首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Petenaea cordata (from northern Central America) was first described in Elaeocarpaceae and later placed in Tiliaceae, but most authors have been uncertain about its familial affinities. It was considered a taxon incertae sedis in the Angiosperm Phylogeny Group classification (APG III). A recent collection was made in Guatemala, and analysis of both rbcL and atpB in the large Soltis et al. angiosperm matrix, the most completely sampled study published to date, indicated a moderately supported relationship to Tapiscia (Tapisciaceae, the only member of the newly recognized order Huerteales in this matrix; 81% bootstrap support). We then conducted a more restricted analysis using the Bayer et al. rbcL/atpB matrix for Malvales supplemented with the other genera of Huerteales from published studies. Our results indicate a distant, weakly supported sister‐group relationship to the African genus Gerrardina (Gerrardinaceae; Huerteales). After comparison of the characters cited in the literature and an examination of herbarium material of both genera, we could find no obvious synapomorphies for Gerrardina and Petenaea or any other relationship of the latter, and we therefore propose the new monogeneric family, Petenaeaceae. The polymorphic order Huerteales now comprises four small families: Dipentodontaceae, Gerrardinaceae, Petenaeaceae and Tapisciaceae. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 16–25.  相似文献   

2.
This is the first study to comprehensively address the phylogeny of the tribe Oxypodini Thomson and its phylogenetic relationships to other tribes within the staphylinid subfamily Aleocharinae. Using the hitherto largest molecular dataset of Aleocharinae comprising of 4599 bp for representatives of 22 tribes, the Oxypodini are recovered as non‐monophyletic. Members of the tribe belong to three distantly related lineages within the Aleocharinae: (i) the Amarochara group as sister clade to the tribe Aleocharini, (ii) the subtribe Tachyusina within a clade that also includes the tribes Athetini and Hygronomini, (iii) all other Oxypodini in a clade that also includes the tribes Placusini, Hoplandriini and Liparocephalini. Based on the inferred phylogeny, five subtribes of the Oxypodini are recognized: Dinardina Mulsant & Rey, Meoticina Seevers, Microglottina Fenyes, Oxypodina Thomson and Phloeoporina Thomson. The following changes in the classification of the Aleocharinae are proposed: (i) Amarochara Thomson is removed from the Oxypodini and placed in the tribe Aleocharini; (ii) the subtribe Taxicerina Lohse of the Athetini is reinstated as tribe Taxicerini to include Discerota Mulsant & Rey, Halobrecta Thomson (both removed from the Oxypodini) and Taxicera Mulsant & Rey; (iii) the subtribe Tachyusina Thomson is excluded from the Oxypodini and provisionally treated as tribe Tachyusini; (iv) the oxypodine subtribe name Blepharhymenina Klimaszewski & Peck is placed in synonymy with the subtribe name Dinardina Mulsant & Rey.  相似文献   

3.
The wood anatomy of 15 representative species belonging to 12 genera of nine tribes of the subfamily Crotonoideae (Euphorbiaceae) are comprehensively described with focus on systematic implications. In addition, ecological and evolutionary aspects are evaluated. An identification key to the species based on wood anatomical features is presented. The wood microstructure of the tribes was found to be considerably heterogeneous reflecting an unnatural classification of the subfamily. However, the results confirm the generic relationship within subtribe Aleuritinae and tribe Ricinodendreae. Vernicia and Givotia may be recognized based on wood anatomical and morphological characters. The tribes Micrandreae and Adenoclineae have considerable similarity in wood anatomy. The wood structure of the monogeneric tribes Trigonostemoneae and Geloneae idicate a close relationship with the tribe Crotoneae.  相似文献   

4.
The relationships among the genera and tribal groupings of Riodininae with five forewing radial veins, and between these and tribes with four forewing radial veins, were examined using a phylogenetic analysis. Using the type species from all sixteen genera in the tribal groupings Eurybiini, Mesosemiini and incertae sedis (a presumed paraphyletic group of loosely related genera), and representatives from the four forewing radial‐veined riodinine tribes, thirty‐five new and traditional characters were coded from adult ecology, wing venation and pattern, the adult head and body, male and female genitalia, and early stage ecology and morphology. The majority of characters are illustrated. Phylogenetic analysis of these data produced five equally most parsimonious cladograms using equal weights and after successive weighting. The strict consensus of these confirms the monophyly of Eurybiini and Mesosemiini as currently conceived, but also indicates several higher‐level relationships not previously hypothesized. Mesosemiini is here more broadly defined to also include the entire incertae sedis section, and the tribe is divided into Mesosemiina, for the previously delimited Mesosemiini plus Eunogyra and Teratophthalma, and Napaeina, subtr.n. for the incertae sedis section minus these two genera. The following hypothesis of relationships is tentatively proposed for the basal clades of Riodininae: Mesosemiini + (Eurybiini + remainder of Riodininae). These new hypotheses, and the characters supporting them, are discussed and compared with those previously proposed.  相似文献   

5.
Phylogenetic relationships among major lineages of the leafhopper subfamily Iassinae were explored by analysing a dataset of 91 discrete morphological characters and DNA sequence data from nuclear 28S rDNA and histone H3 genes and mitochondrial 12S rDNA. Bayesian, maximum‐likelihood and maximum parsimony analyses yielded similar tree topologies that were well resolved with strong branch support except at the base of the tree, resulting in equivocal support for inclusion of Bythoniini as a tribe of Iassinae but strong support for the monophyly of Iassinae (excluding Bythoniini) and most previously recognized iassine tribes. Divergence times for recovered nodes were estimated using a Bayesian relaxed clock method with two fossil calibration points. The results suggest that the deepest divergences coincided with Gondwanan vicariant events but that more recent divergences resulted from long‐range dispersal and colonization. Biogeographical analyses suggest that the group most likely has a Neotropical origin. The following changes to the taxonomic classification are proposed: establishment of three new tribes, Batracomorphini trib.n. (based on type genus Batracomorphus Lewis), Hoplojassini trib.n. (based on type genus Hoplojassus Dietrich and including one other South American genus), Lipokrisnini trib.n. (based on type genus Lipokrisna Freytag and including two other endemic Caribbean genera); Krisnini is redefined to include only the Old World genera Krisna and Gessius; Iassini is redefined to include only the type genus and four endemic Afrotropical genera; Bascarrhinus Fowler and Platyhynna Berg, recently treated as genera incertae sedis, are placed in Hyalojassini; Thalattoscopus Kirkaldy is added to the previously monobasic tribe Trocnadini. Iassinae now includes 12 tribes, all of which appear to be monophyletic. Revised morphological diagnoses of the subfamily and each of the included tribes are provided and a key to tribes is also given. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:41295B68‐2DAB‐4C4F‐B260‐F7C054922173 .  相似文献   

6.
We present an updated worldwide phylogenetic classification of Poaceae with 11 783 species in 12 subfamilies, 7 supertribes, 54 tribes, 5 super subtribes, 109 subtribes, and 789 accepted genera. The subfamilies (in descending order based on the number of species) are Pooideae with 4126 species in 219 genera, 15 tribes, and 34 subtribes; Panicoideae with 3325 species in 242 genera, 14 tribes, and 24 subtribes; Bambusoideae with 1698 species in 136 genera, 3 tribes, and 19 subtribes; Chloridoideae with 1603 species in 121 genera, 5 tribes, and 30 subtribes; Aristidoideae with 367 species in three generaand one tribe; Danthonioideae with 292 species in 19 generaand 1 tribe; Micrairoideae with 192 species in nine generaand three tribes; Oryzoideae with 117 species in 19 genera, 4 tribes, and 2 subtribes; Arundinoideae with 36 species in 14 genera and 3 tribes; Pharoideae with 12 species in three generaand one tribe; Puelioideae with 11 species in two generaand two tribes; and the Anomochlooideae with four species in two generaand two tribes. Two new tribes and 22 new or resurrected subtribes are recognized. Forty-five new (28) and resurrected (17) genera are accepted, and 24 previously accepted genera are placed in synonymy. We also provide an updated list of all accepted genera including common synonyms, genus authors, number of species in each accepted genus, and subfamily affiliation. We propose Locajonoa, a new name and rank with a new combination, L. coerulescens. The following seven new combinations are made in Lorenzochloa: L. bomanii, L. henrardiana, L. mucronata, L. obtusa, L. orurensis, L. rigidiseta, and L. venusta.  相似文献   

7.
8.
Collabieae (Orchidaceae) is a long neglected tribe with confusing tribal and generic delimitation and little-understood phylogenetic relationships. Using plastid matK, psaB, rbcL, and trnH-psbA DNA sequences and morphological evidence, the phylogenetic relationships within the tribe Collabieae were assessed as a basis for revising their tribal and generic delimitation. Collabieae (including the previously misplaced mycoheterotrophic Risleya) is supported as monophyletic and nested within a superclade that also includes Epidendreae, Podochileae, Cymbidieae and Vandeae. Risleya is nested in Collabiinae and sister to Chrysoglossum, a relationship which, despite their great vegetative differences, is supported by floral characters. Ania is a distinct genus supported by both morphological and molecular evidence, while redefined Tainia includes Nephelaphyllum and Mischobulbum. Calanthe is paraphyletic and consists four clades; the genera Gastrorchis, Phaius and Cephalantheropsis should be subsumed within Calanthe. Calanthe sect. Ghiesbreghtia is nested within sect. Calanthe, to which the disputed Calanthe delavayi belongs as well. Our results indicate that, in Collabieae, habit evolved from being epiphytic to terrestrial.  相似文献   

9.
The systematic relationships of the butterfly family Pieridae are poorly understood. Much of our current understanding is based primarily on detailed morphological observations made 50–70 years ago. However, the family and its putative four subfamilies and two tribes, have rarely been subjected to rigorous phylogenetic analysis. Here we present results based on an analysis of molecular characters used to reconstruct the phylogeny of the Pieridae in order to infer higher‐level classification above the generic level and patterns of historical biogeography. Our sample contained 90 taxa representing 74 genera and six subgenera, or 89% of all genera recognized in the family. Three complementary approaches were employed: (1) a combined analysis of a 30 taxon subset for sequences from four gene regions, including elongation factor‐1 alpha (EF‐1α), wingless, cytochrome oxidase subunit I (COI), and 28S (3675 bp, 1031 parsimony‐informative characters), mainly to establish higher‐level relationships, (2) a single‐gene analysis of the 90 taxon data set for sequences from EF‐1α (1066 bp, 364 parsimony‐informative characters), mainly to establish lower‐level relationships, and (3) an all available data analysis of the entire data set for sequences from the four genes, to recover both deep and shallow nodes. Analyses using maximum parsimony, maximum likelihood and Bayesian inference provided similar results. All supported monophyly for the four subfamilies but not for the two tribes, with the Anthocharidini polyphyletic and the Pierini paraphyletic. The combined and all available data analyses support the following relationships among the subfamilies: ((Pseudopontiinae + Dismorphiinae) + (Coliadinae + Pierinae)), corroborating Ehrlich’s 1958 phenetic hypothesis. On the basis of these analyses, and additional morphological and life history evidence, we propose a reclassification of the subfamily Pierinae into two tribes (Anthocharidini s.s., Pierini s.s.) and two informal groups (Colotis group, Leptosia), with the tribe Pierini s.s. subdivided into three subtribes (Appiadina, Pierina, Aporiina) and three genera (Elodina, Dixeia, Belenois) of uncertain status (incertae sedis). The combined and all available data analyses support the following relationships among the Pierinae: (Colotis group + Anthocharidini s.s. + Leptosia + (Elodina + ((Dixeia + Belenois) + Appiadina + Pierina + Aporiina))). Application of a molecular clock calibrated using fossil evidence and semiparametric rate smoothing suggests that divergence between the Pierina and Aporiina occurred no later than the Palaeocene (> 60 Myr). The minimum estimate for the age of the crown‐group of the Pieridae was 112–82 Myr, with a mean of 95 Myr. A historical biogeographical hypothesis is proposed to explain the present‐day distribution of the clade Pseudopontiinae + Dismorphiinae, which argues for an origin of the two subfamilies in western Gondwana (Africa + South America) during the Late Cretaceous. © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society, 2006, 147 , 239–275.  相似文献   

10.
Phylogenetic relationships within the bee family Megachilidae are poorly understood. The monophyly of the subfamily Fideliinae is questionable, the relationships among the tribes and subtribes in the subfamily Megachilinae are unknown, and some extant genera cannot be placed with certainty at the tribal level. Using a cladistic analysis of adult external morphological characters, we explore the relationships of the eight tribes and two subtribes currently recognised in Megachilidae. Our dataset included 80% of the extant generic‐level diversity, representatives of all fossil taxa, and was analysed using parsimony. We employed 200 characters and selected 7 outgroups and 72 ingroup species of 60 genera, plus 7 species of 4 extinct genera from Baltic amber. Our analysis shows that Fideliinae and the tribes Anthidiini and Osmiini of Megachilinae are paraphyletic; it supports the monophyly of Megachilinae, including the extinct taxa, and the sister group relationship of Lithurgini to the remaining megachilines. The Sub‐Saharan genus Aspidosmia, a rare group with a mixture of osmiine and anthidiine features, is herein removed from Anthidiini and placed in its own tribe, Aspidosmiini, new tribe . Protolithurgini is the sister of Lithurgini, both placed herein in the subfamily Lithurginae; the other extinct taxa, Glyptapina and Ctenoplectrellina, are more basally related among Megachilinae than Osmiini, near Aspidosmia, and are herein treated at the tribal level. Noteriades, a genus presently in the Osmiini, is herein transferred to the Megachilini. Thus, we recognise four subfamilies (Fideliinae, Pararhophitinae, Lithurginae and Megachilinae) and nine tribes in Megachilidae. We briefly discuss the evolutionary history and biogeography of the family, present alternative classifications, and provide a revised key to the extant tribes of Megachilinae.  相似文献   

11.
12.
Molecular sequences now overwhelm morphology in phylogenetic inference. Nonetheless, most molecular studies are conducted on a limited number of taxa, as DNA rarely can be analysed from old museum types or fossils. During the last 20 years, more than 150 molecular studies have challenged the current phylogenetic classification of the family Drosophilidae Rondani based on morphological characters. Most studies concerned a single genus, Drosophila Fallén, and included only few representative species from 17 out of the 78 genera of the family. Therefore, these molecular studies were unable to provide an alternative classification scheme. A supermatrix analysis of seven nuclear and one mitochondrial genes (8248 bp) for 33 genera was conducted using outgroups from one calyptrate and four ephydroid families. The Bayesian phylogeny was consistent with previous molecular studies including whole genome sequences and divided the Drosophilidae into four monophyletic clades. Morphological characters, mostly male genitalia, then were compared thoroughly between the four clades and homologous character states were identified. These states were then checked for 70 genera and a revised phylogenetic, family‐group classification for the Drosophilidae is proposed. Two genera –Cladochaeta Coquillett and Diathoneura Duda – of the tribe Cladochaetini Grimaldi are transferred to the family Ephydridae. The Drosophilidae is divided into two subfamilies: Steganinae Hendel (30 genera) and Drosophilinae Rondani (43 genera). A further two genera, Apacrochaeta Duda and Sphyrnoceps de Meijere, are incertae sedis, and Palmophila Grimaldi, is synonymized with Drosophila syn.n. The Drosophilinae is subdivided into two tribes: the re‐elevated Colocasiomyini Okada (nine genera) and Drosophilini Okada. The paraphyly of the genus Drosophila was not resolved to avoid affecting the binomina of important laboratory model species; however, its subgeneric classification was revised in light of molecular and morphological data. Three subgenera, namely Chusqueophila Brncic, Phloridosa Sturtevant and Psilodorha Okada, were synonymized with the subgenus Drosophila (Drosophila) Fallén syns.n. Among the 45 species groups and 5 species complexes of Drosophila (Drosophila), 22 groups and 1 complex were transferred to the subgenus Drosophila (Siphlodora) Patterson & Mainland and 6 groups, 2 species subgroups and 3 complexes are considered incertae sedis within the genus Drosophila. Different morphological characters provide different signals at different phylogenetic scales: thoracic characters (wing venation and presternal shape) discriminate families; grasping and erection‐related characters discriminate subfamilies to tribes; whereas phallic paraphyses, i.e. auxiliary intromittent organs, discriminate genera and Drosophila subgenera. The study shows the necessity of analysing morphological characters within a molecular phylogenetic framework to translate molecular phylogenies into taxonomically‐comprehensive classifications.  相似文献   

13.
Two genera of extinct weevils, Sayrevilleus Gratshev & Zherikhin from Cretaceous New Jersey amber and Baltocar Kuschel from Eocene Baltic amber, are recognized as close relatives based on similarities revealed by the use of synchrotron tomography and the availability of new amber inclusions. The subfamily Sayrevilleinae Legalov stat. nov. is characterized by possessing mandibles with an external cutting edge and an inner blunt edge. The subfamily is placed in the family Attelabidae (s.l.), although some characters also suggest a possible relationship with the ‘higher weevils’ comprising Caridae, Brentidae, and Curculionidae. Sayrevilleus is transferred from the tribe Auletini of Rhynchitinae to Sayrevilleinae, and Sayrevilleus grimaldii Gratshev & Zherikhin is redescribed. Baltocar Kuschel is transferred from Caridae to Sayrevilleinae and revised, its type species, Baltocar succinicus (Voss), is redescribed and three new species, Baltocar groehni Riedel sp. nov. , Baltocar hoffeinsorum Riedel sp. nov. , and Baltocar subnudus Riedel sp. nov. are described based on eight well‐preserved inclusions. The genera Orapauletes Legalov and Zherichiniletes Legalov previously assigned to Sayrevilleini are regarded as Curculionoidea incertae sedis. The Sayrevilleinae were distributed over areas of North America and Europe at least since the Late Cretaceous (c. 90 Mya) and were probably relatively diverse until the Eocene (c. 44 Mya). It is speculated that they became extinct through competition with Curculionidae, which used a similar oviposition strategy. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 773–794.  相似文献   

14.
The classification of the hyperdiverse true bug family Miridae is far from settled, and is particularly contentious for the cosmopolitan subfamily Bryocorinae. The morphological diversity within the subfamily is pronounced, and a lack of explicit character formulation hampers stability in the classification. Molecular partitions are few and only a handful of taxa have been sequenced. In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist. A broad sample of taxa was examined from each of the bryocorine tribes. A broad range of outgroup taxa from most of the other mirid subfamilies was also examined to test for bryocorine monophyly, ingroup relationships and to determine character polarity. In total a matrix comprising 44 ingroup, 15 outgroup taxa and 111 morphological characters was constructed. The phylogenetic analysis resulted in a monophyletic subfamily Bryocorinae sensu Schuh (1976, 1995), except for the genus Palaucoris, which is nested within Cylapinae. The tribe Dicyphini sensu Schuh (1976, 1995) has been rejected. The subtribe Odoniellina is synonymized with the subtribe Monaloniina and the subtribes Dicyphina, Monaloniina and Eccritotarsina are now elevated to tribal level, with the Dicyphini now restricted in composition and definition. The genus Felisacus is highly autapomorphic and a new tribe – the Felisacini – is erected for the included taxa. This phylogeny of the tribes of the Bryocorinae comprises the following sister‐group relationships: Dicyphini ((Bryocorini + Eccritotarsini)(Felisicini + Monaloniini)).  相似文献   

15.
The Menispermaceae family contains ca. 72 genera with 450 species that are almost entirely tropical. Its phylogeny at the tribal level has never been examined using molecular data. Here we used DNA sequences of the chloroplast matK gene and trnL-F regions, and the nuclear ITS region to study the delimitation and position of the tribe Menispermeae within the family and its subtribal monophyletic groups. Family-wide phylogenetic analyses of the chloroplast data produced two strongly supported clades. The first clade contains two subclades: Coscinieae including Arcangelisia and Anamirta, and Tinosporeae sensu lato including Fibraureae, supported by morphological characters, such as traits of the cotyledon, stylar scar and embryo. The second clade consists of the tribes Menispermeae sensu DC. and Tiliacoreae Miers. All our analyses surprisingly recognized that tribe Menispermeae is not monophyletic unless tribe Tiliacoreae is included, suggesting that characters of cotyledon and stylar scar are very important for the infrafamilial classification, and that endosperm presence vs. absence was over-emphasized in traditionally tribal division of the family. Our topologies indicate a secondary loss of endosperm. The monophyly of two subtribes of the tribe Menispermeae, Stephaniinae and Cissampelinae, is supported by the cpDNA and ITS data, as well as by morphological characters, including aperture types and shapes, and colpal membrane features of pollen grains, and sepal number of male flowers. The Cocculinae was recognized as a paraphyletic group containing the remaining genera of the tribe Menispermeae.  相似文献   

16.
The seeds of Gentiana show high diversity in size, shape and surface pattern. Until now, seeds of only a limited number of taxa have been studied in detail and their utility in the subgeneric classification of Gentiana has not been evaluated. In this study we investigated seed micromorphology of the poorly known sections Pneumonanthe, Frigidae and Isomeria. In order to evaluate the relevance of seed sculpturing for taxonomy, we selected qualitative characters of seed shape and testa ornamentation of all documented sections and performed cluster analyses based on presence and absence of coded characters. Several new scanning electron microscopy pictures of seeds provided a number of valuable characters for the subgeneric differentiation of Gentiana. The results of the cluster analyses of seed characters generally support the sectional classification given by former authors. However, the European Gentiana asclepiadea does not group together with other taxa of section Pneumonanthe, but clusters near to the strictly European section Gentiana. Gentiana froelichii, endemic to the south‐east Alps and treated traditionally within section Frigidae, clusters together with taxa of the European section Ciminalis. Our results reveal that seed micromorphology supports the reassignment of some taxa incertae sedis within Gentiana. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 101–115.  相似文献   

17.
The aim of this study was to assess the phylogenetic position of the South American cricetid genus Neotomys using two molecular markers: one nuclear (Irbp) and one mitochondrial (mt-cyb). This genus is currently considered as incertae sedis in the Sigmodontinae radiation. The phylogenetic relationships were estimated using three approaches: Bayesian inference, maximum likelihood and parsimony. We found the genus Neotomys closely related to the genera Euneomys and Irenomys, which are also considered incertae sedis. Our results suggest a common origin for this group of genera; this fact should be reflected in the taxonomy as a supra generic group with a tribal level. However, further and deeper analysis of both molecular and morphological data are needed to diagnose and formalize the proposed tribe. The relationships of this clade to the other members of Sigmodontinae were not clear as assessed by these data sets. The three genera are distributed around the Central and Southern Andes in South America evidencing that the Andes have played an important role in the diversification of several tribes of sigmodontine rodents.  相似文献   

18.
Phylogenetic relationships among members of the diving beetle tribe Cybistrini (Coleoptera: Dytiscidae) were inferred from analysis of 47 adult and larval morphological characters and sequences from portions of the genes cytochrome oxidase I (COI) and II (COII), histone III (H3) and wingless. Thirty‐three species of Cybistrini were included, representing all genus‐groups except Regimbartina Chatanay and Megadytes (Bifurcitus) Brinck, and most historically recognized species groups and subgenera used in the tribe. Outgroups include six species from other tribes within Dytiscinae and Lancetinae. Analyses included parsimony analysis of the combined data, likelihood analysis of combined molecular data and partitioned Bayesian analysis of the combined data. Results indicate that Cybistrini is well supported as a monophyletic group. Within the tribe, all currently recognized genus groups were found to be monophyletic with the exception of Onychohydrus Schaum, which is paraphyletic with respect to Austrodytes Watts in the parsimony analysis, but monophyletic in the likelihood and Bayesian analyses, and Cybister sensu stricto, which is paraphyletic with respect to C. (Melanectes) Brinck and C. (Scaphinectes) Ádám in the parsimony analysis or only the latter in the likelihood and Bayesian analyses. Results also suggest that some, but not all, historically recognized species groups or subgenera in the large genus Cybister Curtis are monophyletic, and this is discussed and compared. To improve the classification, the name Sternhydrus Brinck is elevated from subgenus to genus rank ( new status ). Four subgenera in the genus Cybister are recognized: C. (Melanectes) Brinck, C. (Megadytoides) Brinck ( resurrected ), C. (Neocybister) Miller, Bergsten and Whiting ( new subgenus ) and C. (Cybister) Curtis. The following new synonyms are established: Trochalus Dejean ( new synonym ), and ScaphinectesÁdám = Cybister (Cybister) ( new synonym ). The Neotropical species Cybister parvus Trémouilles (not examined) apparently does not fit any historical or currently recognized genus‐group diagnosis in Cybistrini, so it is retained in Cybister but incertae sedis with respect to subgenus. In addition to classification, the evolution of the unique character combinations present in cybistrines are discussed. A key to the adults of genera and subgenera is presented.  相似文献   

19.
Philonthina, the largest subtribe of the rove beetle tribe Staphylinini, is a hyperdiverse group in the Neotropical Region, accounting for about half of the genera of the subtribe. Despite such diversity, Neotropical Philonthina have never been analysed phylogenetically, deterring formulation of a modern classification of the Staphylinini. A cladistic analysis of Neotropical Philonthina was performed based on 110 morphological characters and 77 terminal taxa. Representatives of Philonthina from other regions and other main lineages of Staphylinini, Arrowinini and Platyprosopini were included to test their relationships with Neotropical Philonthina. The major results are the monophyly of 11 of the 17 endemic Neotropical genera of Philonthina, the placement of Holisus Erichson (Hyptiomina) into this clade showing a sister group relationship to myrmecophile genera, and the position of Erichsonius Fauvel outside of Philonthina within Staphylinini. Six of the current seven species of Endeius Coiffait & Sáiz group with Neotropical species of Philonthus Stephens. The separation of Gondwana about 65 my and major landscape modifications in the vast interior of northern South America during the past 25 my is proposed to explain the evolution of the endemic Neotropical genera of Philonthina. The following taxonomic changes are proposed: Erichsonius Fauvel, 1874 now placed as incertae sedis in Staphylinini; Endeius Coiffait & Sáiz, 1968, n.syn. of Philonthus Stephens, 1929 and Endeius nitidipennis (Solier, 1849) placed as incertae sedis in Philonthina. The following new combinations are proposed: Philonthus franzi (Sáiz, 1971), comb.n. , Philonthus loensis (Coiffait & Sáiz, 1968), comb.n. , Philonthus lugubris (Sáiz, 1971), comb.n. , Philonthus ovaliceps (Coiffait, 1981), comb.n. , Philonthus punctipennis (Solier, 1849), comb.res. and Philonthus subpunctipennis (Coiffait & Sáiz, 1968), comb.n. Philonthus herberti, n.nov., is proposed for Philonthus franzi Schillhammer, 1998 , which is a junior secondary homonym of Philonthus franzi (Sáiz, 1971).  相似文献   

20.
Pselaphinae is an exceptionally species‐rich, globally distributed subfamily of minute rove beetles (Staphylinidae), many of which are inquilines of social insects. Deducing the factors that drove pselaphine diversification and their evolutionary predisposition to inquilinism requires a reliable timescale of pselaphine cladogenesis. Pselaphinae is split into a small and highly plesiomorphic supertribe, Faronitae, and its sister group, the ‘higher Pselaphinae’ – a vast multi‐tribe clade with a more derived morphological ground plan, and which includes all known instances of inquilinism. The higher Pselaphinae is dominated by tribes with a Gondwanan taxonomic bias. However, a minority of tribes are limited to the Nearctic and Palearctic ecozones, implying a potentially older, Pangaean origin of the higher Pselaphinae as a whole. Here, I describe fossils from mid‐Cretaceous (~99 million years old) Burmese amber that confirm the existence of crown‐group higher pselaphines on the Eurasian supercontinent prior to contact with Gondwanan landmasses. Protrichonyx rafifrons gen. et sp.n. is placed incertae sedis within the higher Pselaphinae. Boreotethys gen.n. , erected for B. grimaldii sp.n . and B. arctopteryx sp.n. , represents an extinct sister taxon and putative stem group of Bythinini, a Recent tribe with a primarily Holarctic distribution. The Laurasian palaeolocality of the newly described taxa implies that higher pselaphines are indeed probably of Jurassic, Pangaean extraction and that the Laurasian‐Gondwanan tribal dichotomy of this clade may have developed vicariantly following Pangaean rifting. Higher pselaphines probably predate the earliest ants. Their physically protective morphological ground plan may have been a preadaptation for myrmecophily when ants became diverse and ecologically ubiquitous, much later in the Cenozoic. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:36E3FE2A-B947-422D-89CA-0EF43B99C382 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号