首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single-layer patient specific right/left ventricle patch (RV/LV/Patch) combination model with fluid-structure interactions (FSI) was introduced in our previous papers to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design. In this paper, an active anisotropic model with two-layer structure for ventricle wall and tissue fiber orientation was introduced to improve previous isotropic model for more accurate assessment of RV function and potential application in PVR surgery and patch design. A material-stiffening approach was used to model active heart contraction. The computational models were used to conduct "virtual (computational)" surgeries and test the hypothesis that a PVR surgical design with a smaller patch and more aggressive scar tissue trimming would lead to improved RV cardiac function recovery. Results from our models validated by pre-operation data indicated that the small patch design had 11% improvement in RV function as measured by RV ejection fraction, compared to the conventional patch. Maximum Stress-P1 value from the active anisotropic model was 121.2% higher than that from the passive isotropic model. Computational RV volume predictions agreed well with CMR-measured volume data (error < 2%).  相似文献   

2.
A patient-specific right/left ventricle and patch (RV/LV/patch) combination model with fluid-structure interactions (FSIs) was introduced to evaluate and optimize human pulmonary valve replacement/insertion (PVR) surgical procedure and patch design. Cardiac magnetic resonance (CMR) imaging studies were performed to acquire ventricle geometry, flow velocity, and flow rate for healthy volunteers and patients needing RV remodeling and PVR before and after scheduled surgeries. CMR-based RV/LV/patch FSI models were constructed to perform mechanical analysis and assess RV cardiac functions. Both pre- and postoperation CMR data were used to adjust and validate the model so that predicted RV volumes reached good agreement with CMR measurements (error <3%). Two RV/LV/patch models were made based on preoperation data to evaluate and compare two PVR surgical procedures: (i) conventional patch with little or no scar tissue trimming, and (ii) small patch with aggressive scar trimming and RV volume reduction. Our modeling results indicated that (a) patient-specific CMR-based computational modeling can provide accurate assessment of RV cardiac functions, and (b) PVR with a smaller patch and more aggressive scar removal led to reduced stress/strain conditions in the patch area and may lead to improved recovery of RV functions. More patient studies are needed to validate our findings.  相似文献   

3.
Patients with repaired Tetralogy of Fallot (ToF), a congenital heart defect which includes a ventricular septal defect and severe right ventricular outflow obstruction, account for the majority of cases with late onset right ventricle (RV) failure. The current surgical approach, which includes pulmonary valve replacement/insertion (PVR), has yielded mixed results. A computational parametric study using 7 patient-specific RV/LV models based on cardiac magnetic resonance (CMR) data as "virtual surgery" was performed to investigate the impact of patch size, RV remodeling and tissue regeneration in PVR surgery design on RV cardiac functions. Two patch sizes, three degrees of scar trimming (RV volume shrinkages: 9%, 17%, 25%) and hypothetical use of regenerated myocardium as replacement of patch and scar were considered in these models. Our preliminary results indicate that each of the three techniques (smaller patch, RV remodeling, and myocardium regeneration) had modest improvement on post-PVR RV ejection fraction (from 1.76%-4% over the conventional PVR procedure) and combination of all three techniques had the best performance (a 4.74% improvement in ejection fraction over the conventional PVR, for the patient studied). Changes in RV stress, strain and curvatures were also observed. However, their linkages to RV ejection fraction were less clear. Further investigations are required to confirm our findings.  相似文献   

4.
Hypoxia has been reported to alter left ventricular (LV) diastolic function, but associated changes in right ventricular (RV) systolic and diastolic function remain incompletely documented. We used echocardiography and tissue Doppler imaging to investigate the effects on RV and LV function of 90 min of hypoxic breathing (fraction of inspired O(2) of 0.12) compared with those of dobutamine to reproduce the same heart rate effects without change in pulmonary vascular tone in 25 healthy volunteers. Hypoxia and dobutamine increased cardiac output and tricuspid regurgitation velocity. Hypoxia and dobutamine increased LV ejection fraction, isovolumic contraction wave velocity (ICV), acceleration (ICA), and systolic ejection wave velocity (S) at the mitral annulus, indicating increased LV systolic function. Dobutamine had similar effects on RV indexes of systolic function. Hypoxia did not change RV area shortening fraction, tricuspid annular plane systolic excursion, ICV, ICA, and S at the tricuspid annulus. Regional longitudinal wall motion analysis revealed that S, systolic strain, and strain rate were not affected by hypoxia and increased by dobutamine on the RV free wall and interventricular septum but increased by both dobutamine and hypoxia on the LV lateral wall. Hypoxia increased the isovolumic relaxation time related to RR interval (IRT/RR) at both annuli, delayed the onset of the E wave at the tricuspid annulus, and decreased the mitral and tricuspid inflow and annuli E/A ratio. We conclude that hypoxia in normal subjects is associated with altered diastolic function of both ventricles, improved LV systolic function, and preserved RV systolic function.  相似文献   

5.

Background

Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model. Therefore, we quantified time-dependent alterations in the ventricular morphology and function in two models of hypertrophy and heart failure and we studied the relationship between RV and LV function during the transition from hypertrophy to heart failure.

Methods

MRI was used to quantify RV and LV function and morphology in healthy (n = 4) and sham operated (n = 3) C57BL/6 mice, and animals with a mild (n = 5) and a severe aortic constriction (n = 10).

Results

Mice subjected to a mild constriction showed increased LV mass (P<0.01) and depressed LV ejection fraction (EF) (P<0.05) as compared to controls, but had similar RVEF (P>0.05). Animals with a severe constriction progressively developed LV hypertrophy (P<0.001), depressed LVEF (P<0.001), followed by a declining RVEF (P<0.001) and the development of pulmonary remodeling, as compared to controls during a 10-week follow-up. Myocardial strain, as a measure for local cardiac function, decreased in mice with a severe constriction compared to controls (P<0.05).

Conclusions

Relevant changes in mouse RV and LV function following an aortic constriction could be quantified using MRI. The well-controlled models described here open opportunities to assess the added value of new MRI techniques for the diagnosis of heart failure and to study the impact of new therapeutic strategies on disease progression and symptom occurrence.  相似文献   

6.
Although exercise training-induced changes in left ventricular (LV) structure are well characterized, adaptive functional changes are incompletely understood. Detailed echocardiographic assessment of LV systolic function was performed on 20 competitive rowers (10 males and 10 females) before and after endurance exercise training (EET; 90 days, 10.7 +/- 1.1 h/wk). Structural changes included LV dilation (end-diastolic volume = 128 +/- 25 vs. 144 +/- 28 ml, P < 0.001), right ventricular (RV) dilation (end-diastolic area = 2,850 +/- 550 vs. 3,260 +/- 530 mm2, P < 0.001), and LV hypertrophy (mass = 227 +/- 51 vs. 256 +/- 56 g, P < 0.001). Although LV ejection fraction was unchanged (62 +/- 3% vs. 60 +/- 3%, P = not significant), all direct measures of LV systolic function were altered. Peak systolic tissue velocities increased significantly (basal lateral S'Delta = 0.9 +/- 0.6 cm/s, P = 0.004; and basal septal S'Delta = 0.8 +/- 0.4 cm/s, P = 0.008). Radial strain increased similarly in all segments, whereas longitudinal strain increased with a base-to-apex gradient. In contrast, circumferential strain (CS) increased in the LV free wall but decreased in regions adjacent to the RV. Reductions in septal CS correlated strongly with changes in RV structure (DeltaRV end-diastolic area vs. DeltaLV septal CS; r2 = 0.898, P < 0.001) and function (Deltapeak RV systolic velocity vs. DeltaLV septal CS, r2 = 0.697, P < 0.001). EET leads to significant changes in LV systolic function with regional heterogeneity that may be secondary to concomitant RV adaptation. These changes are not detected by conventional measurements such as ejection fraction.  相似文献   

7.
The right ventricle (RV) of the heart is responsible for pumping blood to the lungs. Its kinematics are not as well understood as that of the left ventricle (LV) due to its thin wall and asymmetric geometry. In this study, the combination of tagged MRI and three-dimensional (3-D) image-processing techniques was used to reconstruct 3-D RV-LV motion and deformation. The reconstructed models were used to quantify the 3-D global and local deformation of the ventricles in a set of normal subjects. When compared with the LV, the RV exhibited a similar twisting pattern, a more longitudinal strain pattern, and a greater amount of displacement.  相似文献   

8.
This paper considers an anisotropic hyperelastic soft tissue model, originally proposed for native valve tissue and referred to herein as the Lee–Sacks model, in an isogeometric thin shell analysis framework that can be readily combined with immersogeometric fluid–structure interaction (FSI) analysis for high-fidelity simulations of bioprosthetic heart valves (BHVs) interacting with blood flow. We find that the Lee–Sacks model is well-suited to reproduce the anisotropic stress–strain behavior of the cross-linked bovine pericardial tissues that are commonly used in BHVs. An automated procedure for parameter selection leads to an instance of the Lee–Sacks model that matches biaxial stress–strain data from the literature more closely, over a wider range of strains, than other soft tissue models. The relative simplicity of the Lee–Sacks model is attractive for computationally-demanding applications such as FSI analysis and we use the model to demonstrate how the presence and direction of material anisotropy affect the FSI dynamics of BHV leaflets.  相似文献   

9.
During ischemic heart diseases and when heart failure progresses depletion of myocardial energy stores occurs. D-Ribose (R) has been shown to improve cardiac function and energy status after ischemia. Folic acid (FA) is an essential cofactor in the formation of adenine nucleotides. Therefore, we assessed whether chronic R-FA administration during the development of hypertrophy resulted in an improved cardiac function and energy status. In Wistar rats (n = 40) compensatory right ventricular (RV) hypertrophy was induced by monocrotaline (30 mg/kg; MCT), whereas saline served as control. Both groups received a daily oral dose of either 150 mg.kg(-1).day(-1) dextrose (placebo) or R-FA (150 and 40 mg.kg(-1).day(-1), respectively). In Langendorff-perfused hearts, RV and left ventricular (LV) pressure development and collagen content as well as total RV adenine nucleotides (TAN), creatine content, and RV and LV collagen content were determined. In the control group R-FA had no effect. In the MCT-placebo group, TAN and creatine content were reduced, RV and LV diastolic pressure-volume relations were steeper, RV systolic pressures were elevated, RV and LV collagen content was increased, and RV-LV diastolic interaction was altered compared with controls. In the MCT-R-FA group, TAN, RV and LV diastolic stiffness, RV and LV collagen content, and RV-LV diastolic interaction were normalized to the values in the control group while creatine content remained depressed and RV systolic function remained elevated. In conclusion, the depression of energy status in compensated hypertrophic myocardium observed was partly prevented by chronic R-FA administration and accompanied by a preservation of diastolic function and collagen deposition.  相似文献   

10.
Left-to-right ventricular (LV/RV) differences in repolarization have been implicated in lethal arrhythmias in animal models. Our goal is to quantify LV/RV differences in action potential duration (APD) and APD rate adaptation and their contribution to arrhythmogenic substrates in the in vivo human heart using combined in vivo and in silico studies. Electrograms were acquired from 10 LV and 10 RV endocardial sites in 15 patients with normal ventricles. APD and APD adaptation were measured during an increase in heart rate. Analysis of in vivo electrograms revealed longer APD in LV than RV (207.8±21.5 vs 196.7±20.1 ms; P<0.05), and slower APD adaptation in LV than RV (time constant τs = 47.0±14.3 vs 35.6±6.5 s; P<0.05). Following rate acceleration, LV/RV APD dispersion experienced an increase of up to 91% in 12 patients, showing a strong correlation (r2 = 0.90) with both initial dispersion and LV/RV difference in slow adaptation. Pro-arrhythmic implications of measured LV/RV functional differences were studied using in silico simulations. Results show that LV/RV APD and APD adaptation heterogeneities promote unidirectional block following rate acceleration, albeit being insufficient for establishment of reentry in normal hearts. However, in the presence of an ischemic region at the LV/RV junction, LV/RV heterogeneity in APD and APD rate adaptation promotes reentrant activity and its degeneration into fibrillatory activity. Our results suggest that LV/RV heterogeneities in APD adaptation cause a transient increase in APD dispersion in the human ventricles following rate acceleration, which promotes unidirectional block and wave-break at the LV/RV junction, and may potentiate the arrhythmogenic substrate, particularly in patients with ischemic heart disease.  相似文献   

11.

Background

Compositional and morphological features of carotid atherosclerotic plaques provide complementary information to luminal stenosis in predicting clinical presentations. However, they alone cannot predict cerebrovascular risk. Mechanical stress within the plaque induced by cyclical changes in blood pressure has potential to assess plaque vulnerability. Various modeling strategies have been employed to predict stress, including 2D and 3D structure-only, 3D one-way and fully coupled fluid-structure interaction (FSI) simulations. However, differences in stress predictions using different strategies have not been assessed.

Methods

Maximum principal stress (Stress-P1) within 8 human carotid atherosclerotic plaques was calculated based on geometry reconstructed from in vivo computerized tomography and high resolution, multi-sequence magnetic resonance images. Stress-P1 within the diseased region predicted by 2D and 3D structure-only, and 3D one-way FSI simulations were compared to 3D fully coupled FSI analysis.

Results

Compared to 3D fully coupled FSI, 2D structure-only simulation significantly overestimated stress level (94.1 kPa [65.2, 117.3] vs. 85.5 kPa [64.4, 113.6]; median [inter-quartile range], p=0.0004). However, when slices around the bifurcation region were excluded, stresses predicted by 2D structure-only simulations showed a good correlation (R2=0.69) with values obtained from 3D fully coupled FSI analysis. 3D structure-only model produced a small yet statistically significant stress overestimation compared to 3D fully coupled FSI (86.8 kPa [66.3, 115.8] vs. 85.5 kPa [64.4, 113.6]; p<0.0001). In contrast, one-way FSI underestimated stress compared to 3D fully coupled FSI (78.8 kPa [61.1, 100.4] vs. 85.5 kPa [64.4, 113.7]; p<0.0001).

Conclusions

A 3D structure-only model seems to be a computationally inexpensive yet reasonably accurate approximation for stress within carotid atherosclerotic plaques with mild to moderate luminal stenosis as compared to fully coupled FSI analysis.  相似文献   

12.
Right ventricular (RV) failure is a major cause of mortality in acute or chronic lung disease and left heart failure. The objective of this study was to demonstrate a percutaneous approach to study biventricular hemodynamics in murine models of primary and secondary RV pressure overload (RVPO) and further explore biventricular expression of two key proteins that regulate cardiac remodeling: calcineurin and transforming growth factor beta 1 (TGFβ1).

Methods

Adult, male mice underwent constriction of the pulmonary artery or thoracic aorta as models of primary and secondary RVPO, respectively. Conductance catheterization was performed followed by tissue analysis for changes in myocyte hypertrophy and fibrosis.

Results

Both primary and secondary RVPO decreased biventricular stroke work however RV instantaneous peak pressure (dP/dtmax) and end-systolic elastance (Ees) were preserved in both groups compared to controls. In contrast, left ventricular (LV) dP/dtmax and LV-Ees were unchanged by primary, but reduced in the secondary RVPO group. The ratio of RV:LV ventriculo-arterial coupling was increased in primary and reduced in secondary RVPO. Primary and secondary RVPO increased RV mass, while LV mass decreased in primary and increased in the secondary RVPO groups. RV fibrosis and hypertrophy were increased in both groups, while LV fibrosis and hypertrophy were increased in secondary RVPO only. RV calcineurin expression was increased in both groups, while LV expression increased in secondary RVPO only. Biventricular TGFβ1 expression was increased in both groups.

Conclusion

These data identify distinct effects of primary and secondary RVPO on biventricular structure, function, and expression of key remodeling pathways.  相似文献   

13.
The vertebrate embryonic ventricle transforms from a smooth-walled single tube to trabeculated right ventricular (RV) and left ventricular (LV) chambers during cardiovascular morphogenesis. We hypothesized that ventricular contraction patterns change from globally isotropic to chamber-specific anisotropic patterns during normal morphogenesis and that these deformation patterns are influenced by experimentally altered mechanical load produced by chronic left atrial ligation (LAL). We measured epicardial RV and LV wall strains during normal development and left heart hypoplasia produced by LAL in Hamburger-Hamilton stage 21, 24, 27, and 31 chick embryos. Normal RV contracted isotropically until stage 24 and then contracted preferentially in the circumferential direction. Normal LV contracted isotropically at stage 21, preferentially in the longitudinal direction at stages 24 and 27, and then in the circumferential direction at stage 31. LAL altered both RV and LV strain patterns, accelerated the onset of preferential RV circumferential strain patterns, and abolished preferential LV longitudinal strain (P < 0.05 vs. normal). Mature patterns of anisotropic RV and LV deformation develop coincidentally with morphogenesis, and changes in these deformation patterns reflect altered cardiovascular function and/or morphogenesis.  相似文献   

14.

Several image-based computational models have been used to perform mechanical analysis for atherosclerotic plaque progression and vulnerability investigations. However, differences of computational predictions from those models have not been quantified at multi-patient level. In vivo intravascular ultrasound (IVUS) coronary plaque data were acquired from seven patients. Seven 2D/3D models with/without circumferential shrink, cyclic bending and fluid–structure interactions (FSI) were constructed for the seven patients to perform model comparisons and quantify impact of 2D simplification, circumferential shrink, FSI and cyclic bending plaque wall stress/strain (PWS/PWSn) and flow shear stress (FSS) calculations. PWS/PWSn and FSS averages from seven patients (388 slices for 2D and 3D thin-layer models) were used for comparison. Compared to 2D models with shrink process, 2D models without shrink process overestimated PWS by 17.26%. PWS change at location with greatest curvature change from 3D FSI models with/without cyclic bending varied from 15.07% to 49.52% for the seven patients (average = 30.13%). Mean Max-FSS, Min-FSS and Ave-FSS from the flow-only models under maximum pressure condition were 4.02%, 11.29% and 5.45% higher than those from full FSI models with cycle bending, respectively. Mean PWS and PWSn differences between FSI and structure-only models were only 4.38% and 1.78%. Model differences had noticeable patient variations. FSI and flow-only model differences were greater for minimum FSS predictions, notable since low FSS is known to be related to plaque progression. Structure-only models could provide PWS/PWSn calculations as good approximations to FSI models for simplicity and time savings in calculation.

  相似文献   

15.
Heart failure is associated with increased myocardial expression of TNF-alpha. However, the role of TNF-alpha in the development of heart failure is not fully understood. In the present study, we investigated the contribution of TNF-alpha to myocardial mitochondrial dysfunction, oxidative stress, and apoptosis in a unique dog model of heart failure characterized by an activation of all of these pathological processes. Male mongrel dogs were randomly assigned (n = 10 each) to 1) normal controls; 2) chronic pacing (250 beats/min for 4 wk) with concomitant administration of etanercept, a soluble p75 TNF receptor fusion protein, 0.5 mg/kg subcutaneously twice weekly; 3) chronic pacing with administration of saline vehicle. Mitochondrial function was assessed by left ventricular (LV) tissue mitochondrial respiratory enzyme activities. Oxidative stress was assessed with aldehyde levels, and apoptosis was quantified by photometric enzyme immunoassay for cytoplasmic histone-associated DNA fragments and terminal deoxynucleotide transferase-mediated nick-end labeling (TUNEL) assays. LV activity levels of mitochondrial respiratory chain enzyme complex III and V were reduced in the saline-treated dogs and restored either partially (complex III) or completely (complex V) in the etanercept-treated dogs. Aldehyde levels, DNA fragments, and TUNEL-positive cells were increased in the saline-treated dogs and normalized in etanercept-treated dogs. These changes were accompanied by an attenuation of LV dilatation and partial restoration of ejection fraction. Our data demonstrate that TNF-alpha contributes to progressive LV dysfunction in pacing-induced heart failure, mediated in part by a local impairment in mitochondrial function and increase in oxidative stress and myocyte apoptosis.  相似文献   

16.
Mechanical load influences embryonic ventricular growth, morphogenesis, and function. However, little is known about changes in regional passive ventricular properties during the development of altered mechanical loading conditions in the embryo. We tested the hypothesis that regional mechanical loads are a critical determinant of embryonic ventricular passive properties. We measured biaxial passive right and left ventricular (RV and LV, respectively) stress-strain relations in chick embryos at Hamburger-Hamilton stages 21 and 27 after conotruncal banding (CTB) to increase biventricular pressure load or left atrial ligation (LAL) to reduce LV volume load and increase RV volume load. In the RV, wall strains at end-diastolic (ED) pressure normalized whereas ED stresses increased after either CTB or LAL during development. In the left ventricle, both ED strain and stress normalized after CTB, whereas both remained reduced with significantly increased myocardial stiffness after LAL. These results suggest that the embryonic ventricle adapts to chronically altered mechanical loading conditions by changing specific RV and LV passive properties. Thus regional mechanical load has a critical role during cardiogenesis.  相似文献   

17.
Because of its complex geometry, assessment of right ventricular (RV) function is more difficult than it is for the left ventricle (LV). Because gene-targeted mouse models of cardiomyopathy may involve remodeling of the right heart, the purpose of this study was to develop high-resolution functional magnetic resonance imaging (MRI) for in vivo quantification of RV volumes and global function in mice. Thirty-three mice of various age were studied under isoflurane anesthesia by electrocardiogram-triggered cine-MRI at 7 T. MRI revealed close correlations between RV and LV stroke volume and cardiac output (r = 0.97, P < 0.0001 each). Consistent with human physiology, murine RV end-diastolic and end-systolic volumes were significantly higher compared with LV volumes (P < 0.05 each). MRI in mice with LV heart failure due to myocardial infarction revealed significant structural and functional changes of the RV, indicating RV dysfunction. Hence, MRI allows for the quantification of RV volumes and global systolic function with high accuracy and bears the potential to evaluate mechanisms of RV remodeling in mouse models of heart failure.  相似文献   

18.
In various models of cardiac hypertrophy, e.g. treatment of rats with norepinephrine infusion or pressure overload, increased expression of cytokines together with increase in extracellular matrix proteins (ECMP) was reported. In this study the effect of triiodothyronine (T3) on the expression of mRNA for cytokines and ECMP was investigated. Female Sprague-Dawley rats were treated daily with T3 in a dose of 0.2 mg.kg–1 of body weight s.c. Changes in the left (LV) and right (RV) ventricular function were measured 6, 24, 48, 72 h and 7 and 14 days after the first T3-injection using Millar ultraminiature pressure catheter transducers. RNA was isolated from LV and RV tissue, and the expression of cytokines and ECMP was measured using the ribonuclease protection assay. T3-treatment induced a significant increase in LV dP/dtmax and RV dP/dtmax, (p < 0.05) 24 h after the first injection of T3 together with an increase in heart rate (p < 0.01). The RV systolic pressure increased 48 h after the first T3 injection, whereas the LV systolic pressure remained unchanged. After 48 h the heart weight to body weight ratio was increased (p< 0.01). Hypertrophy of the RV was more prominent than that of the LV (155.9 vs. 137.7%).In all groups the expression of mRNA for interleukins (IL) IL-6, IL-1, IL-1 and tumour necrosis factor (TNF)- in both ventricles did not change (p > 0.05). There was a significant increase in the mRNA for colligin 24 h after the T3 injection in both LV (p < 0.01) and RV (p< 0.05). This was followed by an increase in the mRNA for collagen I and III 72 h after the first T3-dose (p < 0.05 in RV; p < 0.01 in LV). At this point, the mRNA for tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) was increased (p < 0.01) in the LV only. Moreover, after 7 days also the mRNA for matrix metalloproteinase (MMP)-2 increased (p < 0.01) in the LV. Both, TIMP-2 and MMP-2 were increased in the RV only after 14 days (p < 0.05). The gelatinase activity of MMP-2, however, was unchanged in both ventricles. The T3-induced cardiac hypertrophy was not accompanied by fibrosis as measured by the Sirius red staining after 14-days of T3-treatment. The moderate increase in mRNA for ECMP and MMP may be attributed more to the increasing mass of the ventricles with the accompanying remodelling of the ECM than to increased fibrosis.  相似文献   

19.
Many acute cardiovascular syndromes such as heart attack and stroke are caused by atherosclerotic plaque ruptures which often happen without warning. MRI-based models with fluid-structure interactions (FSI) have been introduced to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment. In this paper, cyclic bending was added to 3D FSI coronary plaque models for more accurate mechanical predictions. Curvature variation was prescribed using the data of a human left anterior descending (LAD) coronary artery. Five computational models were constructed based on ex vivo MRI human coronary plaque data to assess the effects of cyclic bending, pulsating pressure, plaque structure, and axial stretch on plaque stress/strain distributions. In vitro experiments using a hydrogel stenosis model with cyclical bending were performed to observe effect of cyclical bending on flow conditions. Our results indicate that cyclical bending may cause more than 100% or even up to more than 1000% increase in maximum principal stress values at locations where the plaque is bent most. Stress increase is higher when bending is coupled with axial stretch, non-smooth plaque structure, or resonant pressure conditions (zero phase angle shift). Effects of cyclic bending on flow behaviors are more modest (21.6% decrease in maximum velocity, 10.8% decrease in flow rate, maximum flow shear stress changes were < 5%). Computational FSI models including cyclic bending, plaque components and structure, axial stretch, accurate in vivo measurements of pressure, curvature, and material properties should lead to significant improvement on stress-based plaque mechanical analysis and more accurate coronary plaque vulnerability assessment.  相似文献   

20.

Background

Mathematical modeling can be employed to overcome the practical difficulty of isolating the mechanisms responsible for clinical heart failure in the setting of normal left ventricular ejection fraction (HFNEF). In a human cardiovascular respiratory system (H-CRS) model we introduce three cases of left ventricular diastolic dysfunction (LVDD): (1) impaired left ventricular active relaxation (IR-type); (2) increased passive stiffness (restrictive or R-type); and (3) the combination of both (pseudo-normal or PN-type), to produce HFNEF. The effects of increasing systolic contractility are also considered. Model results showing ensuing heart failure and mechanisms involved are reported.

Methods

We employ our previously described H-CRS model with modified pulmonary compliances to better mimic normal pulmonary blood distribution. IR-type is modeled by changing the activation function of the left ventricle (LV), and R-type by increasing diastolic stiffness of the LV wall and septum. A 5th-order Cash-Karp Runge-Kutta numerical integration method solves the model differential equations.

Results

IR-type and R-type decrease LV stroke volume, cardiac output, ejection fraction (EF), and mean systemic arterial pressure. Heart rate, pulmonary pressures, pulmonary volumes, and pulmonary and systemic arterial-venous O2 and CO2 differences increase. IR-type decreases, but R-type increases the mitral E/A ratio. PN-type produces the well-described, pseudo-normal mitral inflow pattern. All three types of LVDD reduce right ventricular (RV) and LV EF, but the latter remains normal or near normal. Simulations show reduced EF is partly restored by an accompanying increase in systolic stiffness, a compensatory mechanism that may lead clinicians to miss the presence of HF if they only consider LVEF and other indices of LV function. Simulations using the H-CRS model indicate that changes in RV function might well be diagnostic. This study also highlights the importance of septal mechanics in LVDD.

Conclusion

The model demonstrates that abnormal LV diastolic performance alone can result in decreased LV and RV systolic performance, not previously appreciated, and contribute to the clinical syndrome of HF. Furthermore, alterations of RV diastolic performance are present and may be a hallmark of LV diastolic parameter changes that can be used for better clinical recognition of LV diastolic heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号