首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary An anaerobic hybrid reactor was used in the anaerobic treatment of an acidic petrochemical effluent. An organic loading rate of 20.04 kg COD/(m3d) at a HRT of 17 hours was obtained with a volatile fatty acid removal of 91%, and COD removal of 84%. A final reactor effluent containing 44 mg/l ammonia nitrogen and 12.3 mg/l PO4-P was produced.  相似文献   

2.
The kinetics of the hydrolysis of corn oil in the presence of a lipase from Pseudomonas sp. immobilized within the walls of a hollow fiber reactor can be modeled in terms of a three‐parameter rate expression. This rate expression consists of the product of a two‐parameter rate expression for the hydrolysis reaction itself (which is of the general Michaelis–Menten form) and a first‐order rate expression for deactivation of the enzyme. Optimum operating conditions correspond to 30°C and buffer pH values of 7.0 during both immobilization of the enzyme and the hydrolysis reaction. Under these conditions, the total fatty acid concentration in the effluent oil stream for a fluid residence time of 4 h is approximately 1.6 M. This concentration corresponds to hydrolysis of approximately 50% of the glyceride bonds present in the feedstock corn oil. The fatty acid of primary interest in the effluent stream is linoleic acid. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 568–579, 1999.  相似文献   

3.
A pool of hydrolases with 21.4 U g−1 lipase activity was produced through solid-state fermentation of the fungus Penicillium restrictum in waste from the Orbignya oleifera (babassu) oil processing industry. Enzymatic hydrolysis and anaerobic biodegradability tests were conducted on poultry slaughterhouse effluents with varying oil and grease contents (150–1200 mg l−1) and solid enzymatic pool concentrations (0.1–1.0% w/v). Enhanced anaerobic treatment efficiency relative to raw effluent was achieved when a 0.1% concentration of enzymatic pool was used in the pre-hydrolysis stage with 1200 mg oil and grease l−1 (chemical oxygen demand (COD) removal efficiency of 85% vs. 53% and biogas production of 175 ml vs. 37 ml after 4 d).  相似文献   

4.
This study evaluated the biological treatability of produced water (PW), the water separated from oil at the wellhead which contains both dispersed oil and low levels of heavy metals, using waste stabilisation ponds (WSPs). We examined both chemical oxygen demand (COD) and oil and grease (O&G) removal using different process configurations (hydraulic retention time (HRT), aerobic and anaerobic conditions, oil skimming, effluent recycle) in a small (10 L) reactor being fed a synthetic PW (COD = 1050–1350 mg L−1, O&G = 400–500 μL L−1, 6 gNaCl/L). The reactor was operated for 6 months, and at a HRT of 6 days (8 with evaporation) COD removals were greater than 85%, and improved over time to >90%, while O&G removals (measured with a newly developed method) were greater than 82% and also improved with time. Operating with an anaerobic section, oil skimming and 300% recycling were all found to enhance COD removal.  相似文献   

5.
Lipase (EC 3.1.1.3) is a tri-acylglycerol ester hydrolase, catalysing the hydrolysis of tri-, di-, and mono-acylglycerols to glycerol and fatty acids. To study the effect of adsorption of a lipase obtained from Bacillus coagulans BTS-1, its lipase was immobilized on native and activated (alkylated) matrices, i.e. silica and celite. The effect of pH, temperature, detergents, substrates, alcohols, organic solvent etc. on the stability of the immobilized enzyme was evaluated. The gluteraldahyde or formaldehyde (at 1% and 2% concentration, v/v) activated matrix was exposed to the Tris buffered lipase. The enzyme was adsorbed/entrapped more rapidly on to the activated silica than on the activated celite. The immobilized lipase showed optimal activity at 50 degrees C following one-hour incubation. The lipase was specifically more hydrolytic to the medium C-length ester (p-nitro phenyl caprylate than p-nitro phenyl laurate). The immobilization/entrapment enhanced the stability of the lipase at a relatively higher temperature (50 degrees C) and also promoted enzyme activity at an acidic pH (pH 5.5). Moreover, the immobilized lipase was quite resistant to the denaturing effect of SDS.  相似文献   

6.
The kinetics of enzymatic hydrolysis of rice bran oil in isooctane by immobilized Candida rugosa lipase in a batch reactor showed competitive inhibition by isooctane with a dissociation constant, K1, of 0.92 M. Continuous hydrolysis of rice bran oil was performed in recycling, packed bed reactor with 4352 U of immobilized lipase; the optimum recycle ratio was 9 and the operational half-life was 360 h without isooctane but 288 h with 25% (v/v) isooctane in rice bran oil.  相似文献   

7.
Gallic acid (3, 4, 5‐ trihydroxybenzoic acid) is an important antioxidant, anti‐inflammatory, and radical scavenging agent. In the present study, a purified thermo‐tolerant extra‐cellular lipase of Bacillus licheniformis SCD11501 was successfully immobilized by adsorption on Celite 545 gel matrix followed by treatment with a cross‐linking agent, glutaraldehyde. The celite‐bound lipase treated with glutaraldehyde showed 94.8% binding/retention of enzyme activity (36 U/g; specific activity 16.8 U/g matrix; relative increase in enzyme activity 64.7%) while untreated matrix resulted in 88.1% binding/retention (28.0 U/g matrix; specific activity 8.5 U/g matrix) of lipase. The celite‐bound lipase was successfully used to synthesis methyl gallate (58.2%), ethyl gallate (66.9%), n‐propyl gallate (72.1%), and n‐butyl gallate (63.8%) at 55oC in 10 h under shaking (150 g) in a water‐free system by sequentially optimizing various reaction parameters. The low conversion of more polar alcohols such as methanol and ethanol into their respective gallate esters might be due to the ability of these alcohols to severely remove water from the protein hydration shell, leading to enzyme inactivation. Molecular sieves added to the reaction mixture resulted in enhanced yield of the alkyl ester(s). The characterization of synthesised esters was done through fourier transform infrared (FTIR) spectroscopy and 1H NMR spectrum analysis. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:715–723, 2015  相似文献   

8.

Background  

Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools.  相似文献   

9.
The upflow anaerobic sludge blanket (UASB) reactor was evaluated for its efficacy in decolourization and reduction in chemical oxygen demand (COD) of real textile wastewater (RTW) under different operational conditions. The efficiency of UASB reactor in reducing COD was found to be over 90%. Over 92% of colour removal due to biodegradation was achieved. The activities of the anaerobic granules were not affected during the treatment of textile wastewater. Cocci-shaped bacteria were the dominant group over Methanothrix like bacteria in textile wastewater treatment. Alkalinity, volatile fatty acids (VFA) content and pH in effluents indicated that the anaerobic process was not inhibited by textile wastewater. It is concluded that UASB reactor system can effectively be used in the treatment of textile wastewater for the removal of colour and in the reduction of COD.  相似文献   

10.
The hydrolysis of effluent from a poultry slaughterhouse containing 800 mg oil and grease (O&G)/L was conducted with 1% (w/v) of an enzymatic pool obtained by solid-state fermentation with the fungus Penicillium restrictum. The chromatographic evaluation of the lipid profile during hydrolysis indicated a higher concentration of acids after 4 h of reaction (2954 mg/L), with a predominance of oleic, palmitic, and linoleic acids. Effluent aliquots were collected after 4, 8, and 24 h of hydrolysis and tested for anaerobic biodegradation in sequential batches. An adaptation of the biomass was observed, both in the control experiment (with non-hydrolyzed raw effluent) and in the experiments with enzymatically pre-treated effluent. The specific methane production in the control experiment was 0.248 L CH4/g CODconsumed, and in the experiment with effluent pre-treated for 4 h, this production was 0.393 L CH4/g CODconsumed, indicating a higher methane production after enzymatic hydrolysis.  相似文献   

11.
Wastewater from dairies and slaughterhouses contains high levels of fats and proteins that present low biodegradability. A large number of pretreatment systems are employed to remove oil and grease (O&G) to prevent a host of problems that may otherwise arise in the biological process, and reduce the efficiency of the treatment station. Problems caused by excessive O&G include a reduction in the cell-aqueous phase transfer rates, a sedimentation hindrance due to the development of filamentous microorganisms, development and flotation of sludge with poor activity, clogging and the emergence of unpleasant odors. Therefore the application of a pretreatment to hydrolyze and dissolve lipids may improve the biological degradation of fatty wastewaters, accelerating the process and improving time efficiency. However thus far, only a few studies describing the degradation of fats and oils by alkaline/acid/enzymatic hydrolysis have been reported; the treatment of effluents from several origins is a new and promising application for lipases. Among the strains that produce the hydrolytic enzymes studied, the fungus Penicillium restrictum is a particularly promising one. When cultivated in low-cost solid medium composed of agro-industrial waste, P. restrictum produces a pool of hydrolases capable of degrading the most complex organic compounds. This degradation enables a considerable increase in organic matter removal efficiency to be realized, which results in the attainment of a high-quality effluent in the subsequent biological treatment stage. Consequently, there is presently a wide variety of ongoing scientific investigation in the field of developing enzymatic hydrolysis processes to precede traditional biological treatment.  相似文献   

12.
The suitability of two stage biomethanation process using upflow anaerobic sludge blanket (UASB) bioreactors was studied for the treatment of low strength industrial effluents like rice mill wastewater. Maximum VFA yield was 0.75 mg (as acetic acid) per mg of COD consumed at a flow rate of 25 ml/min. Hydraulic retention time (HRT) of 1 hr was found suitable for acidification process. In the methanogenic reactor, the overall BOD and COD reductions were 89% and 78% respectively at loading rate of 3 kg COD mх dу, and HRT of 30 hrs. Gas yield in methanogenic reactor was 0.56 lits. per kg COD consumed which contains 62% v/v methane.  相似文献   

13.
Abstract

Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Castor bean lipase (CBL) were immobilized on celite by deposition from aqueous solution by the addition of hexane. Lipolytic performance of free and immobilized lipases were compared and optimizations of lipolytic enzymatic reactions conditions were performed by free and immobilized derivatives using olive oil as substrate. Afterwards, the influence on lipolysis of castor oil of free lipases and immobilized lipase derivatives have been studied in the case of production of ricinoleic acid. All of the lipases performances were compared and enzyme derivative was selected to be very effective on the production of ricinoleic acid by lipolysis reaction. Various reaction parameters affecting the production of ricinoleic acid were investigated with selected the enzyme derivative.

The maximum ricinoleic acid yield was observed at pH 7–8, 50°C, for 3 hours of reaction period with immobilized 1,3-specific PPL on celite. The kinetic constants Km and Vmax were calculated as 1.6 × 10?4 mM and 22.2 mM from a Lineweaver–Burk plot with the same enzyme derivative. To investigate the operational stability of the lipase, the three step lipolysis process was repeated by transferring the immobilized lipase to a substrate mixture. As a result, the percentange of conversion after usage decreased markedly.  相似文献   

14.
A lipase from Aspergillus niger immobilized by adsorption on microporous, polypropylene hollow fibers was used to effect the hydrolysis of the glycerides of melted butterfat at 40 degrees C and pH 7.0. Mcllvane buffer was pumped through the lumen and melted butterfat was pumped courrently through the shell side of a shell-and-tube reactor. Nonlinear regression methods were employed to determine the kinetic parameters of three nested rate expressions derived from a Ping Pong Bi Bi enzymatic mechanism coupled with three nested rate expressions for the thermal deactivation of the enzyme. For the reaction conditions used in this research, a four-parameter rate expression (which includes a two-parameter deactivation rate expression and a two-parameter hydrolysis rate expression) is sufficient to model the overall release of free fatty acids from the triglycerides of butterfat as a function of space time and time elapsed after immobilization. At a space time of 3.7 h immediately after immobilization of lipase, 50% of the fatty acid residues esterified in the sn-1,3 positions of the triglycerides can be released in the hollow-fiber reactor.  相似文献   

15.
The hydrolysis of corn oil in the presence of a lipase from Pseudomonas sp. immobilized within the walls of a hollow-fiber reactor was studied at 30 degrees C. To assess the selectivity of this immobilized enzyme, the effluent concentrations of five different free fatty acids were measured using high-performance liquid chromatography (HPLC). Several rate expressions associated with a generic ping-pong bi-bi mechanism were used to fit the experimental data for this lipase-catalyzed reaction. A multiresponse nonlinear regression method was employed to determine the kinetic parameters associated with these rate expressions. Quasi-optimum operating conditions corresponded to 30 degrees C and a buffer pH value of 7.0. Under these conditions, the concentration of free linoleic acid (C18:2) (the fatty acid of primary interest) in the effluent oil stream for a fluid residence time of 6 h was approximately 0.5 M.  相似文献   

16.
Summary Neutralizing requirements for the anaerobic treatment of an acidic petrochemical effluent in a downflow anaerobic fixed bed reactor were examined. Neutralization (pH 6.0 with NaOH) of the effluent prior to digestion resulted in a Na+ concentration of over 3 g/l which was detrimental. Decreasing the Na+ concentration and subsequent replacement of NaOH by a mixture of Ca(OH)2, NaOH and KOH resulted in an increase in reactor performance. The addition of different alkalines resulted in the best loading rates thusfar applied in the anaerobic treatment of this petrochemical effluent. During the final stages of this study, the effluent (pH 3.95) was treated at a loading rate of 10.37 kg COD/m3. d (HRT=1.35 d) with more than 94% fatty acid removal.  相似文献   

17.
The operation of a wastewater treatment plant treating effluents from a dairy laboratory was monitored by an advanced system. This plant comprises a 12 m(3) anaerobic filter (AF) reactor and a 28 m(3) sequential batch reactor (SBR) coupled in series and is equipped with the following on-line measurement devices: biogas flow meter, feed and recycling flow meters, temperature sensor, dissolved oxygen analyzer, and redox meter. Other parameters such as chemical oxygen demand (COD), volatile fatty acids (VFA), etc. were determined off-line. The plant has been in operation for 634 days, the influent flow rate being 6-8 m(3)/d. COD concentration of the influent ranged between 8 and 12 kg COD/m(3), resulting in COD values in the effluent around 50-200 mg/L. The behavior of the system was studied using the set of measurements collected by the data acquisition program especially developed for this purpose. Monitoring of variables such as anaerobic reactor temperature permitted the detection and prevention of several failures such as temperature shocks in the AF reactor. Besides, off-line measurements such as the alkalinity or the VFA content, together with the on-line measurements, provided immediate information about the state of the plant and the detection of several anomalies, such as organic overloads in the SBR, allowing the implementation of several fast control actions.  相似文献   

18.
During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.  相似文献   

19.
Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-strength wastewater (chemical oxygen demand, or COD, of 11,000 mg l(-1)) and concurrently operated until biomass concentrations and effluent quality stabilized. Membrane aeration was then initiated in one of these bioreactors, leading to substantially improved COD removal efficiency (> 95%) compared to the unaerated control bioreactor (approximately 65%). The membrane-augmented anaerobic bioreactor required substantially less base addition to maintain circumneutral pH and exhibited 75% lower volatile fatty acid concentrations compared to the unaerated control bioreactor. The membrane-aerated bioreactor, however, failed to improve nitrogenous removal efficiency and produced 80% less biogas than the control bioreactor. A third membrane-augmented anaerobic bioreactor was operated to investigate the impact of start-up procedure on nitrogenous pollutant removal. In this bioreactor, excellent COD (>90%) and nitrogenous (>95%) pollutant removal efficiencies were observed at an intermediate COD concentration (5,500 mg l(-1)). Once the organic content of the influent wastewater was increased to full strength (COD = 11,000 mg l(-1)), however, nitrogenous pollutant removal stopped. This research demonstrates that partial aeration of anaerobic bioreactors using oxygen-transferring membranes is a novel approach to improve treatment performance. Additional research, however, is needed to optimize membrane surface area versus the organic loading rate to achieve the desired effluent quality.  相似文献   

20.
The lipase from Serratia marcescence ECU1010 (Sml) was capable of enantioselectively catalyzing the synthesis of many chiral drug precursors. This paper investigated the immobilization of Sml on appropriate supporting materials and its performance in bioreactor. Chitosan, Celite 545, and DEAE-cellulose were found to be the ideal supports among 8 carriers tested with respect to enzyme load and activity recovery of lipase. When Sml was immobilized, significant improvements of stability against pH, thermal, and operational deactivation were observed with all the 3 better supports, and the best stability was observed when the lipase was immobilized on glutaraldehyde activated chitosan. As for the effect of organic solvent in the biphasic reaction system, the hydrolytic activity of the immobilized lipase on trans-3-(4′-methoxyphenyl)glycidic acid methyl ester ((±)-MPGM) observed in isopropyl ether was 6 and 3 times higher than those in toluene and methyl tert-butyl ether. The lipasecatalyzed production of (−)-MPGM by enzymatic resolution of (±)-MPGM with chitosan-Sml in isopropyl etherwater biphasic system was carried out in a 2 L stirred-tank reactor. The batch operation was more efficient operation mode for the enantioselective hydrolysis of (±)-MPGM, affording enantiopure (−)-MPGM in 44.3% overall yield, in contrast to 29.3% in a continuous reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号