首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xylem embolism and drought-induced stomatal closure in maize   总被引:10,自引:0,他引:10  
Cochard H 《Planta》2002,215(3):466-471
Water relations during drought and xylem vulnerability to embolism were studied on four maize ( Zea mays L.) genotypes having contrasting grain yields under drought conditions. Drought provoked a drop in xylem pressure, leaf water potential and whole-plant transpiration. Transpiration was reduced to a minimum value when xylem pressures reached ca. -1.6 MPa. This value corresponded to the threshold xylem pressure below which xylem embolism developed to a substantial degree in leaf midribs. Therefore, xylem embolism always remained low in leaf veins, even when plants exhibited clear water-stress symptoms. This suggests that stomatal closure during drought contains xylem embolism to a minimum value. Cavitation resistance was not related to grain yield under drought conditions for the four genotypes evaluated. However, it can be speculated that an increase in cavitation resistance by cultural practices or genetic selection may increase drought survival in maize.  相似文献   

2.
Water stress induced cavitation and embolism in some woody plants   总被引:30,自引:0,他引:30  
A comparison was made of the relative vulnerability of xylem conduits to cavitation and embolism in three species [ Thuja occidentalis L., Tsuga canadensis (L.) Carr. and Acer saccharum Marsh.]. Waterlogged samples of wood were air dehydrated while measuring relative water loss, loss of hydraulic conductance, cumulative acoustic emissions (= cavitations) and xylem water potential. Most cavitation events and loss of hydraulic conductance occurred while water potential declined from – 1 to –6 MPa. There were differences in vulnerability between species. Other people have hypothesized that large xylem conduits (e.g. vessels) should be more vulnerable to cavitations than small conduits (e.g. tracheids). Our findings are contrary to this hypothesis. Under water stress, the vessel bearing wood retained water better than tracheid bearing wood. However, within a species large conduits were more prone to cavitation than small conduits.  相似文献   

3.
《植物生态学报》2016,40(8):834
To maintain long-distance water transport in woody plants is critical for their survival, growth and development. Water under tension is in a metastable state and prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity, and eventually plant death. In face to water stress-induced cavitation, plants either reduce frequency of embolism occurrence through cavitation resistance with specialized anatomical struc- ture, or/and form a metabolically active embolism repair mechanism. For the xylem embolism and repair, however, there are controversies regarding the occurring frequency, conditions and underlying mechanisms. In this review paper, we first examined the process, temporal dynamics and frequency of xylem embolism and repair. Then, we summarized hypotheses for the mechanisms of the novel refilling in xylem embolism repair, including the osmotic hypothesis, the reverse osmotic hypothesis, the phloem-driven refilling hypothesis, and the phloem unloading hypothesis. We further compared differences in xylem embolism and repair between conifers and angiosperms tree species, and examined the trade-offs between cavitation resistance and xylem recovery performance. Finally, we proposed four priorities in future research in this field: (1) to improve measuring technology of xylem embolism; (2) to test hypotheses for the mechanisms of the novel refilling in xylem embolism repair and the signal triggering xylem refilling; (3) to explore species-specific trait differences related to xylem embolism and repair and their underlying trade-off relationships; and (4) to enhance studies on the relationship between the involvement of carbon metabolism and aquaporins expression in xylem embolism and repair.  相似文献   

4.
5.
7种木本植物根和小枝木质部栓塞的脆弱性   总被引:7,自引:0,他引:7  
安锋  张硕新 《生态学报》2005,25(8):1928-1933
用脆弱曲线表示的植物木质部栓塞脆弱性反映了植物木质部栓塞程度与其水势间的关系。众多学者的研究结果表明,脆弱曲线能够提供有关植物的许多生理生态信息,与植物的木质部结构、部位、分布、抗寒、抗旱性等存在一定关系,但各国学者利用不同材料研究得出的结果各异,为了研究木质部栓塞的这种差异是否由于树木对环境适应性不同引起,选取西北农林科技大学西林校区内自然状况下生长良好的5个耐旱树种:刺槐(RobiniapseudoacaciaL.)、元宝枫(AcertruncatumBge.)(低水势忍耐脱水耐旱树种)、白榆(UlmuspumilaL.)(亚低水势忍耐脱水耐旱树种)、油松(PinustabulaeformisCarr.)、白皮松(PinusbungeanaZucc.ex.Endl.)(高水势延迟脱水耐旱树种),及中生的女贞(LigustrumlucidumAit.)和柳树(SalixmatsudanaKoidz.f.pendulaSchneid.)为研究对象,绘制了它们根和小枝的木质部栓塞脆弱曲线,探讨了中生树种和不同耐旱类型树种根和小枝木质部栓塞脆弱性的差异。结果表明:根和小枝的栓塞脆弱性主要由木质部结构决定,栓塞脆弱性顺序基本一致,小枝容易发生木质部栓塞的,其根也较容易发生栓塞;同一树种根和小枝的木质部栓塞脆弱性与植物的耐旱性有关,与树种的耐旱策略无关;一般是中生树种的栓塞脆弱性:小枝>根;耐旱树种的栓塞脆弱性:根>小枝。  相似文献   

6.
7.
 以同处于干旱区的塔里木河下游(铁干里克)和黑河下游(乌兰图格)断面为研究区, 比较了荒漠河岸林主要建群种胡杨(Populus euphratica)、柽柳(Tamarix spp.)、疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspia)在长期遭受不同干旱胁迫下的根、枝条木质部导水力和栓塞化程度的变化特征, 并分析了木质部导水对干旱胁迫的响应及适应策略。结果表明: 1) 黑河下游荒漠河岸林植物的导水能力显著高于塔里木河下游, 其中柽柳、胡杨、疏叶骆驼刺和花花柴根木质部的初始比导率(Ks0)分别高11.97、6.74、7.10和3.73倍, 枝条的Ks0分别高9.48、3.65、2.07和1.88倍, 地下水埋深导致的干旱胁迫程度不同是诱发荒漠植物导水能力差异的根本原因; 2)柽柳耐干旱能力最强, 适应范围较宽, 而花花柴、疏叶骆驼刺的耐旱性相对较弱, 适生范围较窄, 这可能与植物的根系分布有关; 3)干旱胁迫较轻时, 枝条木质部是荒漠河岸林植物水分传输的主要阻力部位, 干旱胁迫严重时, 根木质部是限制植株水流的最大阻碍部位; 4)荒漠河岸林植物主要通过调节枝条木质部的水流阻力来适应干旱胁迫, 且其适应策略与干旱胁迫程度有关, 干旱胁迫轻时, 植物通过限制枝条木质部水流来协调整株植物的均匀生长; 干旱胁迫严重时, 植物通过牺牲劣势枝条、增强优势枝条水流来提高植株整体生存的机会。  相似文献   

8.
9.
10.
Seedling emergence from scarified seeds and mortality of different seedling cohorts of five African savanna woody species (Acacia polyacantha, A. sieberana, Bauhinia thonningii, Dichrostachys cinerea and Ziziphus abyssinica) were studied under field conditions at a site in central Zambia. The study was conducted over a 4-year period, from 2003 to 2007. The objectives of the study were to determine climate factors that significantly influence seedling emergence rate and mortality in order to assess likely responses of the studied species to a warmer climate. Mean seedling emergence rate was 12% in D. cinerea and Z. abyssinica, 17% in B. thonningii, 47% in A. poyacantha and 62% in A. sieberana. Climate factors did not significantly affect seedling emergence in A. sieberana while temperature significantly influenced seedling emergence rate in the other species. Under a 1° warmer climate, seedling emergence rate was predicted to decline in A. polyacantha, B. thonningii and Z. abysssinica but is likely to increase slightly in D. cinerea. Time of seedling emergence during the wet season did not appear to affect seedling survival. Temperature also significantly influenced seedling mortality in all the studied species such that under a warmer climate, mortality was predicted to increase in A. sieberana and D. cinerea but decrease in A. polyacantha, B. thonningii and Z. abyssinica. As the studied species exhibited differential optimum temperature conditions for seedling emergence and seedling survival, they are likely to respond to climate warming in different but predictable ways. The results of the study are useful to forest management and development of climate change adaptation strategies in southern Africa.  相似文献   

11.
Bulkiness, longevity and solidity of the body in woody plants enable the successive development of accessory shoots and adventitious roots in (1) both proximal and distal positions on organs, (2) both the above-ground and below-ground space, (3) both the aerial and soil environments. In monocotyledons, woody rhizomes play an essential role in the basic growth habit and architectural models. In dicotyledonous and a few gymnospermous trees, attached and successively disconnected ramets play a multilateral role in the pertinent life strategies. The majority of sprouts, coppice shoots and root suckers behave as opportunistic organs (a) serving as means of vegetative reproduction, (b) securing colonization of unoccupied ground, (c) increasing competitive power of the species within the community, (d) increasing survival rate of the stressed/disturbed genet in marginal habitats, (e) forming replacement for ageing or damaged organs, and (f) enabling reiteration of the genet's entire architectural model.  相似文献   

12.
Carbohydrate sources and sinks in woody plants   总被引:1,自引:0,他引:1  
Each perennial woody plant is a highly integrated system of competing carbohydrate sinks (utilization sites). Internal competition for carbohydrates is shown by changes in rates of carbohydrate movement from sources to sinks and reversals in direction of carbohydrate transport as the relative sink strengths of various organs change. Most carbohydrates are produced in foliage leaves but some are synthesized in cotyledons, hypocotyls, buds, twigs, stems, flowers, fruits, and strobili. Although the bulk of the carbohydrate pool moves to sinks through the phloem, some carbohydrates are obtained by sinks from the xylem sap. Sugars are actively accumulated in the phloem and move passively to sinks along a concentration gradient. The dry weight of a mature woody plant represents only a small proportion of the photosynthate it produced. This discrepancy results not only from consumption of plant tissues by herbivores and shedding of plant parts, but also from depletion of carbohydrates by respiration, leaching, exudation, secretion, translocation to other plants through root grafts and mycorrhizae and losses to parasites. Large spatial and temporal variations occur in the use of reserve- and currently produced carbohydrates in metabolism and growth of shoots, stems, roots, and reproductive structures. A portion of the carbohydrate pool is diverted for production of chemicals involved in defense against fungi, herbivores, and competing plants. Woody plants accumulate carbohydrates during periods of excess production and deplete carbohydrates when the rate of utilization exceeds the rate of production. Stored carbohydrates play an important role in metabolism, growth, defense, cold hardiness, and postponement or prevention of plant mortality.  相似文献   

13.
14.
Seedling establishment is central to population maintenance for nonclonal plant species. Plants with low recruitment rates are expected to have high survival rates, and life history theory indicates there should be a single curve for the trade-off between recruitment and mortality that applies to most or all plant species. Alpine perennials are thought to have extraordinarily low recruitment rates because of the harsh environment, but the importance of recruitment in the life history of these plants is unknown. Two alpine cushion plant species, Minuartia obtusiloba and Paronychia pulvinata, were used to (1) determine the role of recruitment in population maintenance and (2) determine whether the fecundity/mortality trade-off for these alpine plants falls on or off of the curve for other perennial plant species. Using size-based population projection matrices, we determined that the life history of Minuartia and Paronychia emphasizes recruitment less than that of any other nonclonal species in a literature survey. Estimated maximum life spans of these two species are 200 and 324 yr, respectively, and a regression with other perennial species from the literature indicated that the relationship between fecundity and mortality in these alpine species is consistent with the predicted trade-off curve for perennial species from other environments.  相似文献   

15.
16.
17.
Refilling of embolized vessels requires a source of water and the release of energy stored in xylem parenchyma cells. Past evidence suggests that embolism presence can trigger a biological response that is switched off upon successful vessel refilling. As embolism formation is a purely physical process and most biological triggers rely on chemical sensors, we hypothesized that accumulation of osmotic compounds in walls of embolized vessels are involved in the embolism sensing mechanism. Analysis of Populus trichocarpa's response to infiltration of sucrose, monosaccharides, polyethylene glycol and potassium chloride into the xylem revealed that only presence of sucrose resulted in a simultaneous physiological and molecular response similar to that induced by embolism. This response included reduction of the starch pool in xylem parenchyma cells and significant correlation of gene expression from aquaporins, amylases and sugar transporter families. The work provides evidence of the ability of plants to sense embolism and suggests that sucrose concentration is the stimulus that allows plants to trigger a biological response to embolism.  相似文献   

18.
Hodson  Martin J.  Guppy  Christopher N. 《Plant and Soil》2022,477(1-2):233-239
Plant and Soil - In 1983, Raven suggested that silica could substitute for lignin or cellulose as a structural material in plants, and should be favoured because of its lower energetic costs. He...  相似文献   

19.
West、Brown和Enquist提出的植物分形网络模型(简称WBE模型)认为: 植物的分支指数(1/a, 1/b)决定植物的代谢指数, 当分支指数1/a、1/b分别为理论值2.0、3.0时, 代谢速率与个体大小的3/4次幂成正比, 但是恒定的3/4代谢指数并不能全面地反映植物的代谢情况。基于分支指数的协同变化, Price、Enquist和Savage对WBE模型进行扩展, 提出植物分支参数协同变化模型(简称PES模型)。该文借助于PES模型分析了7种木本植物的分支指数和代谢指数。结果表明: 物种间叶面积与叶生物量呈异速生长关系, 基于叶面积得到的分支指数1/a和代谢指数θ在物种间无显著差异, 基于叶生物量得到的分支指数1/a、1/b和代谢指数θ在物种间均存在显著差异, 但基于叶面积和叶生物量分别拟合出的整体分支指数1/a、1/b和代谢指数θ与理论值均无显著差异, 且用叶面积作为代谢速率的替代指标比用叶生物量分析得出的代谢指数与理论值更接近。今后研究应当关注植物叶面积与叶生物量的异速生长关系对植物代谢速率及相关功能特性的影响。  相似文献   

20.
Size and sex allocation in monoecious woody plants   总被引:2,自引:0,他引:2  
John F. Fox 《Oecologia》1993,94(1):110-113
The female size advantage hypothesis predicts that the allocation ratio of female: male reproductive effort should increase with plant size (total reproductive effort). A male height advantage hypothesis has also been proposed, based on the supposed greater advantage of height to male reproductive success in wind-pollinated plants. These ideas were tested with data for wind-pollinated, monoecious trees and shrubs which exhibit a suitably large range of sizes. Number of male inflorescences increased faster with size than did number of female inflorescences in 2 of 9 species; in the remaining 7 species there was no significant difference. The male:female ratio of inflorescence numbers increased with height in 4 of 7 species and did not change significantly in the remaining 3 species, as shown by regression. Height and size are highly correlated and so their effects could not be distinguished. The fact that many conifers place the female cones uppermost in the crown suggests that size and not height favors increased allocation to male function, as does well-established theory connecting the existence of male versus female size advantage to pollen and seed dispersal chacteristics. Regression analysis of the relation between male and female reproductive effort should be done by reduced major axis regression; ordinary least squares regression underestimates slopes; in this study opposite conclusions could be drawn from ordinary least squares and reduced major axis regressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号