首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Influence of H+ on the Membrane Potential and Ion Fluxes of Nitella   总被引:23,自引:4,他引:19  
The resting membrane potential of the Nitella cell is relatively insensitive to [K]o, but behaves like a hydrogen electrode. K+ and Cl- effluxes from the cell were measured continuously, while the membrane potential was changed either by means of a negative feedback circuit or by external pH changes. The experiments indicate that PK and PCl are independent of pH but are a function of membrane potential. Slope ion conductances, GK, GCl, and GNa were calculated from efflux measurements, and their sum was found to be negligible compared to membrane conductance. The possibility that a boundary potential change might be responsible for the membrane potential change was considered but was ruled out by the fact that the peak of the action potential remained at a constant level regardless of pH changes in the external solution. The conductance for H+ was estimated by measuring the membrane current change during an external pH change while the membrane potential was clamped at K+ equilibrium potential. In the range of external pH 5 to 6, H+ chord conductance was substantially equal to the membrane conductance. However, the [H]i measured by various methods was not such as would be predicted from the [H]o and the membrane potential using the Nernst equation. In artificial pond water containing DNP, the resting membrane potential decreased; this suggested that some energy-consuming mechanism maintains the membrane potential at the resting level. It is probable that there is a H+ extrusion mechanism in the Nitella cell, because the potential difference between the resting potential and the H+ equilibrium potential is always maintained notwithstanding a continuous H+ inward current which should result from the potential difference.  相似文献   

2.
The changes in the membrane permeability to sodium, potassium, and chloride ions as well as the changes in the intracellular concentration of these ions were studied on frog sartorius muscles in Ca-free EDTA solution. It was found that the rate constants for potassium and chloride efflux became almost constant within 10 minutes in the absence of external calcium ions, that for potassium increasing to 1.5 to 2 times normal and that for chloride decreasing about one-half. The sodium influx in Ca-free EDTA solution, between 30 and 40 minutes, was about 4 times that in Ringer's solution. The intracellular sodium and potassium contents did not change appreciably but the intracellular chloride content had increased to about 4 times normal after 40 minutes. By applying the constant field theory to these results, it was concluded that (a) PCl did not change appreciably whereas PK decreased to a level that, in the interval between 10 and 40 minutes, was about one-half normal, (b) PNa increased until between 30 and 40 minutes it was about 8 times normal. The low value of the membrane potential between 30 and 40 minutes was explained in terms of the changes in the membrane permeability and the intracellular ion concentrations. The mechanism for membrane depolarization in this solution was briefly discussed.  相似文献   

3.
The dependence of the membrane potential on potassium, chloride, and sodium ions, was determined at the pH's of 6.0, 7.5, and 9.0 for the resting and depolarized crayfish ventral nerve cord giant axon. In normal saline (external potassium = 5.4 mM), the dependence of the membrane potential on the external potassium ions decreased with lowered pH while that for chloride increased. In contrast, in the potassium depolarized axon (external potassium = 25 mM), the dependence of the membrane potential on external potassium was minimum around pH 7.5 and increased in either more acidic or basic pH. In addition, the dependence of the membrane potential on external chloride in the depolarized axon was maximum at pH 7.5 and decreased in either more acidic or basic pH. The sodium dependency of the membrane potential was small and relatively unaffected by pH or depolarization. The data are interpreted as indicating a reversible surface membrane protein-phospholipid conformation change which occurs in the transition from the resting to the depolarized axon.  相似文献   

4.
Current Separations in Myxicola Giant Axons   总被引:7,自引:6,他引:1  
The effect of reducing the external sodium concentration, [Na]o, on resting potential, action potential, membrane current, and transient current reversal potential in Myxicola giant axons was studied. Tris chloride was used as a substitute for NaCl. Preliminary experiments were carried out to insure that the effect of Tris substitution could be attributed entirely to the reduction in [Na]o. Both choline and tetramethylammonium chloride were found to have additional effects on the membrane. The transient current is carried largely by Na, while the delayed current seems to be independent of [Na]o. Transient current reversal potential behaves much like a pure Nernst equilibrium potential for sodium. Small deviations from this behavior are consistent with the possibility of some small nonsodium component in the transient current. An exact PNa/PK for the transient current channels could not be computed from these data, but is certainly well greater than unity and possibly quite large. The peak of the action potential varied with [Na]o as expected for a sodium action potential with some substantial potassium permeability at the time of peak. Resting membrane potential is independent of [Na]o. This finding is inconsistent with the view that the resting membrane potential is determined only by the distribution of K and Na, and PNa/PK. It is suggested that PNa/PK's obtained from resting membrane potential-potassium concentration data do not always have the physical meaning generally attributed to them.  相似文献   

5.
The administration of the sulfhydryl reagent N-ethyl-maleimide (NEM) to internodal cells of Chara corallina caused alterations in the biophysical properties of the plasmalemma, as measured with electrophysiological and radioactive tracer techniques. The membrane potential depolarized to, or near, the calculated Nernst potential for potassium (EK) after 30 seconds' exposure to 0.1 millimolar NEM. During this time, the ATP level did not decrease below the control value, and the specific membrane resistance did not increase; only upon further exposure to NEM did the resistance approach the value observed in the dark. In the depolarized state, the membrane potential responded to changes in the external potassium concentration in the manner of a K+-electrode, but it retained it's relative insensitivity to external sodium.  相似文献   

6.
G.A. Volkov 《BBA》1973,314(1):83-92
Transient hyperpolarization of the external cytoplasmatic membrane may be observed on rapid illumination of the Nitella flexilis cell. Several important properties of that response make the latter similar to a considerable degree to the excitation response.The condition for transient hyperpolarization is the normal functioning of the electron transport chain conjugated with non-cyclic photophosphorylation.The value of the membrane potential at the moment of hyperpolarization of the external cytoplasmic membrane, is determined by the difference in the electrochemical potential of HCO3? or H+. This state of the plasmalemma supplements the two other known states: normal and depolarized (excited), when the main ions determining membrane potential are K+ and Cl?.  相似文献   

7.
In isolated bundles of external intercostal muscle from normal goats and goats with hereditary myotonia the following were determined: concentrations and unidirectional fluxes of Na+, K+, and Cl-, extracellular volume, water content, fiber geometry, and core-conductor constants. No significant difference between the two groups of preparations was found with respect to distribution of fiber size, intracellular concentrations of Na+ or Cl-, fiber water, resting membrane potential, or overshoot of action potential. The intracellular Cl- concentration in both groups of preparations was 4 to 7 times that expected if Cl- were distributed passively between intracellular and extracellular water. The membrane permeability to K (PK) calculated from efflux data was (a) at 38°C, 0.365 x 10-6 cm sec-1 for normal and 0.492 x 10-6 for myotonic muscle, and (b) at 25°C, 0.219 x 10-6 for normal and 0.199 x 10-6 for myotonic muscle. From Cl- washout curves of normal muscle usually only three exponential functions could be extracted, but in every experiment with myotonic muscle there was an additional, intermediate component. From these data PPcl could be calculated; it was 0.413 x 10-6 cm sec-1 for myotonic fibers and was 0.815 x 10-6 cm sec-1 for normal fibers. The resting membrane resistance of myotonic fibers was 4 to 6 times greater than that of normal fibers.  相似文献   

8.
Sodium, potassium, and chloride unidirectional fluxes have been studied in the mature mouse egg. Their relationship to cell membrane potential and conductance has been investigated. Unidirectional Na efflux is composed of a ouabain sensitive component, presumably representing an active Na efflux, an external Na-dependent component and a diffusional component. The data indicate that the external Na-dependent component represents a Na:Na exchange mechanism. There also exists an ouabain-sensitive component of K influx. The stoichiometry of the ouabain-sensitive fluxes is approx. 2.7:1 (Na to K). From the diffusional components of Na and K flux, the membrane permeability to these cations has been estimated. PNa and PK are 1.2 × 10−7 cm sec−1 and 0.8 × 10−7 cm sec−1 respectively. These permeabilities, in conjunction with the internal exchangeable fractions of Na and K and the external concentrations, predict an egg membrane potential of −11 mV (inside negative). Microelectrode measurements yield an egg membrane potential of −14 ± 0.4 mV, indicating that the cell membrane potential is predominantly a result of the Na and K permeabilities and distributions. Internal exchangeable Cl is 67 ± 3 mM in standard medium, as determined from 36Cl distribution. The chloride equilibrium potential is therefore −15 mV, which is not significantly different from the egg membrane potential. This suggests that Cl distributes passively across the egg membrane, reflecting the egg membrane potential. Hyperpolarization of the egg membrane potential to −27 ± 1.5 mV by reduction of external Na results in an exchangeable internal Cl of 49 ± 8 mM. This yields a Cl equilibrium potential of −24 mV, indicating that the Cl distribution shifts in the predicted manner upon a change in cell membrane potential. Tracer flux data indicate that Cl conductance comprises the bulk of the total membrane conductance with Na and K sharing the remainder in approximately equal amounts.  相似文献   

9.
The Membrane Potential of Acetabularia mediterranea   总被引:8,自引:1,他引:7  
The cytoplasm of an Acetabularia cell is normally at a potential of about -170 mv relative to the external solution; the vacuole is also at this potential. Although there is strict flux equilibrium for all ions, the potential is more negative than the Nernst potentials of any of the permeating ions. Darkness, CCCP, low temperature, and reducing [Cl-]o by a factor of 25 all rapidly depolarize the membrane and inhibit Cl- influx. Some of these treatments do not inhibit the effluxes of K+ and Na+. Increasing [K+]o also depolarizes the membrane both under normal conditions and at low temperature; in the latter case the membrane is partially depolarized in normal seawater (low [K+]o) and in high [K+]o positive potentials of up to +15 mv are attained. It is concluded that the membrane potential is controlled by the electrogenic influx of Cl-, and also, at least in some circumstances, by the diffusion of K+. In addition, it is suggested that electrogenic efflux of H+ may be important in transient nonequilibrium situations. An Appendix deals with the interpretation of simple nonsteady-state tracer kinetic data.  相似文献   

10.
The membrane potential of ventral longitudinal muscles of Tenebrio molitor larvae was studied as a function of time and of cesium substituted for all or part of external potassium. The conventional microelectrode technique was applied. The mean value of resting potential was — 47.4 mV in standard physiological saline which did not change significantly with time (90 min). Cesium caused, almost immediately, a significant hyperpolarization of membrane potential the magnitude of which depended on cesium concentration. The presence of external potassium enhanced the effectiveness of cesium action, resulting in more pronounced hyperpolarization. The effect of Cs ions was fully reversible upon washing. These data support the idea that inward potassium current can be activated at resting potential level, at least in some cells, including the muscles studied. It is presumed that this potassium current might have some contribution to the resting membrane potential generation in mealworm larva muscles.Abbreviations [K +]0 extracellular concentration of K ions - E m resting membrane potential of a cell when bathed in normal saline - E K K + equilibrium potential - MP membrane potential - RP resting potential - SD standard deviation - SEM standard error of the mean  相似文献   

11.
Intracellular concentrations of sodium and potassium as well as resting potentials and overshoots have been determined in heart tissue from chick embryos aged 2–18 days. Intracellular potassium declined from 167 mM at day 2 to 117–119 mM at days 14–18. Intracellular sodium remained nearly constant at 30–35 mM during the same period. The mean resting potential increased from -61.8 mV at day 3 to about -80 mV at days 14–18. The mean overshoot during the same period increased from 12 to 30 mV. PNa/PK calculated from the ion data and resting potentials declined from 0.08 at day 3 to 0.01 at days 14–18. Thus, the development of embryonic chick heart during days 2–14 is characterized by a declining intracellular potassium concentration and an increasing resting potential and overshoot. Heart cells from 7- to 8-day embryos, cultured either in monolayer or reassociated into aggregates, were compared with intact tissue of the same age. The intracellular concentrations of sodium and potassium were similar in the three preparations and cultured cells responded to incubation in low potassium medium or treatment with ouabain in a manner similar to that of intact tissue. Resting potentials and overshoots were also similar in the three preparations.  相似文献   

12.
Unlike most cells of the body which function in an ionic environment controlled within narrow limits, spermatozoa must function in a less controlled external environment. In order to better understand how sperm control their membrane potential in different ionic conditions, we measured mouse sperm membrane potentials under a variety of conditions and at different external K+ concentrations, both before and after capacitation. Experiments were undertaken using both wild-type, and mutant mouse sperm from the knock-out strain of the sperm-specific, pH-sensitive, SLO3 K+ channel. Membrane voltage data were fit to the Goldman-Hodgkin-Katz equation. Our study revealed a significant membrane permeability to both K+ and Cl before capacitation, as well as Na+. The permeability to both K+ and Cl has the effect of preventing large changes in membrane potential when the extracellular concentration of either ion is changed. Such a mechanism may protect against undesired shifts in membrane potential in changing ionic environments. We found that a significant portion of resting membrane potassium permeability in wild-type sperm was contributed by SLO3 K+ channels. We also found that further activation of SLO3 channels was the essential mechanism producing membrane hyperpolarization under two separate conditions, 1) elevation of external pH prior to capacitation and 2) capacitating conditions. Both conditions produced a significant membrane hyperpolarization in wild-type which was absent in SLO3 mutant sperm. Hyperpolarization in both conditions may result from activation of SLO3 channels by raising intracellular pH; however, demonstrating that SLO3-dependent hyperpolarization is achieved by an alkaline environment alone shows that SLO3 channel activation might occur independently of other events associated with capacitation. For example sperm may undergo stages of membrane hyperpolarization when reaching alkaline regions of the female genital tract. Significantly, other events associated with sperm capacitation, occur in SLO3 mutant sperm and thus proceed independently of hyperpolarization.  相似文献   

13.
Potential differences between normal nodes of Ranvier (single fiber from the sciatic nerve of the frog, air-gap method) and a node exposed to 1 to 2.5 x 10-6 gm veratridine per ml were measured. Negative after-potentials occurred immediately after application of the alkaloid when spike configuration and resting potential were virtually unchanged. The after-potentials decreased in magnitude and their time constant increased as the resting membrane was depolarized either by outward currents or by a train of impulses. Increase of (Na)o markedly increased the amplitude of the after-potential. After prolonged application of veratridine or with higher concentrations, a large slow depolarization (rate of potential change about 7 mv per second) could be triggered by a train of impulses or even a single spike. This depolarization could promptly be terminated by withdrawing Na. It is concluded that, once the nodal membrane has become permeable to Na (as during a spike), veratridine prevents the normal return of PNa to its resting value.  相似文献   

14.
Membrane potentials, cable parameters, and component resting ionic conductances of gastrocnemius fibers from normal goats were measured in vitro at six to 32 days following denervation by section of the tibial nerve. Denervated fibers were depolarized an average of 11.6 ± 1.5 mV (six preparations) from the control mean of 62.1 ± 1.0 mV (124 fibers) over the period studied. Fibrillation, tetrodotoxin-resistant action potentials, and anodebreak excitation were present in the denervated preparations after 13 days. The control cable parameters from 124 fibers (13 preparations) were membrane resistance, 1052 ± 70 ω·cm2 and membrane capacitance, 6.2 μF/cm2. In denervated fibers membrane resistance increased two to three times in the 13 to 32 day period; membrane capacitance increased about 50% in normal solution at eight to nine, 27–28, and 32 days. Myoplasmic resistivity was assumed to be 112 Ωcm. Measurements were made at 38°C. Component resting conductances were determined from the cable parameters in normal and chloride-free solution. Mean chloride conductance GCl and mean potassium conductance GK of control fibers were 776 ± 49 μmhos/cm2 and 175 ± 15 μmhos/cm2 (92 fibers), respectively. Following denervation GCl increased slightly at six to nine days then fell to low values at 16 to 32 days that were close to or indistinguishable from zero. GK increased significantly to 372 ± 40 μmhos/cm2 and 499 ± 90 μmhos/cm2 at 16 to 20 and 32 days, respectively. It was concluded from these findings that GCl and GK of mammalian skeletal muscle are controlled by factors from the nerve and/or muscle action potentials. Goat muscle is different from frog muscle in which GCl does not change and GK decreases during denervation.  相似文献   

15.
Summary The effects of 253.7 nm ultraviolet (UV) radiation on the membrane properties ofChara corallina have been studied. UV irradiation caused depolarization of the membrane potential (p.d.) and a decrease in membrane resistance. These effects were largely reversible with steady values being obtained within 40 minutes after the UV was turned off. The effects on ionic fluxes of Na+, K+ and Cl have also been studied using radioactive tracer techniques. The influxes were unchanged by irradiation. The chloride efflux was increased sevenfold during the irradiation period but recovered to the pre-irradiation value within 30 minutes after the irradiation period. The potassium efflux was also increased and reached a maximum 10 minutes after irradiation. The resting potential and the average depolarized p.d. reached during irradiation were in good agreement with those calculated from permeability coefficients indicated by the observed passive fluxes, using the Goldman equation for p.d. However, the plasmalemma resistance and its change due to irradiation did not match the values calculated from the same permeability coefficients used to estimate p.d. This disagreement, and an apparent imbalance in the charge transferred across the resting or irradiated plasmalemma, suggest the participation of another ion species as well as K+, Na+ and Cl.  相似文献   

16.
Summary The nephridial nerve cells of the leech, Hirudo medicinalis, 34 sensory cells, each associated with one nephridium, are sensitive to changes in extracellular Cl- concentration, an important factor in ion homeostasis. Using single-electrode current- and voltage clamp and ion substitution techniques, the specificity and mechanism of Cl- sensitivity of the nephridial nerve cell was studied in isolated preparations. Increase of the normally low external Cl- concentration leads to immediate and sustained hyperpolarization, decrease of the frequency of bursts and decrease of membrane conductance. The response is halogen specific: Cl- can be replaced by Br, but not by organic mono- or divalent anions or inorganic divalent anions.At physiological Cl- concentrations (36mM extra-cellular Cl-), the nephridial nerve cell has a high resting conductance for Cl- and the membrane potential is governed by Cl-. In high extracellular Cl- concentrations (110–130 mM), membrane conductance is low, most likely due to the gating off of Cl- channels. Under these conditions, membrane potential is dominated by the K+ distribution and the nephridial nerve cell hyperpolarizes towards EK.Abbreviations NNC nephridial nerve cell - V m membrane potential - E Cl(k) equilibrium potential for Cl (K) - IV-curve current-voltage relationship  相似文献   

17.
Summary In response to mechanical stimuli the protozoan,Stentor coeruleus, contracts in an all-or-none fashion and simultaneously reverses the direction of its ciliary beat. These behaviors have previously been shown to be correlated with the presence of a mechanoreceptor potential and all-or-none action potential (Wood 1970, 1973a). In the studies reported below the ionic bases of the resting, receptor and action potentials ofStentor were determined by use of intracellular microelectrodes penetrating animals chilled to 8.5–10 °C. The resting potential is most dependent on the extracellular concentration of KCl but some dependence on CaCl2 concentration was also observed. If allowance is made for the large increases in membrane conductance observed in solutions containing 2–8 mM KCl it is found that the resting potential data are well described by a modified form of the Goldman equation whereP Ca/P K = 0.068 andP Cl/P K = 0.072. The intracellular ionic activities (K i + = 13.1 mM, Cl i = 9.9 mM, Ca i + = 0 mM) which provide the best fit of this equation to the resting potential data are in close agreement with the intracellular concentration values measured by flame microspectrophotometry (Ki=12.4 mM, Cli = 9.4 mM) except in the case of Cai where most of the intracellular concentration is presumed to be bound. 65 to 75 mV action potentials are produced by suprathreshold depolarizations but contractions were not generally seen in these chilled animals, only ciliary reversals. The action potential peak varies with CaCl2 concentration with a slope of 12.6 mV/10 fold change but varies only slightly with KCl or Cl concentration. These peak potentials are well described by assuming that theP Ca/P k = 7.9 andP Cl/P K=1.0 at the time of the action potential peak. Depolarizing receptor potentials and brief inward receptor currents were observed for all forms of punctate and gross bodily mechanical stimulation employed. No evidence was found for any form of hyperpolarizing mechanoreceptor potentials as observed in some other ciliates. The reversal potential of the mechanoreceptor current varied with CaCl2 concentration in a manner similar to that of the action potential peak. As in the case of the action potential both theP Ca/P k andp cl/p k ratios appear to increase as a result of mechanical stimulation to 9.3–15 and 1.2–1.95 respectively. Mechanoreceptor currents are voltage dependent being increased when the membrane is depolarized above resting potential and decreased when the membrane is hyperpolarized. In general the electrophysiological characteristics ofStentor appear similar to those ofParamecium andStylonychia, but its resting membrane appears more selectively permeable to K+, it produces only depolarizing receptor potentials when mechanically stimulated and the initial action potential elicited by depolarizing current pulses can be all-or-none even in culture medium.  相似文献   

18.
The transmembrane potential of cells from a continuous cell line (BHK-21) has been investigated by a combination of electrophysiological and flame photometric techniques. The ratio of sodium permeability to potassium permeability (PNa/PK) determined from membrane potentials recorded at varying external potassium concentrations was 0.082; from membrane potential measurements and the intracellular sodium and potassium concentrations of cells in 6.8 mM K+ media the value was 0.075. The PNa/PK ratio was not temperature dependent. Dinitrophenol (1 mM) did not significantly alter the membrane potential of cells incubated for one hour with the inhibitor. However, iodoacetate (1 mM) and sodium fluoride (30 mM) caused a significant depolarization during a one-hour incubation. Measurements of sodium and potassium concentrations during incubation at 4°C showed a decrease in internal potassium and an increase in internal sodium accompanied by a decreased membrane potential. Ion concentrations and membrane potentials were measured in cells recovering at 37°C following 24 hours at 4°C. Membrane potentials in excess of EK during the first ten minutes of recovery may indicate electrogenic pumping.  相似文献   

19.
Summary The contribution of specific ions to the conductance and potential of the basolateral membrane of the rabbit urinary bladder has been studied with both conventional and ion-specific microelectrode techniques. In addition, the possibility of an electrogenic active transport process located at the basolateral membrane was studied using the polyene antibiotic nystatin. The effect of ion-specific microelectrode impalement damage on intracellular ion activities was examined and a criterion set for acceptance or rejection of intracellular activity measurements. Using this criterion, we found (K+)=72mm and (Cl)=15.8mm. Cl but not K+ was in electrochemical equilibrium across the basolateral membrane. The selective permeability of the basolateral membrane was measured using microelectrodes, and the data analyzed using the Goldman, Hodgkin-Katz equation. The sodium to potassium permeability ratio (P Na/P K) was 0.044, and the chloride to potassium permeability ratio (P Cl/P K) was 1.17. Since K+ was not in electrochemical equilibrium, intracellular (K+) is maintained by active metabolic processes, and the basolateral membrane potential is a diffusion potential with K+ and Cl the most permeable ions. After depolarizing the basolateral membrane with high serosal potassium bathing solutions and eliminating the apical membrane as a rate limiting step for ion movement using the polyene antibiotic nystatin, we found that the addition of equal aliquots of NaCl to both solutions caused the basolateral membrane potential to hyperpolarize by up to 20 mV (cell interior negative). This popential was reduced by 80% within 3 min of the addition of ouabain to the serosal solution. This hyperpolarization most probably represents a ouabain sensitive active transport process sensitive to intracellular Na+. An equivalent electrical circuit for Na+ transport across rabbit urinary bladder is derived, tested, and compared to previous results. This circuit is also used to predict the effects that microelectrode impalement damage will have on individual membrane potentials as well as time-dependent phenomena; e.g., effect of amiloride on apical and basolateral membrane potentials.  相似文献   

20.
Light Response of a Giant Aplysia Neuron   总被引:2,自引:2,他引:0       下载免费PDF全文
Illumination of an Aplysia giant neuron evokes a membrane hyperpolarization which is associated with a membrane conductance increase of 15%. The light response is best elicited at 490 nM: the neuron also has an absorption peak at this wavelength. At the resting potential (-50 to -60 mV) illumination evokes an outward current in a voltage-clamped cell. This current reverses sign very close to EK calculated from direct measurements of internal and external K+ activity. Increases in external K+ concentration shift the reversal potential of the light-evoked response by the same amount as the change in EK. Decreases in external Na+ or Cl- do not affect the response. Therefore, the response is attributed to an increase in K+ conductance. Pressure injection of Ca2+ into this neuron also hyperpolarizes the cell membrane. This effect is also due largely to an increase in K+ conductance. The light response after Ca2+ injection does not appear to be altered. Pressure injection of EGTA abolished or greatly reduced the light response. The effect was reversible. We suggest that light acts upon a single pigment in this neuron, releasing Ca2+ which in turn increases K+ conductance, thereby hyperpolarizing the neuronal membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号