavage of the plasmids using fusion nucleases, in which Z-DNA-binding peptides from the N terminus of double-stranded RNA adenosine deaminase are linked to the nuclease domain of FokI. A fusion nuclease containing Zalpha shows less sequence specificity, as well as less conformation specificity, than one containing Zab. Further, a construct in which Zbeta has been replaced in Zab with Zalpha, cleaves Z-DNA regions in supercoiled plasmids more efficiently than the wild type but with little sequence specificity. We conclude that in the Zab domain, both Zalpha and Zbeta contact DNA. Zalpha contributes contacts that produce conformation specificity but not sequence specificity. In contrast, Zbeta contributes weakly to binding affinity but discriminates between sequences of Z-DNAs.  相似文献   

4.
The first crystal structure of a protein, the Z alpha high affinity binding domain of the RNA editing enzyme ADAR1, bound to left-handed Z-DNA was recently described. The essential set of residues determined from this structure to be critical for Z-DNA recognition was used to search the database for other proteins with the potential for Z-DNA binding. We found that the tumor-associated protein DLM-1 contains a domain with remarkable sequence similarities to Z alpha(ADAR). Here we report the crystal structure of this DLM-1 domain bound to left-handed Z-DNA at 1.85 A resolution. Comparison of Z-DNA binding by DLM-1 and ADAR1 reveals a common structure-specific recognition core within the binding domain. However, the domains differ in certain residues peripheral to the protein-DNA interface. These structures reveal a general mechanism of Z-DNA recognition, suggesting the existence of a family of winged-helix proteins sharing a common Z-DNA binding motif.  相似文献   

5.
The Zalpha domains represent a growing subfamily of the winged helix-turn-helix (HTH) domain family whose members share a remarkable ability to bind specifically to Z-DNA and/or Z-RNA. They have been found exclusively in proteins involved in interferon response and, while their importance in determining pox viral pathogenicity has been demonstrated, their actual target and biological role remain obscure. Cellular proteins containing Zalpha domains bear a second homologous domain termed Zbeta, which appears to lack the ability to bind left-handed nucleic acids. Here, we present the crystal structure of the Zbeta domain from the human double-stranded RNA adenosine deaminase ADAR1 at 0.97 A, determined by single isomorphous replacement including anomalous scattering. Zbeta maintains a winged-HTH fold with the addition of a C-terminal helix. Mapping of the Zbeta conservation profile on the Zbeta surface reveals a new conserved surface formed partly by the terminal helix 4, involved in metal binding and dimerization and absent from Zalpha domains. Our results show how two domains similar in fold may have evolved into different functional entities even in the context of the same protein.  相似文献   

6.
ZBP1 is involved in host responses against cellular stresses, including tumorigenesis and viral infection. Structurally, it harbors two copies of the Zalpha domain containing the Zalpha motif, at its N terminus. Here, we attempted to characterize the Z-DNA binding activities of two Zalpha domains in the human ZBP1, hZalpha(ZBP1) and hZbeta(ZBP1), using circular dichroism (CD). Our results indicated that both hZalpha(ZBP1) and hZbeta(ZBP1) are viable Z-DNA binders, and their binding activities are comparable to those of previously-established Zalpha domains. Additionally, we crystallized hZbeta(ZBP1) in a complex with Z-DNA, d(TCGCGCG)2. The crystal diffracted to 1.45 angstroms, and belongs to the P2(1)2(1)2(1) space group, with the unit-cell parameters: a = 29.53 angstroms, b = 58.25 angstroms, and c = 88.61 angstroms. The delineation of this structure will provide insight into the manner in which diverse Zalpha motifs recognize Z-DNA.  相似文献   

7.
8.
The RNA-dependent protein kinase PKR plays a central role in the antiviral defense of vertebrates by shutting down protein translation upon detection of viral dsRNA in the cytoplasm. In some teleost fish, PKZ, a homolog of PKR, performs the same function, but surprisingly, instead of dsRNA binding domains, it harbors two Z-DNA/Z-RNA-binding domains belonging to the Zalpha domain family. Zalpha domains have also been found in other proteins, which have key roles in the regulation of interferon responses such as ADAR1 and DNA-dependent activator of IFN-regulatory factors (DAI) and in viral proteins involved in immune response evasion such as the poxviral E3L and the Cyprinid Herpesvirus 3 ORF112. The underlying mechanism of nucleic acids binding and stabilization by Zalpha domains is still unclear. Here, we present two crystal structures of the zebrafish PKZ Zalpha domain (DrZalphaPKZ) in alternatively organized complexes with a (CG)6 DNA oligonucleotide at 2 and 1.8 Å resolution. These structures reveal novel aspects of the Zalpha interaction with DNA, and they give insights on the arrangement of multiple Zalpha domains on DNA helices longer than the minimal binding site.  相似文献   

9.
The involvement of A to I RNA editing in antiviral responses was first indicated by the observation of genomic hyper-mutation for several RNA viruses in the course of persistent infections. However, in only a few cases an antiviral role was ever demonstrated and surprisingly, it turns out that ADARs - the RNA editing enzymes - may have a prominent pro-viral role through the modulation/down-regulation of the interferon response. A key role in this regulatory function of RNA editing is played by ADAR1, an interferon inducible RNA editing enzyme. A distinguishing feature of ADAR1, when compared with other ADARs, is the presence of a Z-DNA binding domain, Zalpha. Since the initial discovery of the specific and high affinity binding of Zalpha to CpG repeats in a left-handed helical conformation, other proteins, all related to the interferon response pathway, were shown to have similar domains throughout the vertebrate lineage. What is the biological function of this domain family remains unclear but a significant body of work provides pieces of a puzzle that points to an important role of Zalpha domains in the recognition of foreign nucleic acids in the cytoplasm by the innate immune system. Here we will provide an overview of our knowledge on ADAR1 function in interferon response with emphasis on Zalpha domains.  相似文献   

10.
The E3L gene is essential for pathogenesis in vaccinia virus. The E3L gene product consists of an N-terminal Zα domain and a C-terminal double-stranded RNA (dsRNA) binding domain; the left-handed Z-DNA-binding activity of the Zα domain of E3L is required for viral pathogenicity in mice. E3L is highly conserved among poxviruses, including the smallpox virus, and it is likely that the orthologous Zα domains play similar roles. To better understand the biological function of E3L proteins, we have investigated the Z-DNA-binding behavior of five representative Zα domains from poxviruses. Using surface plasmon resonance (SPR), we have demonstrated that these viral Zα domains bind Z-DNA tightly. Ability of ZαE3L converting B-DNA to Z-DNA was measured by circular dichroism (CD). The extents to which these Zαs can stabilize Z-DNA vary considerably. Mutational studies demonstrate that residues in the loop of the β-wing play an important role in this stabilization. Notably the Zα domain of vaccinia E3L acquires ability to convert B-DNA to Z-DNA by mutating amino acid residues in this region. Differences in the host cells of the various poxviruses may require different abilities to stabilize Z-DNA; this may be reflected in the observed differences in behavior in these Zα proteins.  相似文献   

11.
The Zalpha domain (yabaZalpha(E3L)) of the E3L protein homologue from Yaba-like disease virus, a yatavirus, was co-crystallized with d(TCGCGCG)(2) in the Z-conformation. The crystals belong to the P2(1)2(1)2 space group, with unit-cell parameters a=51.20 Angstroms, b=92.45 Angstroms, c=48.02 Angstroms, alpha=beta= gamma=90 degrees. The diffraction data were collected up to a resolution of 2.2 Angstroms. The structure of viral Zalpha motif will provide an insight into how diverse Zalpha motifs recognize Z-DNA.  相似文献   

12.
The hnRNP C proteins are among the most abundant and avid pre-mRNA-binding proteins and they contain a consensus sequence RNA-binding domain (RBD) that is found in a large number of RNA-binding proteins. The interaction of the RBD of the hnRNP C proteins with an RNA oligonucleotide [r(U)8] was monitored by nuclear magnetic resonance (NMR). 15N and 13C/15N-labelled hnRNP C protein RBD was mixed with r(U)8 and one- and two-dimensional (1D and 2D) NMR spectra were recorded in a titration experiment. NMR studies of the uncomplexed 93 amino acid hnRNP C RBD (Wittekind et al., 1992) have shown that it has a compact folded structure (beta alpha beta beta alpha beta), which is typical for the RBD of this family of proteins and which is comprised of a four-stranded antiparallel beta-sheet, two alpha-helices and relatively unstructured amino- and carboxy-terminal regions. Sequential assignments of the polypeptide main-chain atoms of the hnRNP C RBD-r(U)8 complex revealed that these typical structural features are maintained in the complex, but significant perturbations of the chemical shifts of amide group atoms occur in a large number of residues. Most of these residues are in the beta-sheet region and especially in the terminal regions of the RBD. In contrast; chemical shifts of the residues of the well conserved alpha-helices, with the exception of Lys30, are not significantly perturbed. These observations localize the candidate residues of the RBD that are involved in the interaction with the RNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
ALY is a ubiquitously expressed nuclear protein which interacts with proteins such as TAP that are involved in export of mRNA from the nucleus to the cytoplasm, as well as with proteins that bind the T cell receptor alpha gene enhancer. ALY has also been shown to bind mRNA and to co-localize in the nucleus with components of a multiprotein postsplicing complex that is deposited 20-24 nucleotides upstream of exon-exon junctions. ALY has a conserved RNA binding domain (RBD) flanked by Gly-Arg rich N-terminal and C-terminal sequences. We determined the solution structure of the RBD homology region in ALY by nuclear magnetic resonance methods. The RBD motif in ALY has a characteristic beta(1)alpha(1)beta(2)-beta(3)alpha(2)beta(4) fold, consisting of a beta sheet composed of four antiparallel beta strands and two alpha helices that pack on one face of the beta sheet. As in other RBD structures, the beta sheet has an exposed face with hydrophobic and charged residues that could modulate interactions with other molecules. The loop that connects beta strands 2 and 3 is in intermediate motion in the NMR time scale, which is also characteristic of other RBDs. This loop presents side chains close to the exposed surface of the beta sheet and is a primary candidate site for intermolecular interactions. The structure of the conserved RBD of ALY provides insight into the nature of interactions involving this multifunctional protein.  相似文献   

14.
The catalytic site of Escherichia coli F1 was probed using a reactive ATP analogue, adenosine triphosphopyridoxal (AP3-PL). For complete loss of enzyme activity, about 1 mol of AP3-PL bound to 1 mol of F1 was estimated to be required in the presence or absence of Mg2+. About 70% of the label was bound to the alpha subunit and the rest to the beta subunit in the absence of Mg2+, and the alpha Lys-201 and beta Lys-155 residues, respectively, were the major target residues (Tagaya, M., Noumi, T., Nakano, K., Futai, M., and Fukui, T. (1988) FEBS Lett. 233, 347-351). Addition of Mg2+ decreased the AP3-PL concentration required for half-maximal inhibition, and predominant labeling of the beta subunit (beta Lys-155 and beta Lys-201) with the reagent. ATP and ADP were protective ligands in the presence and absence of Mg2+. The alpha subunit mutation (alpha Lys-201----Gln or alpha Lys-201 deletion) were active in oxidative phosphorylation. However, purified mutant F1s showed impaired low multi-site activity, although their uni-site catalyses were essentially normal. Thus alpha Lys-201 is not a catalytic residue, but may be important for catalytic cooperativity. Mutant F1s were inhibited less by AP3-PL in the absence of Mg2+, and consistent with this, modifications of their alpha subunits by AP3-PL were reduced. AP3-PL was more inhibitory to the mutant enzymes in the presence of Mg2+, and bound to the beta Lys-155 and beta Lys-201 residues of mutant F1 (alpha Lys-201----Gln). These results strongly suggest that alpha Lys-201, beta Lys-155, and beta Lys-201 are located close together near the gamma-phosphate group of ATP bound to the catalytic site, and that the two beta residues and the gamma-phosphate group become closer to each other in the presence of Mg2+.  相似文献   

15.
Ribonuclease P (RNase P) is the endonuclease responsible for the removal of 5' leader sequences from tRNA precursors. The crystal structure of an archaeal RNase P protein, Ph1771p (residues 36-127) from hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined at 2.0 A resolution by X-ray crystallography. The structure is composed of four helices (alpha1-alpha4) and a six-stranded antiparallel beta-sheet (beta1-beta6) with a protruding beta-strand (beta7) at the C-terminal region. The strand beta7 forms an antiparallel beta-sheet by interacting with strand beta4 in a symmetry-related molecule, suggesting that strands beta4 and beta7 could be involved in protein-protein interactions with other RNase P proteins. Structural comparison showed that the beta-barrel structure of Ph1771p has a topological resemblance to those of Staphylococcus aureus translational regulator Hfq and Haloarcula marismortui ribosomal protein L21E, suggesting that these RNA binding proteins have a common ancestor and then diverged to specifically bind to their cognate RNAs. The structure analysis as well as structural comparison suggested two possible RNA binding sites in Ph1771p, one being a concave surface formed by terminal alpha-helices (alpha1-alpha4) and beta-strand beta6, where positively charged residues are clustered. A second possible RNA binding site is at a loop region connecting strands beta2 and beta3, where conserved hydrophilic residues are exposed to the solvent and interact specifically with sulfate ion. These two potential sites for RNA binding are located in close proximity. The crystal structure of Ph1771p provides insight into the structure and function relationships of archaeal and eukaryotic RNase P.  相似文献   

16.
17.
18.
The spliceosomal protein p14, a component of the SF3b complex in the U2 small nuclear ribonucleoprotein (snRNP), is essential for the U2 snRNP to recognize the branch site adenosine. The elucidation of the dynamic process of the splicing machinery rearrangement awaited the solution structural information. We identified a suitable complex of human p14 and the SF3b155 fragment for the determination of its solution structure by NMR. In addition to the overall structure of the complex, which was recently reported in a crystallographic study (typical RNA recognition motif fold beta1-alpha1-beta2-beta3-alpha2-beta4 of p14, and alphaA-betaA fold of the SF3b155 fragment), we identified three important features revealed by the NMR solution structure. First, the C-terminal extension and the nuclear localization signal of p14 (alpha3 and alpha4 in the crystal structure, respectively) were dispensable for the complex formation. Second, the proline-rich segment of SF3b155, following betaA, closely approaches p14. Third, interestingly, the beta1-alpha1 loop and the alpha2-beta4 beta-hairpin form a positively charged groove. Extensive mutagenesis analyses revealed the functional relevance of the residues involved in the protein-protein interactions: two aromatic residues of SF3b155 (Phe408 and Tyr412) play crucial roles in the complex formation, and two hydrophobic residues (Val414 and Leu415) in SF3b 155 serve as an anchor for the complex formation, by cooperating with the aromatic residues. These findings clearly led to the conclusion that SFb155 binds to p14 with three contact points, involving Phe408, Tyr412, and Val414/Leu415. Furthermore, to dissect the interactions between p14 and the branch site RNA, we performed chemical-shift-perturbation experiments, not only for the main-chain but also for the side-chain resonances, for several p14-SF3b155 complex constructs upon binding to RNA. These analyses identified a positively charged groove and the C-terminal extension of p14 as RNA-binding sites. Strikingly, an aromatic residue in the beta1-alpha1 loop, Tyr28, and a positively charged residue in the alpha2-beta4 beta-hairpin, Agr85, are critical for the RNA-binding activity of the positively charged groove. The Tyr28Ala and Arg85Ala point mutants and a deletion mutant of the C-terminal extension clearly revealed that their RNA binding activities were independent of each other. Collectively, this study provides details for the protein-recognition mode of p14 and insight into the branch site recognition.  相似文献   

19.
Integrin cytoplasmic tails regulate integrin activation that is required for high affinity binding with ligands. The interaction of the integrin beta subunit tail with a cytoplasmic protein, talin, largely contributes to integrin activation. Here we report the cooperative interaction of the beta3 membrane-proximal and -distal residues in regulation of talin-mediated alpha IIb beta3 activation. Because a chimeric integrin, alpha IIb beta3/beta1, in which the beta3 tail was replaced with the beta1 tail was constitutively active, we searched for the residues responsible for integrin activation among the residues that differed between the beta3 and beta1 tails. Single amino acid substitutions of Ile-719 and Glu-749 in the beta3 membrane-proximal and -distal regions, respectively, with the corresponding beta1 residues or alanine rendered alphaIIbbeta3 constitutively active. The I719M/E749S double mutant had the same ligand binding activity as alpha IIb beta3/beta1. These beta3 mutations also induced alphaVbeta3 activation. Conversely, substitution of Met-719 or Ser-749 in the beta1 tail with the corresponding beta3 tail residue (M719I or S749E) inhibited alpha IIb beta3/beta1 activation, and the M719I/S749E double mutant inhibited ligand binding to a level comparable with that of the wild-type alpha IIb beta3. Knock down of talin by short hairpin RNA inhibited the I719M- and E749S-induced alpha IIb beta3 activation. These results suggest that the beta3 membrane-proximal and -distal residues cooperatively regulate talin-mediated alpha IIb beta3 activation.  相似文献   

20.
Musashi1 is an RNA-binding protein abundantly expressed in the developing mouse central nervous system. Its restricted expression in neural precursor cells suggests that it is involved in the regulation of asymmetric cell division. Musashi1 contains two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2. Our previous studies showed that RBD1 alone binds to RNA, while the binding of RBD2 is not detected under the same conditions. Joining of RBD2 to RBD1, however, increases the affinity to greater than that of RBD1 alone, indicating that RBD2 contributes to RNA-binding. We have determined the three-dimensional solution structure of the C-terminal RBD (RBD2) of Musashi1 by NMR. It folds into a compact alpha beta structure comprising a four-stranded antiparallel beta-sheet packed against two alpha-helices, which is characteristic of RNP-type RBDs. Special structural features of RBD2 include a beta-bulge in beta2 and a shallow twist of the beta-sheet. The smaller 1H-15N nuclear Overhauser enhancement values for the residues of loop 3 between beta2 and beta3 suggest that this loop is flexible in the time-scale of nano- to picosecond order. The smaller 15N T2 values for the residues around the border between alpha2 and the following loop (loop 5) suggest this region undergoes conformational exchange in the milli- to microsecond time-scale. Chemical shift perturbation analysis indicated that RBD2 binds to an RNA oligomer obtained by in vitro selection under the conditions for NMR measurements, and thus the nature of the weak RNA-binding of RBD2 was successfully characterized by NMR, which is otherwise difficult to assess. Mainly the residues of the surface composed of the four-stranded beta-sheet, loops and C-terminal region are involved in the interaction. The appearance of side-chain NH proton resonances of arginine residues of loop 3 and imino proton resonances of RNA bases upon complex formation suggests the formation of intermolecular hydrogen bonds. The structural arrangement of the rings of the conserved aromatic residues of beta2 and beta3 is suitable for stacking interaction with RNA bases, known to be one of the major protein-RNA interactions, but a survey of the perturbation data suggested that the stacking interaction is not ideally achieved in the complex, which may be related to the weaker RNA-binding of RBD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号