首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO2 assimilation rates (Acrown) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.  相似文献   

2.
Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.  相似文献   

3.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

4.
The interactive effects of shade and drought on the morphological and physiological traits of Catalpa bungei plantlets were assessed. Seedling growth, biomass, biomass allocation, leaf morphology, chlorophyll (Chl) content and gas-exchange parameters were measured in plants raised for 3 months under three light levels [80% (HI), 50% (MI), 30% (LI)] and two water levels [moisture (M) and drought (D)]. The results showed that shade greatly decreased growth, biomass, leaf area (LA) and Chl a/b; increased specific leaf area (SLA) and Chl content; and reduced photosynthetic rate (P n). Drought reduced the growth, biomass, LA, SLA, Chl a/b, P n, stomatal conductance (G s), transpiration rate (T r) and intercellular carbon dioxide concentration (C i) and increased the Chl content. Stomatal closure was an early physiological response to water stress. Light, water and their interaction significantly affected plant traits and their bivariate relationships. The phenotypic plasticity index of light (0.47) was much higher than that of water (0.21), indicating that light was the main driver of the variations observed. Under drought stress, growth, biomass, leaf and stem biomass allocation significantly decreased in the HI and MI environments, whereas no significant difference was observed in growth or biomass parameters under the LI condition. Furthermore, no significant difference was observed in P n, G s, or T r under the LI condition under water stress. Our results showed that shade did not alter the negative effects caused by drought stress in MI but did alleviate the negative effects of the LI condition. In summary, the effect of drought on C. bungei plantlets depends on the irradiance conditions.  相似文献   

5.
6.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

7.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

8.
9.
Cajanus platycarpus, a wild relative of Cajanus cajan, is an important source for various agronomically desirable traits, including resistance towards pod borer, Helicoverpa armigera. In the present study, the inhibitory activity of proteinase inhibitors (PIs) present in crude protein extracted from different accessions of C. platycarpus and cultivars of C. cajan was evaluated against H. armigera under in vitro and in vivo conditions. The PIs active against H. armigera gut trypsin-like proteinases (HGPs), referred to as ‘HGPIs’, were more pronounced in mature dry seeds of C. platycarpus accessions when compared with cultivars, which is also evident through gelatin activity staining studies. Therefore, the inhibitory activity of HGPIs was further evaluated in various plant organs of C. platycarpus accessions, such as leaves, flowers, pods, developing seeds at 8–10 days (DAP-I), 18–20 days (DAP-II), and 28–32 days after pollination (DAP-III). However, the HGPI activity was more pronounced in mature dry seeds > DAP-III > DAP-II > DAP-I > flowers > pods > leaves. The observed quantitative allocation of HGPIs closely resembled “Optimal Defense Theory”. Further, bioassays demonstrated that there was a significant reduction in the body weight of the larvae fed upon crude PI extracts of C. platycarpus accessions with concomitant increase in mortality rate and the formation of larval–pupal intermediates. Nevertheless, such changes were not observed when the larvae were fed on crude PI extracts of C. cajan cultivars. These results suggest that the PI gene(s) from C. platycarpus accessions could be exploited in the management of H. armigera by introgression into C. cajan cultivars.  相似文献   

10.
The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.  相似文献   

11.
The factors that control lichen distribution in Antarctica are still not well understood, and in this investigation we focused on the distribution, local and continental, and gas exchange of a species pair, closely related lichens with differing reproductive strategies, Usnea aurantiaco-atra (fertile) and Usnea antarctica (sterile, sorediate). The local distributions of these species were recorded along an altitudinal gradient of nearly 300 m at South Bay, Livingston Island, and microclimate was also recorded over 1 year. The photosynthetic responses to temperature, light and thallus water content were determined under controlled conditions in the laboratory. The species were almost identical in their photosynthetic profiles. Locally, on Livingston Island, U. antarctica was confined to low altitude sites which were warmer and drier, whilst U. aurantiaco-atra was present at all altitudes. This contrasts with its distribution across Antarctica where U. antarctica grows 9° latitude further south than U. aurantiaco-atra. Temperature appears not to be the main controller of distribution in these species, but dryness of habitat, which will influence length of activity periods, may be important.  相似文献   

12.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

13.

Key message

Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition.

Abstract

The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
  相似文献   

14.
Growth traits are complex quantitative traits controlled by numerous candidate genes, and they can be well-evaluated using body measurement traits. As the members of the nicotinamide adenine dinucleotide-dependent family of histone deacetylases, class I sirtuin genes (including SIRT1, SIRT2 and SIRT3) play crucial roles in regulating lipid metabolism, cellular growth and metabolism, suggesting that they are potential candidate genes affecting body measurement traits in animals. Hence, the objective of this work aimed to detect novel insertions/deletions (indels) of SIRT1, SIRT2 and SIRT3 genes in 955 cattle belonging to five breeds, as well as to evaluate their effects on body measurement traits. Herein, the novel 12-bp indel of SIRT1 gene, the 7-bp indel of SIRT2 gene and the 26-bp indel of SIRT3 gene were firstly reported, respectively. The association analysis indicated that the indels within SIRT1 and SIRT2 genes were significantly associated with body measurement traits such as body weight, chest circumference, height at hip cross, hip width, body height, etc. (P?<?0.05 or P?<?0.01). Therefore, based on these findings, the two novel indel variants within bovine SIRT1 and SIRT2 genes could be considered as potential molecular markers for growth traits in cattle selection practices and breeding.  相似文献   

15.
The availability of sufficient irrigation water and the development of drought-tolerant species are challenging factors in the design and maintenance of green roofs in modern cities. Green roof plants of Petunia hybrid Headliner® Red Star, Ageratum hybrid Artist® blue, and Mentha spicata L. grown in a simulated green roof pot system under controlled greenhouse conditions. The plants were watered every 2 or 6 days (2DWI/6DWI) for 8 weeks accompanied by either a 6-day treatment of seaweed extracts of Ascophyllum nodosum as a soil drench or foliar spray, or two concentrations of trinexapac-ethyl (TE) biweekly sprays. Following treatments, leaf number, leaf area, dry weights, plant height, stomatal conductanse, photosynthetic and transpiration rates and leaf water potential and relative water content were determined in two seasons during 2016 and 2017. The prolonged irrigation intervals reduced plant growth as revealed by morphological and physiological parameters. The application of SWE as drench treatment improved Petunia and Ageratum plant vegetative growth, stomatal conductance, photosynthetic and transpiration rates and leaf water potential and relative water content during prolonged irrigation intervals. TE increased the vegetative growth as well as the physiological performance of Ageratum plants. However, neither SWE nor TE treatments improved the performance of Mentha plants under prolonged irrigation intervals. It was suggested that improved photosynthetic rates were stimulated by enhanced stomatal conductance leading to improved leaf water potential as well as increased relative water content during prolonged irrigation conditions.  相似文献   

16.
The green-algal class Klebsormidiophyceae (Streptophyta), which occurs worldwide, comprises the genera Klebsormidium, Interfilum, Entransia, and Hormidiella. Ecophysiological research has so far focused on the first two genera because they are abundant in biological soil crust communities. The present study investigated the photosynthetic performances of Hormidiella attenuata and two strains of Entransia fimbriata under light, temperature, and desiccation stress. Their ultrastructure was compared using transmission electron microscopy. The two Entransia strains showed similar physiological responses. They used light more efficiently than Hormidiella, as indicated by higher oxygen production and relative electron transport rate under low light conditions, lower light saturation and compensation points, and higher maximum oxygen production during light saturation. Their requirement for low light levels explains the restriction of Entransia to dim limnetic habitats. In contrast, Hormidiella, which prefers drier soil habitats, responded to light gradients similarly to other aero-terrestrial green algae. Compared to Entransia, Hormidiella was less affected by short-term desiccation, and rehydration allowed full recovery of the photosynthetic performance. Nevertheless, both strains of Entransia coped with low water availability better than other freshwater algae. Photosynthetic oxygen production in relation to respiratory consumption was higher in low temperatures (Entransia: 5 °C, Hormidiella: 10 °C) and the ratio decreased with increasing temperatures. Hormidiella exhibited conspicuous triangular spaces in the cell wall corners, which were filled either with undulating cell wall material or with various inclusions. These structures are commonly seen in various members of Klebsormidiophyceae. The data revealed significant differences between Hormidiella and Entransia, but appropriate adaptations to their respective habitats.  相似文献   

17.
Here we evaluate the origins and relationships of Mexican and Central American Diplazium hybrids derived from crosses involving either D. plantaginifolium or D. ternatum. Based on study of live plants and herbarium specimens, we distinguish D. ×verapax from the similar D. riedelianum and present evidence that the former is a sterile hybrid derived from a cross between D. plantaginifolium and D. werckleanum. We also describe new hybrids, D. ×torresianum and D. ×subternatum from Mexico and northern Central America. Both involve D. ternatum as one parent. Diplazium. cristatum is the other putative parent of D. ×torresianum, and D. plantaginifolium is the second parent of D. ×subternatum. We also designate lectotypes for D. cordovense and D. dissimile.  相似文献   

18.
Melanocortin 4 receptor: (MC4R) and Myostatin (MSTN) are two important growth trait-related genes in animals. In this study, we showed that two SNPs, MC4R-719A>G and MSTN-519C>T, found in the promoters of the MC4R and MSTN genes, respectively, are both associated with growth traits in Spinibarbus hollandi. Furthermore, we observed that there were significant associations between the expression levels of the MC4R and MSTN genes and these two growth trait-related SNPs. The expression level of MC4R gene in brain was lower in GG genotype fish with extremely high growth performance than that in AA genotype fish with extremely low growth performance. Expression level of the MSTN gene in muscle was lower in TT genotype fish with extremely high growth performance than that in CC and CT genotype fish with lower growth performance. The results indicated that these SNPs located in the promoters of MC4R and MSTN are associated with growth-related traits through modification of gene expression levels. The MSTN and MC4R SNPs may have useful application in effective marker-assisted selection aimed to increase output in S. hollandi.  相似文献   

19.
Klebsiella pneumoniae is a 2,3-butanediol producer, and R-acetoin is an intermediate of 2,3-butanediol production. R-acetoin accumulation and dissimilation in K. pneumoniae was studied here. A budC mutant, which has lost 2,3-butanediol dehydrogenase activity, accumulated high levels of R-acetoin in culture broth. However, after glucose was exhausted, the accumulated R-acetoin could be reused by the cells as a carbon source. Acetoin dehydrogenase enzyme system, encoded by acoABCD, was responsible for R-acetoin dissimilation. acoABCD mutants lost the ability to grow on acetoin as the sole carbon source, and the acetoin accumulated could not be dissimilated. However, in the presence of another carbon source, the acetoin accumulated in broth of acoABCD mutants was converted to 2,3-butanediol. Parameters of R-acetoin production by budC mutants were optimized in batch culture. Aerobic culture and mildly acidic conditions (pH 6–6.5) favored R-acetoin accumulation. At the optimized conditions, in fed-batch fermentation, 62.3 g/L R-acetoin was produced by budC and acoABCD double mutant in 57 h culture, with an optical purity of 98.0 %, and a substrate conversion ratio of 28.7 %.  相似文献   

20.
Nuclear envelope morphology protein 1 (NEM1) along with a phosphatidate phosphatase (PAH1) regulates lipid homeostasis and membrane biogenesis in yeast and mammals. We investigated four putative NEM1 homologues (TtNEM1A, TtNEM1B, TtNEM1C and TtNEM1D) in the Tetrahymena thermophila genome. Disruption of TtNEM1B, TtNEM1C or TtNEM1D did not compromise normal cell growth. In contrast, we were unable to generate knockout strain of TtNEM1A under the same conditions, indicating that TtNEM1A is essential for Tetrahymena growth. Interestingly, loss of TtNEM1B but not TtNEM1C or TtNEM1D caused a reduction in lipid droplet number. Similar to yeast and mammals, TtNem1B of Tetrahymena exerts its function via Pah1, since we found that PAH1 overexpression rescued loss of Nem1 function. However, unlike NEM1 in other organisms, TtNEM1B does not regulate ER/nuclear morphology. Similarly, neither TtNEM1C nor TtNEM1D is required to maintain normal ER morphology. While Tetrahymena PAH1 was shown to functionally replace yeast PAH1 earlier, we observed that Tetrahymena NEM1 homologues did not functionally replace yeast NEM1. Overall, our results suggest the presence of a conserved cascade for regulation of lipid homeostasis and membrane biogenesis in Tetrahymena. Our results also suggest a Nem1-independent function of Pah1 in the regulation of ER morphology in Tetrahymena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号