首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 128 毫秒
1.
《环境昆虫学报》2013,35(4):507-513
捕食螨是重要的生物防治因子,影响捕食螨发挥生物防治效果的因素很多,猎物寄主植物在捕食螨的产卵、取食定位等行为活动中起着重要作用。本文主要从化学生态学、形态结构和植物营养的角度综合分析了植物自身释放的挥发物、植物受机械损伤后释放的挥发物和植物受猎物为害后释放的挥发物对捕食螨的取食定位影响,猎物寄主植物形态结构以及猎物寄主植物花粉和汁液等营养物作为捕食螨的替代食物对捕食螨的影响,同时阐述其研究趋势和前景。  相似文献   

2.
植物源挥发物对昆虫信息素的增效作用及其增效机制   总被引:4,自引:0,他引:4  
植物源挥发物和昆虫信息素是昆虫的重要信息物质,二者协同作用以调节昆虫的行为.通过增加触角电位、信息素接收神经元动作电位和脉冲频率,特异性植物源挥发物能显著增强昆虫性信息素和聚集信息素的引诱力.这种对昆虫信息素的增效作用受昆虫体内的章鱼胺及其受体介导.特异性植物源挥发物和章鱼胺受体结合,降低性信息素接收神经元对性信息素的反应阈值,增强性信息素接收神经元敏感性.这可能是植物源挥发物对昆虫信息素具有增效作用的主要机制.  相似文献   

3.
在植物与昆虫的协同进化过程中,植物挥发物与昆虫性信息素的相互关系一直以来被认为是物种间的重要通信系统。这种相互关系表现为植物挥发物对昆虫生理和行为的影响上,影响昆虫性信息素的合成和昆虫对性信息素的行为反应。本文针对植物挥发物对蛾类昆虫性信息素的影响进行了综述。评述了寄主植物挥发物对蛾类昆虫性信息素或前体的合成及性信息素的产生与释放的影响,总结了寄主植物和非寄主植物挥发物对蛾类昆虫的求偶行为的调控作用及对蛾类昆虫性信息素的增效或抑制作用阐述了植物挥发物影响蛾类昆虫对性信息素行为反应的机理,并且讨论了目前存在的问题。  相似文献   

4.
小菜蛾对合成植物挥发物的活性反应   总被引:2,自引:0,他引:2  
在室内检验了小菜蛾已交配和未交配雌、雄成虫对3种合成植物挥发物乙酸顺-3-己烯酯(Z-3-hexenyl acetate,ACTE)、异硫氰酸丙烯酯(allyl isothiocyanate,NCS)和顺-3-己烯醇(Z-3-hexen-1-ol,OH)的触角电位(EAG)反应。不同浓度(0.008 μg/μL、0.08 μg/μL、0.2 μg/μL、0.8 μg/μL、8 μg/μL、20 μg/μL和40 μg/μL)实验表明,随着刺激化合物浓度的提高,小菜蛾反应活性增强。但小菜蛾的性别及其交配状态可能影响其对3种化合物的反应强度:不同性别及交配状态的小菜蛾对ACTE的反应差异不大;未交配雌、雄虫对OH的反应强于已交配雌、雄虫;未交配雌虫对低浓度的NCS反应较强,NCS超过一定浓度时已交配雌虫的反应强于未交配雌虫,雄虫对NCS反应较小且与交配状态无关。以小菜蛾性信息素作为对照,在湖北长阳和越南河内试验了这3种植物挥发物诱芯(6 μL/诱芯)对小菜蛾的引诱作用。结果表明,在湖北,第1天时 ACTE、NCS对雄虫具有很强的引诱作用,引诱量显著大于性诱剂的引诱量,但随着诱芯放置时间延长,NCS引诱作用迅速下降,第2天时引诱作用已经很小;ACTE的引诱作用下降缓慢,第4天的诱蛾量才显著小于性信息素的诱蛾量,OH的引诱力较弱。在河内,ACTE、NCS、OH第1天对小菜蛾引诱作用很强,引诱量大于性信息素,但差异不显著;随着诱芯放置时间延长,3种挥发物对小菜蛾的引诱量均下降很快,第4天的引诱力就很弱。3种植物挥发物的混合物(体积比1∶1∶1)对小菜蛾的引诱作用与性信息素相似,且诱蛾活性持效期相对较长。无论在越南或湖北,植物挥发物或其混合物均很少引诱到雌虫。  相似文献   

5.
竹横锥大象对寄主及虫体挥发物的行为和触角电位反应   总被引:4,自引:0,他引:4  
为了探明竹横锥大象Cyrtotrachelus buqueti Guerin-Meneville是否存在两性间的引诱作用,以及寄主植物慈竹Neosinocalamus affinis笋对两性行为的影响,采用Y型嗅觉仪测定了竹横锥大象雌、雄成虫对4种虫体及寄主挥发物不同处理(雌、雄成虫,慈竹笋与雌、雄成虫的复合体)的行为反应,测定了触角不同部位对雌雄成虫3种虫体的提取物(整体、鞘翅、后肠)及其与寄主植物挥发物质联合作用的触角电位反应(EAG)。结果表明:雌成虫挥发物对雄虫有较高的引诱活性,对雌虫有驱避作用;雄成虫挥发物对雌虫有一定的引诱作用。雌、雄成虫对虫体与竹笋复合体气味的行为和电生理反应均显著或极显著高于对相应虫体挥发物的反应。经EAG测定,触角各部位对虫体不同部位挥发物的EAG值差异明显,触角端部对虫体与植物挥发性物质的联合作用EAG反应差异极其显著(P<0.01)。竹横锥大象对沾染雌雄成虫虫体提取物的玻璃棒有一定的兴奋表现,雌虫兴奋率为6.67%,雄虫为26.67%。结果提示,竹横锥大象种内存在信息素,雌虫释放的信息素对同类雄虫有很强的引诱作用,而雄虫所释放的信息素对同类雌虫有引诱作用,添加寄主植物能够增强两性间的引诱效果。  相似文献   

6.
董文霞  张峰  阚炜  张钟宁 《生态学报》2009,29(1):178-184
田间观察了桃蚜Myzus persicae (Sulzer)、绣线菊蚜Aphis spiraecola Patch 、山楂圆疣蚜Ovatus crataegarius (Walker)等3种蚜虫对性信息素[(4aS,7S,7aR)-荆芥内酯和 (1R,4aS,7S,7aR)-荆芥醇]的反应,并且调查了性信息素与植物挥发物对桃蚜的田间引诱活性的相互作用.在有冬寄主或夏寄主植物的田中,性信息素诱捕器诱捕到桃蚜雄蚜与雌性母的数量显著多于对照诱捕器的诱捕数;但在非寄主植物的田中,却引诱不到桃蚜.苯甲醛(冬寄主植物桃树Prunus persica的主要挥发物组分之一)能够增强桃蚜雄蚜的引诱作用.绣线菊蚜雄蚜和雌性母对植物中提取的荆芥内酯有反应,而山楂圆疣蚜雄蚜和雌性母对植物中提取的和人工合成的荆芥内酯都没有反应,但对荆芥醇有反应.并且在荆芥醇中添加荆芥内酯之后对山楂圆疣蚜雄蚜引诱活性显著提高.还讨论了雌性蚜产生化合物被雄蚜作为性信息素、被雌性母作为聚集信息素以及性信息素与寄主植物挥发物的相互作用.  相似文献   

7.
【目的】探究烟草挥发物和蚜虫报警信息素对桃蚜Myzuspersicae行为的影响,以期为桃蚜的化学生态防治提供理论依据。【方法】采用触角电位技术(EAG)测定了有翅蚜与无翅蚜对蚜虫报警信息素(E)-β-法尼烯与4种烟草挥发物(6-甲基-5-庚烯-2-酮、壬醛、反-β-罗勒烯、乙酸正丁酯)的电生理反应,并利用Y型嗅觉仪测定了桃蚜对这些化合物的行为反应。【结果】蚜虫报警信息素和4种烟草挥发物均能引起有翅蚜和无翅蚜的触角电位反应,有翅蚜的嗅觉感器对报警信息素更为敏感,而无翅蚜对烟草挥发物乙酸正丁酯和反-β-罗勒烯更为敏感。在1、10和100 ng 3个测试剂量范围内,报警信息素在剂量为10 ng和100 ng时对有翅蚜和无翅蚜的驱避作用显著,而1 ng时仅对无翅蚜有驱避作用。烟草挥发物乙酸正丁酯、6-甲基-5-庚烯-2-酮和反-β-罗勒烯在剂量为100 ng时,对无翅蚜和有翅蚜具有引诱作用;当剂量10 ng时,乙酸正丁酯对有翅蚜和无翅蚜均有引诱作用,6-甲基-5-庚烯-2-酮仅对无翅蚜有引诱作用。【结论】报警信息素对无翅蚜的驱避作用强于有翅蚜,烟草挥发物组分6-甲基-5-庚烯-2-酮、乙酸正丁酯、反-β-罗勒烯对桃蚜的无翅蚜和有翅蚜均具有引诱作用。  相似文献   

8.
【目的】光肩星天牛Anoplophora glabripennis和星天牛A.chinensis经常混合发生,危害共同的寄主,且共享相同的聚集信息素。本研究旨在评价聚集信息素和寄主植物挥发物对这两种星天牛的引诱作用。【方法】通过取食面积法,测定了两种星天牛对复叶槭Acer negundo、青皮垂柳Salix babylonica和苦楝Media azedarach 3种寄主枝条的室内取食偏好性;采用动态顶空吸附法结合气相色谱-质谱联用技术(GC-MS)分析了寄主植物挥发物成分;通过在浙江余姚和慈溪的野外诱捕试验,分析了聚集信息素和植物挥发物对两种星天牛的诱捕效果。【结果】室内选择性和非选择性取食试验结果都显示,光肩星天牛最喜食的寄主植物是复叶槭,其次是青皮垂柳,再次是苦楝;而星天牛对这3种寄主植物的选择顺序与光肩星天牛相反,最喜食苦楝,其次是青皮垂柳,再次是复叶槭。寄主植物挥发物成分中,以萜烯类和芳香族化合物居多,每种寄主挥发物都有几种特有的成分,且不同寄主植物的挥发物中多种成分之间存在显著性差异。野外林间诱捕试验结果显示,聚集信息素与苦楝混合配方MK(4-庚氧基丁醇+4-庚氧基丁醛+莰烯+顺-3-己烯-1-醇+罗勒烯+β-石竹烯)、聚集信息素M(4-庚氧基丁醇+4-庚氧基丁醛)、苦楝配方K(莰烯+顺-3-己烯-1-醇+罗勒烯+β-石竹烯)和柳树配方L(壬醛)都同时诱捕到了光肩星天牛和星天牛。其中,聚集信息素与苦楝混合配方MK对光肩星天牛和星天牛的诱捕效果最好,都表现出比单独使用信息素或者植物挥发物更高的诱捕效果;聚集信息素诱捕到的光肩星天牛和星天牛中雌虫比例更高,而植物挥发物诱捕到的光肩星天牛和星天牛中雄虫比例更高。【结论】本研究进一步证实了聚集信息素4-庚氧基丁醇和4-庚氧基丁醛是光肩星天牛和星天牛共享的信息素;同时,壬醛、莰烯、顺-3-己烯-1-醇、罗勒烯和β-石竹烯是光肩星天牛和星天牛共享的植物挥发物。聚集信息素和植物挥发物联合使用可以应用于光肩星天牛和星天牛的林间监测技术。  相似文献   

9.
两种关键花香挥发物对棉铃虫的信息多义性   总被引:1,自引:0,他引:1  
为了探明花香挥发物的信息多义性,作者测试了2种关键花香挥发物(苯乙醛和乙酸苯甲酯)对棉铃虫成虫产卵、性信息素诱捕和初孵幼虫趋向行为的影响。结果表明:在苯乙醛和乙酸苯甲酯组成的二元混剂与番茄、辣椒、棉花、烟草和玉米叶片共存条件下,花香挥发物上的落卵量与除了番茄外的其他寄主叶片气味源没有显著差异,证实其对雌成虫有较强引诱产卵作用;花香引诱剂能显著增加棉铃虫性信息素的野外捕获量,并且银纹夜蛾、小地老虎、甜菜夜蛾、亚洲玉米螟、稻纵卷叶螟和甜菜白带螟对花香引诱剂的趋向并不受棉铃虫性信息素存在的影响,说明花香引诱剂与棉铃虫性信息素具有良好兼容性。此外,花香挥发物还能增强棉铃虫初孵幼虫对烟草叶碟的识别能力。总之,花香挥发物对棉铃虫有多方面的生态学功能,这种信息化合物的多义性可能具有自然选择方面的优势。  相似文献   

10.
云杉八齿小蠹是欧洲最具危害性的小蠹虫之一,嗜食衰弱木,利用雄性产生的信息素进行大面积聚集。聚集信息素不仅具有引诱聚集的作用,其种类和数量还具有调节其聚集密度的效应。在定殖过程中,云杉八齿小蠹既能利用寄主挥发物定位寄主,也能利用非寄主挥发物作为远距离的嗅觉示踪来区别寄主和非寄主。在森林生态系统内捕食性天敌和寄生性天敌很大程度上影响着云杉八齿小蠹的种群密度和行为生态。本文从云杉八齿小蠹的分布与扩散、天敌的种类及控制作用、化学信息物质对小蠹虫及其天敌的行为调控作用以及信息素防治现状等方面进行了综述,并展望了其研究前景。  相似文献   

11.
Plants infested with the spider mite Tetranychus urticae Koch, may indirectly defend themselves by releasing volatiles that attract the predatory mite Phytoseiulus persimilis Athias-Henriot. Several plants from different plant families that varied in the level of spider mite acceptance were tested in an olfactometer. The predatory mites were significantly attracted to the spider mite-infested leaves of all test plant species. No differences in attractiveness of the infested plant leaves were found for predatory mites reared on spider mites on the different test plants or on lima bean. Thus, experience with the spider mite-induced plant volatiles did not affect the predatory mites. Jasmonic acid was applied to ginkgo leaves to induce a mimic of a spider mite-induced volatile blend, because the spider mites did not survive when incubated on ginkgo. The volatile blend induced in ginkgo by jasmonic acid was slightly attractive to predatory mites. Plants with a high degree of direct defence were thought to invest less in indirect defence than plants with a low degree of direct defence. However, plants that had a strong direct defence such as ginkgo and sweet pepper, did emit induced volatiles that attracted the predatory mite. This indicates that a combination of direct and indirect defence is to some extent compatible in plant species.  相似文献   

12.
We used a Y-tube olfactometer to assess the sub-lethal effects of the acaricide fenbutatin oxide on the olfactory response of the predatory mite Iphiseiodes zuluagai towards odours from: (1) air or undamaged coffee plants; (2) undamaged or red spider mite Oligonychus ilicis-infested coffee plants; (3) undamaged or false spider mite Brevipalpus phoenicis-infested coffee plants. Predatory mite adult females were exposed to residues of fenbutatin oxide or distilled water on leaf discs during a period of 72 h prior experiments. When exposed to distilled water (control treatments), predatory mites significantly preferred undamaged plants over air, O. ilicis-infested plants over undamaged plants, and they did not prefer B. phoenicis-infested plants over undamaged plants. However, predatory mites that had been exposed to residues of fenbutatin oxide were neither attracted towards undamaged plants nor to O. ilicis-infested plants. Thus, fenbutatin oxide affected negatively the olfactory response of I. zuluagai. We conclude that sub-lethal-effect studies should be considered in pesticide selectivity programs since the ability of predatory mites to locate their prey may be negatively affected by non-lethal concentrations of pesticides.  相似文献   

13.
Plants infested with a single herbivore species can attract natural enemies through the emission of herbivore‐induced plant volatiles (HIPVs). However, under natural conditions plants are often attacked by more than one herbivore species. We investigated the olfactory response of a generalist predators Macrolophus caliginosus to pepper infested with two‐spotted spider mites, Tetranychus urticae, or green peach aphid, Myzus persicae, vs. plants infested with both herbivore species in a Y‐tube olfactometer set up. In addition, the constituents of volatile blends from plants exposed to multiple or single herbivory were identified by gas chromatography‐mass spectrometry (GC‐MS). The mirid bugs showed a stronger response to volatiles emitted from plants simultaneously infested with spider mites and aphids than to those emitted from plants infested by just one herbivore, irrespective of the species. Combined with results from previous studies under similar conditions we infer that this was a reaction to herbivore induced plant volatiles. The GC‐MS analysis showed that single herbivory induced the release of 22 additional compounds as compared with the volatiles emitted from clean plants. Quantitative analyses revealed that the amount of volatile blends emitted from pepper infested by both herbivores was significantly higher than that from pepper infested by a single herbivore. Moreover, two unique substances were tentatively identified (with a probability of 94% and 91%, respectively) in volatiles emitted by multiple herbivory damaged plants: α‐zingiberene and dodecyl acetate.  相似文献   

14.
The attractiveness of herbivore-induced plant volatiles (HIPVs) from a specific plant species to natural enemies has been well established. However, under natural conditions and polycultural agriculture systems, the interactions among trophic levels are thought to be more complex. For instance, complex mixtures of volatiles emitted from diverse host plant species infested by polyphagous herbivores might affect responses of natural enemies. In this study, we investigated whether a mixture of HIPVs emitted from herbivore-damaged multiple host plant species affect responses of a predatory bug. Therefore, we report (1) olfactory responses of the predatory bug (Orius strigicollis) to volatiles emitted from cotton bollworm (Helicoverpa armigera) first instar larvae-damaged multiple plant species (tomato, French bean and sweet corn), (2) chemical analyses of volatiles emitted from the three plant species exposed to different treatments and (3) olfactory responses of the predators to a reconstituted HIPV blend from multiple plant species based on chemical analyses. O. strigicollis significantly preferred volatiles emanating from H. armigera-damaged multiple plant species to volatiles emanating from a single plant species. In all the three plant species, H. armigera-damaged seedlings emitted significantly a greater amount of volatiles as well as a larger number of volatile compounds than an undamaged or a mechanically injured seedling. The predators preferred the reconstituted HIPVs from multiple plant species to the reconstituted HIPVs from a single plant species. Thus, the mixture of HIPVs from multiple plant species enhanced the attractiveness to the predators.  相似文献   

15.
Information specificity can be important to animals in makingoptimal decisions. However, it is not always necessary to useevery level of specificity. We analyzed the response of thepredatory mite Phytoseiulus persimilis to plant-produced informationrelated to a nonprey herbivore. This predator is a specialistfeeding on spider mites in the genus Tetranychus. Caterpillarsof Spodoptera exigua cannot serve as prey. Plants respond toan infestation by herbivores with the emission of volatilesthat attract carnivorous enemies of the herbivores. Conspecific plants infested with different herbivore species can emit blendsthat are qualitatively identical, while differing in the ratiosof blend components. However, different plant species emitvolatile blends that differ qualitatively. We demonstratedthat the predator P. persimilis is attracted to volatiles frombean plants infested with S. exigua caterpillars, but thatthis attraction is affected by predator starvation and host-plantexperience. One-hour and 24-h starved predators were made to represent predators that just lost a prey patch versus predatorsthat have totally lost a prey patch. Predators reared on spidermites on bean were attracted to bean plants infested with caterpillarswhen starved for 1 h but not when starved for 24 h. Both predatorgroups were attracted to bean plants infested with prey (i.e.,spider mites). One-hour starved predators can use the odorto relocate the rewarding prey patch they just lost contactwith, and using a general olfactory representation of the blendis sufficient for relocation. In contrast, for 24-h starvedpredators, the perception of a plant's odor blend is unlikelyto represent the prey patch lost, and discriminating betweenan odor blend representing prey or nonprey will avoid investingtime in finding a nonprey herbivore. In contrast, predatorsthat had been reared on spider mites on cucumber and thus hadexperienced a qualitatively different odor blend were not attractedto volatiles from caterpillar-infested bean plants. They wereattracted to spider mite-infested bean plants, irrespectiveof starvation level. To cucumber-experienced predators, theperception of bean plant odor cannot represent the prey patch lost, but only a new prey patch. Being discriminative and onlyresponding to prey-infested plants is adaptive in this situation.Our results are discussed in the context of optimal informationprocessing.  相似文献   

16.
We investigated the searching behaviour of two species of predatory mites, Typhlodromips swirskii (Athias-Henriot) and Euseius scutalis (Athias-Henriot), both known to feed on immature stages of the whitefly Bemisia tabaci Gennadius. When released in a greenhouse inside a circle of cucumber plants that were alternatingly clean or infested with immature whiteflies, the mites took several days to find plants. Both species were recaptured significantly more on plants with whiteflies. This suggests that the mites are able to discriminate between plants with and without whiteflies. The predators may either have been attracted to plants with whiteflies from a distance or arrested on plants with whiteflies. Typhlodromips swirskii that had previously fed on whitefly immatures on cucumber leaves were significantly attracted by volatiles from cucumber plants with whiteflies in a Y-tube olfactometer. This suggests that the mites use volatile cues to discriminate between infested and clean plants. However, this response waned rapidly; if predators, experienced as above, were starved for 3–4 h in absence of cucumber leaves, they no longer preferred volatiles of infested plants to clean plants. Furthermore, T. swirskii that had no experience with immature whiteflies on cucumber plants also did not prefer odours of infested plants to those of clean plants. Because the release experiment with this species in the greenhouse was done with inexperienced predators, this suggests that the aggregation of mites on plants with whiteflies was mainly caused by differential arrestment of mites on plants with prey and clean plants. For T. swirskii, this was in agreement with the finding that the fraction of predators on plants with prey increased with time to levels higher than 70%. A less clear trend was found for E. scutalis, for which the fraction of predators on plants with prey stabilized soon after release to levels from 54–70%. Hence, the predatory mites may find plants with prey by random searching, but they are subsequently arrested on these plants. An earlier study showed that 87% of all whiteflies released in a set-up as used here were recaptured within 1 day. Hence, the effectiveness with which predatory mites locate plants with whiteflies is low compared with that of their prey. We expect this to generate spatial patterns in the dynamics of predator and prey and this may have consequences for biological control of whiteflies with predatory mites.  相似文献   

17.
Emission rates of volatile organic compounds (VOCs) from Pirus malus L. subsp. mitis (Wallr.) var. Golden Delicious and var. Starking attacked by the phytophagous mite Panonychus ulmi Koch, and their attractiveness to the predatory mites Amblyseius andersoni Chant and Amblyseius californicus McGregor, were studied during three years. A large variability was found in the emission of individual VOCs depending on the infestation, the apple tree variety and the date. There were larger total VOC emission rates and larger total VOC leaf concentrations in apple trees attacked by phytophagous mites, especially in the var. Starking. In infested trees of this variety, there were also more predatory mites. An olfactometer assay showed that predatory mites preferentially chose branches infested by Panonychus ulmi (85% went to infested branches vs 15% to uninfested control branches) indicating that volatiles may be used as cues to find their prey.  相似文献   

18.
Phytoseiid mites use herbivore-induced plant volatiles in long-range prey-habitat location and are arrested by these volatiles in a prey patch. The responses of predatory mites to these volatiles are considered to be an important factor in the local extermination of prey populations by phytoseiids such as Phytoseiulus persimilis. Prey-induced plant volatiles are highly detectable and can be reliable indicators of prey presence and prey identity. The composition of herbivore-induced plant volatiles depends on plant species and plant cultivar. Moreover, the composition may also vary with the herbivore species that infests a plant. The responses of phytoseiids to prey-induced plant volatiles from a specific plant-herbivore combination are highly variable. Causal factors include starvation, specific hunger, experience, pathogen infestation and the presence of competitors. Investigating variation in the phytoseiid's behavioural response in relation to these factors is important for understanding how and why behavioural strategies maximize phytoseiid fitness.  相似文献   

19.
ABSTRACT. From the host plant-spider mite complex Phaseolus lunatus—Tetranychus urticae Koch a volatile chemical is emitted that acts as a kairomone for the predatory mite Phytoseiulus persimilis Athias-Henriot (Sabelis et al. , 1984a). This kairomone is apparently a byproduct of a vital physiological process and/or it has a function in the biology of the spider mite as well.
The spider mite—host plant complex also emits a volatile spider-mite dispersing pheromone. This is shown in the present study where spider mites were introduced into an odour patch on a horizontal screen in a vertical airflow olfactometer. When spider-mite infested leaves of Lima bean are offered, the spider mites walk mainly straight and soon reach the edge of the screen. On the other hand, when clean Lima bean leaves are offered, the mites walk tortuously most of the time and reach the edge of the screen much later. Artificially damaged plants elicit the same response as undamaged plants. Differences in spider-mite behaviour are observed in the vertical airflow olfactometer when odour of either clean or spider-mite infested leaves is offered. A comparison of the behaviour in these two situations with that when no odour was offered suggests that Lima bean leaves emit a volatile kairomone that activates T. urticae and makes them return after losing the stimulus. A Y-tube olfactometer experiment confirms the existence of this kairomone.
At a low ratio of dispersing pheromone to plant kairomone, the spider mites behave as if only kairomone is present, walking mainly tortuously. At a high ratio they disperse. No aggregation-pheromonal effect is observed.
The possibility that the spider-mite dispersing pheromone acts as a kairomone for P. persimilis is discussed.  相似文献   

20.
《Journal of Asia》2020,23(4):1272-1278
The Zoophytophagous predator, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) is one of the most important candidates for controlling Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato crops. This predator uses different signals including morphological plant traits, prey insects, and volatile substances produced by the infested plants and prey signals to find its suitable prey. These signals are different in each cultivar of a plant. We aimed to understand how N. tenuis finds its prey using volatiles from tomato plants damaged or infested with T. absoluta. The predator’s responses to various plant treatments on two cultivars of tomato plants were tested in a flight tunnel and a four-choice olfactometer. The volatile compounds released from the treatments were also collected and identified. The results of the olfactory experiments showed that the predators even in the absence of light chose the plants bearing their insect prey. This behavior was not the same in both cultivars, and N. tenuis had a tendency toward mechanically damaged of Early Urbana Y cultivar more than Cal JN3 cultivar. The differences in the amount of monoterpenes, sesquiterpenes, and eugenol between cultivars may play a role in the differential attraction of N. tenuis towards infested plants. The difference in the volatile compounds was evident in two cultivars, and this was consistent with our bioassay results. Therefore, the choice of appropriate cultivar and use of herbivore-infested plant volatiles are important for developing a control strategy against T. absoluta and attract its predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号