首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eleven Acanthamoeba isolates, obtained from Acanthamoeba keratitis patients, from contact lens cases of non-Acanthamoeba keratitis patients, from asymptomatic individuals, from necrotic tissue, and from tap water and two reference strains were investigated by morphological, molecular biological, and physiological means in order to discriminate clinically relevant and nonrelevant isolates. All clinically relevant isolates showed Acanthamoeba sp. group II morphology. 18S ribosomal DNA sequencing revealed sequence type T4 to be the most prevalent group among the isolates and also the group recruiting most of the pathogenic strains. Interestingly, within T4 the strains of no clinical relevance clustered together. Moreover, physiological properties appeared to be highly consistent with initial pathogenicity and with sequence clustering. Altogether, the results of our study indicate a correlation between the phylogenetic relationship and pathogenicity.  相似文献   

2.
Previous molecular examination of Acanthamoeba spp. has resulted in the determination of distinct genotypes in this genus (designated T1-T12, T14). Genotype T4 has been responsible for the majority of cases of Acanthamoeba keratitis. Here we examine the relative abundance of environmental T4 isolates on beaches and ask whether they have temperature and salinity tolerances that could enhance pathogenicity. Twenty-four Acanthamoeba strains were isolated from beach sand (n = 20), soil (n = 3), and tap water (n = 1) in south Florida. Phylogenetic analysis identified 19 of 24 isolates as T4, the Acanthamoeba keratitis-associated genotype. The remaining isolates were genotype T5 (4) and T11 (1). Nearly all beach isolates were genotype T4, whereas the tap water and soil isolates were mostly T5. All amoebae grew at 0, 1.0, and 2.0% salt and 19 of 20 beach isolates also grew at 3.2%. No soil or tap-water acanthamoebae reproduced at 3.2%. All isolates grew at 37 degrees C and two (T5) at 42 degrees C. Little correlation existed between beach location, salt-tolerance, and genetic relatedness. Overall, the large majority of environmental isolates obtained were genotype T4, suggesting it may be the most common genotype in this environment and could be a potential source of Acanthamoeba keratitis infections.  相似文献   

3.
ABSTRACT. Occurrence of Acanthamoeba in the hospital environment may represent a health risk for patients, since these organisms can cause severe opportunistic illness, such as keratitis, and also can harbor pathogenic agents. We analyzed the dust from some environments of a public hospital in Curitiba, Parana State, Brazil. Two distinct populations of Acanthamoeba were isolated in five locations and morphologically classified as group I and group II according to Pussard and Pons. Isolates were identified as Acanthamoeba by PCR using primers to amplify a region of 18S rDNA, which showed variation in the product length among the isolates. A cloned culture of group II showed greater growth at 37 °C and in media with 0.1, 0.5, and 1.0 M mannitol, which are the physiological characteristics of pathogenic Acanthamoeba . Monitoring the presence of Acanthamoeba in hospital units, as well as evaluating the pathogenicity of the isolates, can be an approach to alert the health professionals to improve the disinfection procedures and minimize the risks of treating this problematic disease caused by this protozoan.  相似文献   

4.
5.
Cytopathic proteins are assumed to contribute to the pathogenicity of Acanthamoeba spp. due to their degrading capacity that is required for tissue invasion. In this study, a serine proteinase gene was demonstrated in a highly virulent Acanthamoeba keratitis causing strain with genotype T6. This gene was detected in both, the genomic DNA and the cDNA by PCR and subsequent sequencing. The gene fragment comprises about 500 bp and exhibits high sequence similarity to the serine proteinases of Acanthamoeba strains with genotype T4 and T12. The detection of a serine proteinase in this Acanthamoeba T6 strain is significant, because while T4 is the most common genotype among pathogenic Acanthamoeba strains and also T12 is known to be associated with disease, this is the only virulent Acanthamoeba T6 strain known to date. Obviously, this serine proteinase represents a common tool in pathogenic processes during Acanthamoeba infection.  相似文献   

6.
Various species of the genus Acanthamoeba have been described as potential pathogens; however, differentiation of acanthamoebae remains problematic. The genus has been divided into 12 18S rDNA sequence types, most keratitis causing strains exhibiting sequence type T4. We recently isolated a keratitis causing Acanthamoeba strain showing sequence type T6, but being morphologically identical to a T4 strain. The aim of our study was to find out, whether the 18S rDNA sequence based identification correlates to immunological differentiation. The protein and antigen profiles of the T6 isolate and three reference Acanthamoeba strains were investigated using two sera from Acanthamoeba keratitis patients and one serum from an asymptomatic individual. It was shown, that the T6 strain produces a distinctly different immunological pattern, while patterns within T4 were identical. Affinity purified antibodies were used to further explore immunological cross-reactivity between sequence types. Altogether, the results of our study support the Acanthamoeba 18S rDNA sequence type classification in the investigated strains.  相似文献   

7.
Species of Acanthamoeba can cause keratitis and brain infections. The characterization of environmental isolates is necessary to analyze the risk of human infection. We aimed at identifying and genotyping Acanthamoeba isolates from soil, swimming pools, and water features in Brasília, Federal District, Brazil, as well as determining their physiological characteristics and pathogenic potential. Among the 18 isolates studied, eight were similar to genotype T5, five to T4, and one to T2/T6, classified by the sequence analysis of 18S rDNA. Genotypes of four isolates were not determined. Ten isolates (55%) grew at 37 °C and seven (39%) grew in media with 1.5M mannitol, which are the physiological parameters associated with pathogenic Acanthamoeba; also, four isolates from swimming pools presented high pathogenic potential. Our results indicate a widespread distribution of potentially pathogenic Acanthamoeba T4, T5, and T2/T6 in different environmental sources in Brasília, revealing the potential risk of human infection and the need of preventive measures.  相似文献   

8.
We conducted both the small subunit ribosomal DNA (SSU rDNA) polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and mitochondrial (mt) DNA RFLP analyses for a genetic characterization of Acanthamoeba isolates from contact lens storage cases of students in Seoul, Korea. Twenty-three strains of Acanthamoeba from the American Type Culture Collection and twelve clinical isolates from Korean patients were used as reference strains. Thirty-nine isolates from contact lens storage cases were classified into seven types (KA/LS1, KA/LS2, KA/LS4, KA/LS5, KA/LS7, KA/LS18, KA/LS31). Four types (KA/LS1, KA/LS2, KA/LS5, KA/LS18) including 33 isolates were regarded as A. castellanii complex by riboprints. KA/LS1 type was the most predominant (51.3%) in the present survey area, followed by KA/LS2 (20.9%), and KA/LS5 (7.7%) types. Amoebae of KA/LS1 type had the same mtDNA RFLP and riboprint patterns as KA/E2 and KA/E12 strains, clinical isolates from Korean keratitis patients. Amoebae of KA/LS2 type had the identical mtDNA RFLP patterns with A. castellanii Ma strain, a corneal isolate from an American patient as amoebae of KA/LS5 type, with KA/E3 and KA/E8 strains from other Korean keratitis patients. Amoebae of KA/LS18 type had identical patterns with JAC/E1, an ocular isolate from a Japanese patient. Three types, which remain unidentified at species level, were not corresponded with any clinical isolate in their mtDNA RFLP and riboprint patterns. Out of 39 isolates analyzed in this study, mtDNA RFLP and riboprint patterns of 33 isolates (84.6%) were identical to already known clinical isolates, and therefore, they may be regarded as potentially keratopathogenic. These results suggest that contact lens wearers in Seoul should pay more attention to hygienic maintenance of contact lens storage cases for the prevention of Acanthamoeba keratitis.  相似文献   

9.
The pathogenesis and pathophysiology of Acanthamoeba infections remain incompletely understood. Phospholipases are known to cleave phospholipids, suggesting their possible involvement in the host cell plasma membrane disruption leading to host cell penetration and lysis. The aims of the present study were to determine phospholipase activities in Acanthamoeba and to determine their roles in the pathogenesis of Acanthamoeba. Using an encephalitis isolate (T1 genotype), a keratitis isolate (T4 genotype), and an environmental isolate (T7 genotype), we demonstrated that Acanthamoeba exhibited phospholipase A(2) (PLA(2)) and phospholipase D (PLD) activities in a spectrophotometry-based assay. Interestingly, the encephalitis isolates of Acanthamoeba exhibited higher phospholipase activities as compared with the keratitis isolates, but the environmental isolates exhibited the highest phospholipase activities. Moreover, Acanthamoeba isolates exhibited higher PLD activities compared with the PLA(2). Acanthamoeba exhibited optimal phospholipase activities at 37℃ and at neutral pH indicating their physiological relevance. The functional role of phospholipases was determined by in vitro assays using human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. We observed that a PLD-specific inhibitor, i.e., compound 48/80, partially inhibited Acanthamoeba encephalitis isolate cytotoxicity of the host cells, while PLA(2)-specific inhibitor, i.e., cytidine 5'-diphosphocholine, had no effect on parasite-mediated HBMEC cytotoxicity. Overall, the T7 exhibited higher phospholipase activities as compared to the T4. In contract, the T7 exhibited minimal binding to, or cytotoxicity of, HBMEC.  相似文献   

10.
Subgenus Systematics of Acanthamoeba: Four Nuclear 18S rDNA Sequence Types   总被引:7,自引:0,他引:7  
ABSTRACT Classification of Acanthamoeba at the subgenus level has been problematic, but increasing reports of Acanthamoeba as an opportunistic human pathogen have generated an interest in finding a more consistent basis for classification. Thus, we are developing a classification scheme based on RNA gene sequences. This first report is based on analysis of complete sequences of nuclear small ribosomal subunit RNA genes ( Rns ) from 18 strains. Sequence variation was localized in 12 highly variable regions. Four distinct sequence types were identified based on parsimony and distance analyses. Three were obtained from single strains: Type T1 from Acanthamoeba castellanii V006, T2 from Acanthamoeba palestinensis Reich, and T3 from Acanthamoeba griffini S-7. T4, the fourth sequence type, included 15 isolates classified as A. castellanii, Acanthamoeba polyphaga, Acanthamoeba rhysodes , or Acanthamoeba sp., and included all 10 Acanthamoeba keratitis isolates. Interstrain sequence differences within T4 were 0%–4.3%, whereas differences among sequence types were 6%–12%. Branching orders obtained by parsimony and distance analyses were inconsistent with the current classification of T4 strains and provided further evidence of a need to reevaluate criteria for classification in this genus. Based on this report and others in preparation, we propose that Rns sequence types provide the consistent quantititive basis for classification that is needed.  相似文献   

11.
The taxonomy of Acanthamoeba spp., an amphizoic amoeba which causes granulomatous amoebic encephalitis and chronic amoebic keratitis, has been revised many times. The taxonomic validity of some species has yet to be assessed. In this paper, we analyzed the morphological characteristics, nuclear 18s rDNA and mitochondrial 16s rDNA sequences and the Mt DNA RFLP of the type strains of four Acanthamoeba species, which had been previously designated as A. divionensis, A. parasidionensis, A. mauritaniensis, and A. rhysodes. The four isolates revealed characteristic group II morphology. They exhibited 18S rDNA sequence differences of 0.2-1.1% with each other, but more than 2% difference from the other compared reference strains. Four isolates formed a different clade from that of A. castellanii Castellani and the other strains in morphological group II on the phylogenetic tree. In light of these results, A. paradivionensis, A. divionensis, and A. mauritaniensis should be regarded as synonyms for A. rhysodes.  相似文献   

12.
Acanthamoeba spp. consists of free-living amoebae, widespread in nature, which occasionally can cause human infections including granulomatous amoebic encephalitis and amoebic keratitis. Acanthamoeba pathogenesis is not entirely known and correlations between pathogenic potential and taxonomy are complex issues. In order to decipher the definition of a pathogenic amoeba, the objective of this work was to decipher the definition of pathogenic amoeba by characterizing two isolates of Acanthamoeba polyphaga obtained from different origins (a keratitis patient and freshwater), looking for differences among them. The clinical isolate grew faster in Peptone-yeast extract-glucose (PYG) medium, transformed more rapidly from a trophozoite to cyst and exhibited increased cytopathic effect on cultured cells. Morphological differences were also noted, since freshwater amoebae presented more acanthopodia than the clinical isolate. Moreover, actin labeling demonstrated that microfilament organization varies between isolates, with the presence of locomotory structures as lobopodia and lamellipodia in the keratitis isolate, which were less adherent on plastic. Zymography demonstrated that the keratitis isolates presented higher proteolytic activity and also were more able to invade collagen matrices. Altogether, we conclude that a group of stable physiological characteristics exist in Acanthamoeba that can be related to pathogenicity.  相似文献   

13.
Acanthamoeba species are free-living amoebae found in a range of environments. Within this genus, a number of species are recognized as human pathogens, potentially causing Acanthamoeba keratitis, granulomatous amoebic encephalitis, and chronic granulomatous lesions. In this study, 60 water samples were taken from four thermal spring recreation areas in southern Taiwan. We detected living Acanthamoeba spp. based on culture-confirmed detection combined with the molecular taxonomic identification method. Living Acanthamoeba spp. were detected in nine (15%) samples. The presence or absence of Acanthamoeba spp. in the water samples depended significantly on the pH value. The most frequently identified living Acanthamoeba genotype was T15 followed by T4, Acanthamoeba spp., and T2. Genotypes T2, T4, and T15 of Acanthamoeba, are responsible for Acanthamoeba keratitis as well as granulomatous amoebic encephalitis, and should therefore be considered a potential health risk associated with human activities in thermal spring environments.  相似文献   

14.
ABSTRACT The 18S rRNA gene ( Rns ) phylogeny of Acanthamoeba is being investigated as a basis for improvements in the nomenclature and taxonomy of the genus. We previously analyzed Rns sequences from 18 isolates from morphological groups 2 and 3 and found that they fell into four distinct evolutionary lineages we called sequence types T1-T4. Here, we analyzed sequences from 53 isolates representing 16 species and including 35 new strains. Eight additional lineages (sequence types T5-T12) were identified. Four of the 12 sequence types included strains from more than one nominal species. Thus, sequence types could be equated with species in some cases or with complexes of closely related species in others. The largest complex, sequence type T4, which contained six closely related nominal species, included 24 of 25 keratitis isolates. Rns sequence variation was insufficient for full phylogenetic resolution of branching orders within this complex, but the mixing of species observed at terminal nodes confirmed that traditional classification of isolates has been inconsistent. One solution to this problem would be to equate sequence types and single species. Alternatively, additional molecular information will be required to reliably differentiate species within the complexes. Three sequence types of morphological group 1 species represented the earliest divergence in the history of the genus and, based on their genetic distinctiveness, are candidates for reclassification as one or more novel genera.  相似文献   

15.
Genetic diversity of 18 Acanthamoeba isolates from ocean sediments was evaluated by comparing mitochondrial (mt) DNA RFLP, 18S rDNA sequences and by examining their cytopathic effects on human corneal epithelial cells versus reference strains. All isolates belonged to morphologic group II. Total of 16 restriction phenotypes of mtDNA from 18 isolates demonstrated the genetic diversity of Acanthamoeba in ocean sediments. Phylogenetic analysis using 18s rDNA sequences revealed that the 18 isolates were distinct from morphological groups I and III. Fifteen isolates showed close relatedness with 17 clinical isolates and A. castellanii Castellani and formed a lineage equivalent to T4 genotype of Byers group. Two reference strains from ocean sediment, A. hatchetti BH-2 and A. griffini S-7 clustered unequivocally with these 15 isolates. Diversity among isolates was also evident from their cytopathic effects on human corneal cells. This is the first time describing Acanthamoeba diversity in ocean sediments in Korea.  相似文献   

16.
Three Acanthamoeba isolates (KA/E9, KA/E17, and KA/E23) from patients with keratitis were identified as Acanthamoeba triangularis by analysis of their molecular characteristics, a species not previously recognized to be a corneal pathogen. Epidemiologic significance of A. triangularis as a keratopathogen in Korea has been discussed. Morphologic features of Acanthamoeba cysts were examined under a microscope with differential interference contrast (DIC) optics. Mitochondrial DNA (mtDNA) of the ocular isolates KA/E9, KA/E17, and KA/E23 were digested with restriction enzymes, and the restriction patterns were compared with those of reference strains. Complete nuclear 18S and mitochondrial (mt) 16S rDNA sequences were subjected to phylogenetic analysis and species identification. mtDNA RFLP of 3 isolates showed very similar patterns to those of SH621, the type strain of A. triangularis. 16S and 18S rDNA sequence analysis confirmed 3 isolates to be A. triangularis. 18S rDNA sequence differences of the isolates were 1.3% to 1.6% and those of 16S rDNA, 0.4% to 0.9% from A. triangularis SH621. To the best of our knowledge, this is the first report, confirmed by 18S and 16S rDNA sequence analysis, of keratitis caused by A. triangularis of which the type strain was isolated from human feces. Six isolates of A. triangularis had been reported from contaminated contact lens cases in southeastern Korea.  相似文献   

17.
Free-living amoebae of the genus Acanthamoeba are the agents of both opportunistic and non-opportunistic infections and are frequently isolated from the environment. Of the 17 genotypes (T1-T17) identified thus far, 4 (T7, T8, T9, and T17) accommodate the rarely investigated species of morphological group I, those that form large, star-shaped cysts. We report the isolation and characterization of 7 new Brazilian environmental Acanthamoeba isolates, all assigned to group I. Phylogenetic analyses based on partial (~1200 bp) SSU rRNA gene sequences placed the new isolates in the robustly supported clade composed of the species of morphological group I. One of the Brazilian isolates is closely related to A. comandoni (genotype T9), while the other 6, together with 2 isolates recently assigned to genotype T17, form a homogeneous, well-supported group (2·0% sequence divergence) that likely represents a new Acanthamoeba species. Thermotolerance, osmotolerance, and cytophatic effects, features often associated with pathogenic potential, were also examined. The results indicated that all 7 Brazilian isolates grow at temperatures up to 40°C, and resist under hyperosmotic conditions. Additionally, media conditioned by each of the new Acanthamoeba isolates induced the disruption of SIRC and HeLa cell monolayers.  相似文献   

18.
Amoebae belonging to the genus Acanthamoeba are potentially pathogenic to humans, causing mainly amoebic keratitis. Pathogenic ability of the 15 known Acanthamoeba genotypes is under investigation. We report that four out of five cases of amoebic keratitis studied in Greece, present T4 sequence type, while the remaining one presents T5 sequence type (Acanthamoeba lenticulata), which is the second most frequent genotype found among environmental samples. Thus, it is confirmed, for the first time to our knowledge, that A. lenticulata can cause keratitis. However the reason that it is under represented in clinical samples compared to environmental ones is unknown.  相似文献   

19.
Acanthamoeba species are ubiquitous soil and freshwater protozoa that have been associated with infections of the human brain, skin, lungs and eyes. Our aim was to develop specific antibodies to aid in rapid and specific diagnosis of clinically important isolates. Mice were variously immunised with live mixtures of Acanthamoeba castellanii strain 112 (AC112) trophozoites and cysts, or with sonicated, formalin-fixed or heat-treated trophozoites, or with a trophozoite membrane preparation. Eight hybridoma cell lines secreting monoclonal antibodies reactive with A. castellanii epitopes were generated. Seven of the new antibodies (designated AMEC1-3 and MTAC1-4) were isotyped as IgMkappa and one (MTAC5) as IgG1kappa. All of the novel antibodies bound to AC112 cysts, and MTAC4 and MTAC5 also bound to trophozoites as measured by flow cytometry on unfixed cells. Single chain antibody fragments that retained parental antibody binding characteristics were engineered from three of the hybridomas (AMEC1, MTAC3 and MTAC4). Four monoclonal antibodies (AMEC1, AMEC3, MTAC1, MTAC3) bound reliably to unfixed cysts of clinical isolates of A. castellanii (two strains) and Acanthamoeba polyphaga (two strains), belonging to Pussard-Pons morphological group II, and to Acanthamoeba lenticulata and Acanthamoeba culbertsoni, belonging to Pussard-Pons morphological group III. None of the antibodies bound to cysts or trophozoites of the environmental group I species, Acanthamoeba tubiashi. Antibodies AMEC1, MTAC3, MTAC4 and MTAC5 reacted with buffered formalin-fixed AC112 by immunohistochemistry, and also stained Acanthamoeba in sections of infected rat cornea and buffered formalin-fixed, paraffin-embedded infected human cornea. These antibodies may be useful in diagnosing pathogenic Acanthamoeba species in clinical specimens, provided that cysts are present.  相似文献   

20.
Pathogenic free-living amoebae in Korea   总被引:4,自引:0,他引:4  
Acanthamoeba and Naegleria are widely distributed in fresh water, soil and dust throughout the world, and cause meningoencephalitis or keratoconjunctivitis in humans and other mammals. Korean isolates, namely, Naegleria sp. YM-1 and Acanthamoeba sp. YM-2, YM-3, YM-4, YM-5, YM-6 and YM-7, were collected from sewage, water puddles, a storage reservoir, the gills of a fresh water fish, and by corneal washing. These isolates were categorized into three groups based on the mortalities of infected mice namely, highly virulent (YM-4), moderately virulent (YM-2, YM-5 and YM-7) and nonpathogenic (YM-3). In addition, a new species of Acanthamoeba was isolated from a freshwater fish in Korea and tentatively named Korean isolate YM-4. The morphologic characters of its cysts were similar to those of A. culbertsoni and A. royreba, which were previously designated as Acanthamoeba group III. Based on experimentally infected mouse mortality, Acanthamoeba YM-4 was highly virulent. The isoenzymes profile of Acanthamoeba YM-4 was similar to that of A. royreba. Moreover, an anti-Acanthamoeba YM-4 monoclonal antibody reacted only with Acanthamoeba YM-4, and not with A. culbertsoni. Random amplified polymorphic DNA marker analysis and RFLP analysis of mitochondrial DNA and of a 18S small subunit ribosomal RNA, placed Acanthamoeba YM-4 in a separate cluster based on phylogenic distances. Thus Acanthamoeba YM-4 was identified as a new species, and assigned Acanthamoeba sohi. Up to the year 2002 in Korea, two clinical cases were found to be infected with Acanthamoeba spp. These patients died of meningoencephalitis. In addition, one case of Acanthamoeba pneumonia with an immunodeficient status was reported and Acanthamoeba was detected in several cases of chronic relapsing corneal ulcer, chronic conjunctivitis, and keratitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号