首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasmodium falciparum infection during pregnancy results in the accumulation of infected red blood cells (IRBCs) in the placenta, leading to poor pregnancy outcome. In the preceding paper (Achur, R. N., Valiyaveettil, M., Alkhalil, A., Ockenhouse, C. F., and Gowda, D. C. (2000) J. Biol. Chem. 275, 40344-40356), we reported that unusually low sulfated chondroitin sulfate proteoglycans (CSPGs) in the intervillous spaces of the placenta mediate the IRBC adherence. In this study, we report the structural requirements for the adherence and the minimum chondroitin 4-sulfate (C4S) structural motif that supports IRBC adherence. Partially sulfated C4Ss with varying sulfate contents were prepared by solvolytic desulfation of a fully sulfated C4S. These and other nonmodified C4Ss, with different proportions of 4-, 6-, and nonsulfated disaccharide repeats, were analyzed for inhibition of IRBC adherence to the placental CSPG. C4Ss containing 30-50% 4-sulfated and 50-70% nonsulfated disaccharide repeats efficiently inhibited IRBC adherence; C6S had no inhibitory activity. Oligosaccharides of varying sizes were prepared by the partial depolymerization of C4Ss containing varying levels of 4-sulfation, and their ability to inhibit the IRBC adherence was studied. Oligosaccharides with six or more disaccharide repeats inhibited IRBC adherence to the same level as that of the intact C4Ss, indicating that a dodecasaccharide is the minimum structural motif required for optimal IRBC adherence. Of the C4S dodecasaccharides, only those with two or three sulfate groups per molecule showed maximum IRBC inhibition. These data define the structural requirements for the IRBC adherence to placental CSPGs with implications for the development of therapeutics for maternal malaria.  相似文献   

2.
Sequestration of Plasmodium falciparum-infected red blood cells (IRBCs) in the human placenta is mediated by chondroitin 4-sulfate (C4S). A cytoadherence assay using chondroitin sulfate proteoglycans (CSPGs) is widely used for studying C4S-IRBC interactions. Bovine tracheal chondroitin sulfate A (CSA) preparation lacking a major portion of core protein has been frequently used for the assay. Here the CSPG purified from bovine trachea and CSA were assessed for IRBC binding and the CS chains studied in detail for structure-activity relationship. The IRBCs bound at significantly higher density to the CSPG than CSA. The CS chains of CSPG/CSA are heterogeneous with varying levels of 4- and 6-sulfates, which are distributed such that approximately 80% of the 4-sulfated disaccharides are present as single and blocks of two or three separated by one to three 6-sulfated disaccharides. The remainder of the 4-sulfated disaccharides is present in blocks composed of 4-12 units, separated by 6-sulfated disaccharides. In the IRBC adherence inhibition analysis, CSA fragments with 88%-92% 4-sulfate were significantly less inhibitory than the intact CSA, indicating that the regions consisting of shorter 4-sulfated blocks efficiently bind IRBCs despite the presence of relatively high levels of 6-sulfate. This is because the 6-sulfated disaccharides have unsubstituted C-4 hydroxyls that are crucial for IRBC binding. The presence of high levels of 6-sulfate, however, significantly interfere with the IRBC binding activity of CSA, which otherwise would more efficiently bind IRBCs. Thus our study revealed the distribution pattern of 4- and 6-sulfate in bovine tracheal CSA and structural basis for IRBC binding.  相似文献   

3.
In placental malaria, Plasmodium falciparum-infected erythrocytes adhere to the apical plasma membrane of the placental epithelium, triggering an impairment of placental function detrimental to the fetus. The design of anti-adhesion intervention strategies requires a detailed understanding of the mechanisms involved. However, most adhesion assays lack in vivo relevance and are hardly quantitative. Here, we describe a flow cytometry-based adhesion assay that is fully relevant by using apical epithelial plasma membrane vesicles as the adhesion matrix, and being applicable to infected erythrocytes directly isolated from patients. Adhesion is measured both as the percentage of pathogens bound to epithelial membrane vesicles as well as the mean number of vesicles bound per infected erythrocytes. We show that adhesins alternative to those currently identified could be involved. This demonstrates the power of this assay to advance our understanding of epithelial adhesion of infected erythrocytes and in the design of intervention strategies.  相似文献   

4.
An important characteristic of malaria parasite Plasmodium falciparum-infected red blood cells (IRBCs) is their ability to adhere to host endothelial cells and accumulate in various organs. Sequestration of IRBCs in the placenta, associated with excess perinatal and maternal mortality, is mediated in part by adhesion of parasites to the glycosaminoglycan chondroitin sulfate A (CSA) present on syncytiotrophoblasts lining the placental blood spaces. To define key structural features for parasite interactions, we isolated from CSA oligosaccharide fractions and established by electrospray mass spectrometry and high performance liquid chromatography disaccharide composition analysis their differing chain length, sulfate content, and sulfation pattern. Testing these defined oligosaccharide fragments for their ability to inhibit IRBC adhesion to immobilized CSA revealed the importance of non-sulfated disaccharide units in combination with 4-O-sulfated disaccharides for interaction with IRBCs. Selective removal of 6-O-sulfates from oligo- and polysaccharides to increase the proportion of non-sulfated disaccharides enhanced activity, indicating that 6-O-sulfation interferes with the interaction of CSA with IRBCs. Dodecasaccharides with four or five 4-O-sulfated and two or one non-sulfated disaccharide units, respectively, comprise the minimum chain length for effective interaction with IRBCs. Comparison of the activities of CSA and CSB oligo- and polysaccharides with a similar sulfation pattern and content achieved from partial desulfation demonstrated that glucuronic acid rather than iduronic acid residues are important for IRBC binding.  相似文献   

5.
Plasmodium falciparum parasites that sequester in the placenta bind to the molecule chondroitin sulfate A (CSA). Women become resistant to malaria during pregnancy as they acquire antibodies that inhibit parasite adhesion to CSA, suggesting that a vaccine against placental malaria is feasible. Hyaluronic acid (HA) and non-immune IgG have also been proposed as receptors for P. falciparum adhesion in the placenta, but evidence for their roles is inconclusive. In this study, CSA, HA, and IgG were simultaneously assessed for their relative contributions to placental adhesion. Placental parasites collected in Tanzania uniformly adhered to the molecule CSA, and soluble CSA completely inhibited adhesion of most samples to placental cryosections. Three of 46 placental parasite samples also adhered to immobilized HA, but HA failed to inhibit adhesion of any placental parasites to placental cryosections. Similarly, non-immune IgG and protein A failed to inhibit adhesion of parasite samples to placental cryosection. P. falciparum adhesion in the placenta appears to be a non-redundant process that requires CSA as a receptor. Vaccines that elicit functional antibodies against CSA-binding parasites may confer resistance to pregnancy malaria.  相似文献   

6.
7.
In areas of intense Plasmodium falciparum transmission, clinical immunity is acquired during childhood, and adults enjoy substantial protection against malaria. An exception to this rule is pregnant women, in whom malaria is both more prevalent and severe than in nonpregnant women. Pregnancy-associated malaria (PAM) in endemic areas is concentrated in the first few pregnancies, indicating that protective immunity to PAM is a function of parity. The placenta is often heavily infected in PAM, and placental parasites show a striking preference for chondroitin sulfate A (CSA) as an adhesion receptor. Plasma Abs from malaria-exposed multiparous women are able to interfere with binding of P. falciparum parasites to CSA in vitro, and acquisition of Abs interfering with CSA-specific parasite sequestration thus appears to be a critical element in acquired protection against PAM. Here we show that adults from an area of hyperendemic P. falciparum transmission generally possessed low levels of Abs specifically recognizing surface Ags expressed by a CSA-adhering parasite isolate, while unselected isolates were well recognized. In marked contrast, most third-trimester pregnant women from that area had very high plasma levels of such Abs. Plasma levels of Abs specifically recognizing the CSA-adhering isolate strongly depended on parity, whereas recognition of CSA-nonadhering isolates did not. Finally, we demonstrate a clear correlation between plasma levels of Abs recognizing the CSA-specific isolate and the ability to interfere with its sequestration to CSA in vitro. Our study supports the hypothesis that Abs inhibiting CSA-specific parasite sequestration are important in acquisition of protection against PAM.  相似文献   

8.
Plasmodium falciparum infection in pregnant women results in the chondroitin 4-sulfate-mediated adherence of the parasite-infected red blood cells (IRBCs) in the placenta, adversely affecting the health of the fetus and mother. We have previously shown that unusually low sulfated chondroitin sulfate proteoglycans (CSPGs) in the intervillous spaces of the placenta are the receptors for IRBC adhesion, which involves a chondroitin 4-sulfate motif consisting of six disaccharide moieties with approximately 30% 4-sulfated residues. However, it was puzzling how the placental CSPGs, which have only approximately 8% of the disaccharide 4-sulfated, could efficiently bind IRBCs. Thus, we undertook to determine the precise structural features of the CS chains of placental CSPGs that interact with IRBCs. We show that the placental CSPGs are a mixture of two major populations, which are similar by all criteria except differing in their sulfate contents; 2-3% and 9-14% of the disaccharide units of the CS chains are 4-sulfated, and the remainder are nonsulfated. The majority of the sulfate groups in the CSPGs are clustered in CS chain domains consisting of 6-14 repeating disaccharide units. While the sulfate-rich regions of the CS chains contain 20-28% 4-sulfated disaccharides, the other regions have little or no sulfate. Further, we find that the placental CSPGs are able to efficiently bind IRBCs due to the presence of 4-sulfated disaccharide clusters. The oligosaccharides corresponding to the sulfate-rich domains of the CS chains efficiently inhibited IRBC adhesion. Thus, our data demonstrate, for the first time, the unique distribution of sulfate groups in the CS chains of placental CSPGs and that these sulfate-clustered domains have the necessary structural elements for the efficient adhesion of IRBCs, although the CS chains have an overall low degree of sulfation.  相似文献   

9.
Infection with Plasmodium falciparum during pregnancy leads to the selective adherence of infected red blood cells (IRBCs) in the placenta causing placental malaria. The IRBC adherence is mediated through the chondroitin 4-sulfate (C4S) chains of unusually low-sulfated chondroitin sulfate proteoglycans (CSPGs) in the placenta. To study the structural interactions involved in C4S-IRBC adherence, various investigators have used CSPGs from different sources. Since the structural characteristics of the polysaccharide chains in CSPGs from various sources differ substantially, the CSPGs are likely to differentially bind IRBCs. In this study, the CSPG purified from bovine trachea, a CSPG form of human recombinant thrombomodulin (TM-CSPG), two CSPG fractions from bovine cornea, and the CSPGs of human placenta, the natural receptor, were studied in parallel for their IRBC binding characteristics. The TM-CSPG and corneal CSPG fractions could bind IRBCs at significantly higher density compared to the placental CSPGs. However, the avidity of IRBC binding by TM-CSPG was considerably low compared to placental CSPGs. The corneal CSPGs have substantially higher binding strengths. The bovine tracheal CSPG bound IRBCs at much lower density and exhibited significantly lower avidity than the placental CSPGs. These data demonstrated that the bovine tracheal CSPG and TM-CSPG are not ideal for studying the fine structural interactions involved in the IRBC adherence to the placental C4S, whereas the bovine corneal CSPGs are better alternatives to the placental CSPGs for determining these interactions.  相似文献   

10.
BACKGROUND: Naturally induced antibodies binding to surface antigens of Plasmodium falciparum-infected erythrocytes can be detected by direct agglutination of infected erythrocytes or by indirect immunofluorescence on intact, unfixed, infected erythrocytes. Agglutinating antibodies have previously been shown to recognise Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). This protein is inserted by the parasite into the host cell membrane and mediates the adhesion to the venular endothelium of the host organism in vivo. METHODS: Erythrocytes infected at high parasitaemias with ethidium-bromide-labelled mature forms of P. falciparum parasites were sequentially exposed to immune plasma, goat anti-human immunoglobulin (Ig) G, and fluorescein-isothiocyanate-conjugated rabbit anti-goat Ig. Plasma antibodies recognising antigens exposed on the surface of parasitised erythrocytes were subsequently detected by two-colour flow cytometry. RESULTS: Binding of human antibodies to the surface of erythrocytes infected with adhesive strains of Plasmodium falciparum can be measured by the two-colour flow cytometry (FCM) assay described. In addition, we demonstrate that the adhesive capacity of a parasite isolate correlates with the capacity of human immune plasmas to label the isolate as detected by FCM. We also show that the antigens recognised by the labelling antibodies are strain specific and that their molecular weights are in the range previously described for PfEMP1 antigens. CONCLUSIONS: Our FCM assay predominantly detects antibodies that recognise PfEMP1 and thus constitutes a convenient assay for the analysis of acquisition, maintenance, and diversity of anti-PfEMP1-specific antibodies and for the examination of class and subclass characteristics.  相似文献   

11.
12.
13.
Human erythrocytes infected with the human malaria parasite Plasmodium falciparum, bind to post-capillary venular endothelium and to uninfected red blood cells via specific receptor-ligand interactions. The interactions between malaria-parasitized erythrocytes and host cells is a highly cooperative and finely regulated process which contributes both to the evasion of host immune mechanisms and to the pathogenesis of the disease, in particular the development of cerebral malaria. The cellular and molecular interactions responsible for the adhesion of parasitzed red cells to host cells are the subject of this review.  相似文献   

14.
We recently identified a voltage-dependent anion channel on the surface of human red blood cells (RBCs) infected with the malaria parasite, Plasmodium falciparum. This channel, the plasmodial erythrocyte surface anion channel (PESAC), likely accounts for the increased permeability of infected RBCs to various small solutes, as assessed quantitatively with radioisotope flux and patch-clamp studies. Whereas this increased permeability has also been studied by following osmotic lysis of infected cells in permeant solutes, these experiments have been limited to qualitative comparisons of lysis rates. To permit more quantitative examination of lysis rates, we have developed a mathematical model for osmotic fragility of infected cells based on diffusional uptake via PESAC and the two-compartment geometry of infected RBCs. This model, combined with a simple light scattering assay designed to track osmotic lysis precisely, produced permeability coefficients that match both previous isotope flux and patch-clamp estimates. Our model and light scattering assay also revealed Michaelian kinetics for inhibition of PESAC by furosemide, suggesting a 1:1 stoichiometry for their interaction.  相似文献   

15.
The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts. Although several of these exported proteins are determinants of pathology and virulence, the mechanisms and trafficking signals underpinning protein export are largely uncharacterized-particularly for exported transmembrane proteins. Here, we have investigated the signals mediating trafficking of STEVOR, a family of transmembrane proteins located at the Maurer's clefts and believed to play a role in antigenic variation. Our data show that, apart from a signal sequence, a minimum of two addition signals are required. This includes a host cell targeting signal for export to the host erythrocyte and a transmembrane domain for final sorting to Maurer's clefts. Biochemical studies indicate that STEVOR traverses the secretory pathway as an integral membrane protein. Our data suggest general principles for transport of transmembrane proteins to the Maurer's clefts and provide new insights into protein sorting and trafficking processes in P. falciparum.  相似文献   

16.
Plasmodium falciparum (Pf) malaria parasites remodel host erythrocytes by placing membranous structures in the host cell cytoplasm and inserting proteins into the surrounding erythrocyte membranes. Dynamic imaging techniques with high spatial and temporal resolutions are required to study the trafficking pathways of proteins and the time courses of their delivery to the host erythrocyte membrane. METHODOLOGY AND FINDINGS: Using a tetracysteine (TC) motif tag and TC-binding biarsenical fluorophores (BAFs) including fluorescein arsenical hairpin (FlAsH) and resorufin arsenical hairpin (ReAsH), we detected knob-associated histidine-rich protein (KAHRP) constructs in Pf-parasitized erythrocytes and compared their fluorescence signals to those of GFP (green fluorescent protein)-tagged KAHRP. Rigorous treatment with BAL (2, 3 dimercaptopropanol; British anti-Lewisite) was required to reduce high background due to nonspecific BAF interactions with endogenous cysteine-rich proteins. After this background reduction, similar patterns of fluorescence were obtained from the TC- and GFP-tagged proteins. The fluorescence from FlAsH and ReAsH-labeled protein bleached at faster rates than the fluorescence from GFP-labeled protein. CONCLUSION: While TC/BAF labeling to Pf-infected erythrocytes is presently limited by high background signals, it may offer a useful complement or alternative to GFP labeling methods. Our observations are in agreement with the currently-accepted model of KAHRP movement through the cytoplasm, including transient association of KAHRP with Maurer's clefts before its incorporation into knobs in the host erythrocyte membrane.  相似文献   

17.
In pregnant women infected with Plasmodium falciparum, the infected red blood cells (IRBCs) selectively accumulate in the intervillous spaces of placenta, leading to poor fetal outcome and severe health complications in the mother. Although chondroitin 4-sulfate is known to mediate IRBC adherence to placenta, the natural receptor has not been identified. In the present study, the chondroitin sulfate proteoglycans (CSPGs) of human placenta were purified and structurally characterized, and adherence of IRBCs to these CSPGs investigated. The data indicate that the placenta contains three distinct types of CSPGs: significant quantities of uniquely low sulfated, extracellular CSPGs localized in the intervillous spaces, minor amounts of two cell-associated CSPGs, and major amounts of dermatan sulfate-like CSPGs of the fibrous tissue. Of the various CSPGs isolated from the placenta, the low sulfated CSPGs of the intervillous spaces most efficiently bind IRBCs. Based on IRBC adherence capacities and localization patterns of various CSPGs, we conclude that the CSPGs of the intervillous spaces are the receptors for placental IRBC adherence. The identification and characterization of these CSPGs provide a valuable tool for understanding the precise molecular interactions involved in placental IRBC adherence and for the development of therapeutic strategies for maternal malaria. In the accompanying paper (Alkhalil, A., Achur, R. N., Valiyaveettil, M., Ockenhouse, C. F., and Gowda, D. C. (2000) J. Biol. Chem. 275, 40357-40364), we report the structural requirements for the IRBC adherence.  相似文献   

18.
Until recently, the sequestration of erythrocytes infected with Plasmodium falciparum has been thought to be due to one of a number of protein-protein interactions. In this article, Stephen Rogerson and Graham Brown summarize the emerging evidence that, in vitro, infected erythrocytes can also adhere to the glycosaminoglycan chondroitin sulphate A (CSA) expressed on the surface of cells and immobilized on plastic. In vivo, binding of infected erythrocytes to CSA could be crucial to the development of malarial infection of the placenta, and possibly to sequestration in the lung and brain. The consequences of this may include maternal morbidity and mortality, low birth weight in the infant, pulmonary oedema and cerebral malaria. They discuss the need to characterize the molecular basis of this interaction, and to investigate the possible therapeutic role of CSA in malaria. Chondroitin sulphates are nontoxic compounds already in use for other diseases in humans. Vaccines based on inhibiting this receptor-ligand interaction could also be appropriate.  相似文献   

19.
Infection with Plasmodium falciparum during pregnancy leads to the accumulation of parasite-infected erythrocytes in the placenta, and is associated with excess perinatal mortality, premature delivery and intrauterine growth retardation in the infant, as well as increased maternal mortality and morbidity. P. falciparum can adhere to specific receptors on host cells, an important virulence factor enabling parasites to accumulate in various organs. We report here that most P. falciparum isolates from infected placentae can bind to hyaluronic acid, a newly discovered receptor for parasite adhesion that is present on the placental lining. In laboratory isolates selected for specific high-level adhesion, binding to hyaluronic acid could be inhibited by dodecamer or larger oligosaccharide fragments or polysaccharides, treatment of immobilized receptor with hyaluronidase, or treatment of infected erythrocytes with trypsin. In vitro flow-based assays demonstrated that high levels of adhesion occurred at low wall shear stress, conditions thought to prevail in the placenta. Our findings indicate that adhesion to hyaluronic acid is involved in mediating placental parasite accumulation, thus changing the present understanding of the mechanisms of placental infection, with implications for the development of therapeutic and preventative interventions.  相似文献   

20.
A feature of infection with Plasmodium falciparum is the ability of parasite-infected erythrocytes to adhere to vascular endothelial cells and accumulate in vital organs, associated with severe clinical disease. Hyaluronic acid was recently identified as a receptor for adhesion and has been implicated in mediating the accumulation of parasites in the placenta. Here, we report in vitro assays to measure specific adhesion of infected erythrocytes to hyaluronic acid that is distinct from binding to chondroitin sulphate A, another glycosaminoglycan implicated as a receptor in placental malaria. In this study, specific adhesion of mature stage infected erythrocytes to hyaluronic acid of high purity immobilised on plastic surfaces was abolished by pre-treating hyaluronic acid with a specific hyaluronate lyase from Streptomyces, whereas the same treatment of chondroitin sulphate A had little effect. Adhesion to hyaluronic acid could not be explained by the presence of chondroitin sulphate A or other glycosaminoglycans in the hyaluronic acid preparations. Chinese hamster ovary cells bound in a similar manner in the assays and confirmed that hyaluronic acid was appropriately immobilised for cell adhesion. In contrast to parasites, these cells did not adhere to chondroitin sulphate A. The adsorption of hyaluronic acid onto plastic surfaces was also confirmed by the use of a specific hyaluronic acid-binding protein. Fixing cells with glutaraldehyde at the completion of adhesion assays reduced the number of parasites remaining adherent to hyaluronic acid, but not to chondroitin sulphate A or CD36. These findings have important implications for understanding and evaluating interactions between P. falciparum and hyaluronic acid that may be involved in disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号