首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
We used radiotelemetry to investigate the time of migratory flight initiation relative to available celestial orientation cues and departure direction of a nocturnal passerine migrant, the reed warbler, Acrocephalus scirpaceus, during autumn migration. The study was carried out at Falsterbo, a coastal site in southwest Sweden. The warblers initiated migration from times well after local sunset and well into the night, corresponding to sun elevations between -4 degrees and -35 degrees, coinciding with the occurrence of stars at night. They departed in the expected migratory direction towards south of southwest with a few initiating migration in reverse directions towards northeast to east. Flight directions under overcast conditions (7-8/8) were more scattered than under clear sky conditions (0-4/8). There were fewer clouds on departure nights than on nights when the birds did not initiate migration. For birds staying longer than one night at stopover the horizontal visibility was higher and precipitation was less likely on departure nights than on the previous night. The results show that the visibility of celestial cues, and stars in particular, are important for the decision to initiate migration in reed warblers. However, cloud cover, horizontal visibility and precipitation might be correlated with other weather variables (i.e. wind or air pressure) that are also likely to be important for the decision to migrate. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

2.
Wind directions measured at two different heights (850 hPa and 700 hPa) and at different hours of the night were analysed during the spring migration passage at a bird stopover site located in the western Mediterranean, in order to evaluate the importance of wind components for a stopover decision. From a huge ringing campaign of bird migration in north-east Spain, data from the reed warbler Acrocephalus scirpaceus have been used for the analysis. From a total of 2,478 reed warblers captured between 1993 and 1997 data recording significant days, with a high number of captures, and decrease days, with few captures, have been selected to develop an analysis of wind direction in relation to stopover and flight resumption. On days with a high capture the winds had mainly a fourth-quadrant flow (from the north, north-west and west), these being mainly head winds. Winds with westerly component (from the north-west, west and south-west), which enhance the flight, account for the majority of the days when there was a low capture of reed warblers. Wind direction therefore appears to be a determining factor for stopover decisions and resumption of flight for the reed warblers at an intermediate stage of their spring migration where topographical characteristics govern the winds.  相似文献   

3.
Migratory divides represent narrow zones of overlap between parapatric populations with distinct migration directions and, consequently, expected divergent non‐breeding distributions. The composition of the mixed population at a migratory divide and the corresponding non‐breeding ranges remain, however, unknown for many Palaearctic‐African migrants. Here, we used light‐level geolocation to track migration direction and non‐breeding grounds of Eurasian reed warblers Acrocephalus scirpaceus from three breeding populations across the species’ migratory divide. Moreover, by using feathers grown at non‐breeding grounds, we quantified stable isotope composition for individuals with known southwestern (SW) and southeastern (SE) migration directions. On a larger sample per population, we then assessed the proportions of SW‐ and SE‐migrating phenotypes in each of the three populations. All tracked reed warblers from Germany and two thirds of the birds tagged from the Czech population headed initially SW. Nevertheless, about one third of the birds from the Czech site migrated towards SE. No tracking data have been obtained for the Bulgarian population. The initial migration direction determined by geolocators was a strong predictor of the non‐breeding region, with SW migrants staying in west Africa and SE migrants in central Africa. Feather δ34S and δ15N values confirmed the predominance of SW migrants in the German population, the co‐occurrence of SW and SE migrants in the Czech population, and indicated a high (72%) proportion of SE migrants in the Bulgarian population. Thus, the combined approach of geolocator tracking and stable isotopic assignments provided clear evidence for the existence of a migratory divide in the southeast of central Europe and predicted non‐breeding range in central and central‐eastern Africa for the eastern population.  相似文献   

4.
Vast numbers of insects and passerines achieve long-distance migrations between summer and winter locations by undertaking high-altitude nocturnal flights. Insects such as noctuid moths fly relatively slowly in relation to the surrounding air, with airspeeds approximately one-third of that of passerines. Thus, it has been widely assumed that windborne insect migrants will have comparatively little control over their migration speed and direction compared with migrant birds. We used radar to carry out the first comparative analyses of the flight behaviour and migratory strategies of insects and birds under nearly equivalent natural conditions. Contrary to expectations, noctuid moths attained almost identical ground speeds and travel directions compared with passerines, despite their very different flight powers and sensory capacities. Moths achieved fast travel speeds in seasonally appropriate migration directions by exploiting favourably directed winds and selecting flight altitudes that coincided with the fastest air streams. By contrast, passerines were less selective of wind conditions, relying on self-powered flight in their seasonally preferred direction, often with little or no tailwind assistance. Our results demonstrate that noctuid moths and passerines show contrasting risk-prone and risk-averse migratory strategies in relation to wind. Comparative studies of the flight behaviours of distantly related taxa are critically important for understanding the evolution of animal migration strategies.  相似文献   

5.
The population-specific orientation of two groups of blackcaps (Sylvia atricapilla), one from southwest Germany, the other from easternmost Austria, was studied outdoors in Emlen funnels. We investigated whether a seasonal shift in the migratory direction — as expected for the Austrian birds from ringing recoveries — occurs under experimental conditions and in a seasonally constant magnetic field. The West German birds, for which no shift was expected, oriented southwest during the entire season. The Austrian birds oriented southeast in October and southsouthwest in November. The clockwise shift by about 60° occurred within a 10-day period. The results indicate that in this species seasonal changes of migratory direction are probably based on an endogenous program, occur without the birds actually migrating and are independent of changes in the magnetic field. Our results provide further evidence that directional shifts in Sylvia warblers may be controlled by a different mechanism than in pied flycatchers (Ficedula hypoleuca).  相似文献   

6.
During outbreaks, flightless Mormon crickets [Anabrus simplex Haldeman (Orthoptera: Tettigoniidae)] form large mobile groups known as migratory bands. These bands can contain millions of individuals that march en masse across the landscape. The role of environmental cues in influencing the movement direction of migratory bands is poorly understood and has been the subject of little empirical study. We examined the effect of wind direction on Mormon cricket migratory band movement direction by monitoring the local weather conditions and daily movement patterns of individual insects traveling in bands over the same time course at three close, but spatially distinct sites. Although weather conditions were relatively homogeneous across sites, wind directions tended to be more variable across sites during the morning hours, the period during which directional movement begins. Migratory bands at different sites traveled in distinctly different directions. However, we failed to find any evidence to suggest that the observed variation in migratory band movement direction was correlated with local wind direction at any time during the day. These results support the notion that the cues mediating migratory band directionality are likely to be group specific and that a role for landscape-scale environmental cues such as wind direction is unlikely.  相似文献   

7.
A migratory divide is a narrow region in which two populations showing different migratory directions meet arid presumably also mate and hybridize. Banding of willow warblers, Phylloscopus trochilus, in Europe has demonstrated a migratory divide latitudinally across central Scandinavia. In autumn, southern birds migrate southwest to tropical West Africa, whereas northern birds migrate southeast to East and South Africa. The migratory divide is associated with concordant differences in size and plumage coloration. Based on morphology, we estimate the width of the transition zone between northern and southern willow warblers to be less than 350 km. We found indication of linkage disequilibria around the migratory divide, in that measures of body size were correlated with plumage coloration within the contact zone, but uncorrelated within the populations south or north of the contact zone. The presence of linkage disequilibria and the fact that several morphological clines occur together suggest that the hybrid zone is a result of secondary contact between populations that have differentiated in allopatry. This interpretation is in accord with the knowledge of the recolonization pattern of the Scandinavian peninsula after the last glaciation; animals and plants appeared to have colonized either from the south or from the north around the northern bay of the Baltic Sea. If northern and southern willow warblers resided in allopatric populations during late Pleistocene glaciations and the hybrid zone is a result of postglacial range expansions, we would expect some degree of genetic differentiation accumulated during the period in isolation. In contrast, northern and southern willow warblers are near panmictic in the frequencies of alleles of mitochondrial DNA and at two microsatellite loci. The observed pattern, clear morphological and behavioral differentiation without genetic differentiation at neutral loci, suggests either that the differences are maintained by strong selection on the expressed genes in combination with high levels of current gene flow or, in the case of weak gene flow, that the divergence in morphology and behavior is very recent.  相似文献   

8.
Topography and historical range expansion has formed a so-called migratory divide between two subspecies of willow warbler (Phylloscopus trochilus) in central Scandinavia. The autumn migratory directions of individuals assigned molecularly to both subspecies and possible hybrids were recorded using orientation cage experiments in southwest and southeast Sweden. We found pronounced differences in willow warblers’ orientation in respect to genotype. The mean directions registered in the control experiments were in accordance with the ringing recoveries and analyses of stable isotopes for Scandinavian willow warblers. With the same individuals we performed displacement experiments between both sites. They resulted in non-significant orientation, which could be explained by the intermediate distance of the displacement or reactions to housing, transportation and location. On a separate set of birds we tested whether stress following transportation could explain the disorientation and found that orientation before and after transport was unchanged. Experimental studies of effects of intermediate displacements across longitudes and studies of orientation of hybrid individuals in the zones of migratory divides are crucial for understanding the mechanisms underlying orientation behaviour. Our work further stresses the importance of knowing the migration genotype of a particular bird under study, in order to correctly evaluate expected migration routes.  相似文献   

9.
In order to perform true bicoordinate navigation, migratory birds need to be able to determine geographic latitude and longitude. The determination of latitude is relatively easy from either stellar or magnetic cues [1-3], but the determination of longitude seems challenging [4, 5]. It has therefore been suggested that migrating birds are unable to perform bicoordinate navigation and that they probably only determine latitude during their return migration [5]. However, proper testing of this hypothesis requires displacement experiments with night-migratory songbirds in spring that have not been performed. We therefore displaced migrating Eurasian reed warblers (Acrocephalus scirpaceus) during spring migration about 1000 km toward the east and found that they were correcting for displacements by shifting their orientation from the northeast at the capture site to the northwest after the displacement. This new direction would lead them to their expected breeding areas. Our results suggest that Eurasian reed warblers are able to determine longitude and perform bicoordinate navigation. This finding is surprising and presents a new intellectual challenge to bird migration researchers, namely, which cues enable birds to determine their east-west position.  相似文献   

10.
Whether migrating birds compensate for wind drift or not is a fundamental question in bird migration research. The procedures to demonstrate and quantitatively estimate wind drift or compensation are fraught with difficulties and pitfalls. In this paper, we evaluate four methods that have been used in several studies over the past decades. We evaluate the methods by analysing a model migratory movement with a realistic scatter in flight directions, for the ideal cases of full drift and complete compensation. Results obtained with the different methods are then compared with the "true behaviour" of the model movement, illustrating that spurious patterns of drift and compensation arise in some cases. We also illustrate and evaluate the different methods of estimating drift for a real case, based on tracking radar measurements of bird migration in relation to winds. Calculating the linear regression of mean geographic track (resulting flight direction) and heading directions (directions of the birds' body axis) of a migratory movement under different wind conditions in relation to the angle alpha (the angle between mean track and heading) always provides robust and reliable results. Comparing mean flight directions between occasions with winds from the left and right of the mean flight direction of the whole migratory movement also always provides expected and correct measures of drift. In contrast, regressions of individual flight directions in relation to alpha (the angle between track and heading for the specific individuals or flocks) are liable to produce biased and spurious results, overestimating compensation/overcompensation if following winds dominate in the analysis and overestimating drift/overdrift if opposed winds are dominating. Comparing mean directions for cases with winds from the left and right in relation to individual flight directions also gives biased and spurious results unless there is full variation in wind directions or an equal distribution of crosswinds from left and right. The results of the methodological evaluation and the analysis of the real case indicate that some earlier analyses of wind drift may have to be re-evaluated.  相似文献   

11.
A bird's ground speed is influenced by the wind conditions it encounters. Wind conditions, although variable, are not entirely random. Instead, wind exhibits persistent spatial and temporal dynamics described by the general circulation of the atmosphere. As such, in certain geographical areas wind's assistance (or hindrance) on migratory flight is also persistent, being dependent upon the bird's migratory direction in relation to prevailing wind conditions. We propose that, considering the western migration route of nocturnal migrants through Europe, winds should be more supportive in spring than in autumn. Thus, we expect higher ground speeds, contributing to higher overall migration speeds, in spring. To test whether winds were more supportive in spring than autumn, we quantified monthly wind conditions within western Europe relative to the seasonal direction of migration using 30 years (1978–2008) of wind data from the NCEP/NCAR Reanalysis dataset. We found that supporting winds were significantly more frequent for spring migration compared to autumn and up to twice as frequent at higher altitudes. We then analyzed three years (2006–2008) of nocturnal migratory ground speeds measured with radar in the Netherlands which confirmed higher ground speeds in spring than autumn. This seasonal difference in ground speed suggests a 16.9% increase in migration speed from autumn to spring. These results stress the importance of considering the specific wind conditions experienced by birds when interpreting migration speed. We provide a simple methodological approach enabling researchers to quantify regional wind conditions for any geographic area and time period of interest.  相似文献   

12.
Thomas  Alerstam Staffan  Ulfstrand 《Ibis》1974,116(4):522-542
The migration of Wood Pigeons in southern Scandinavia was studied from 21 September to 10 October 1971 and from 16 September to 15 November 1972 using radar stations supplemented with observations from an aircraft and a network of ground observers. By far the largest quantities of Wood Pigeons migrated after cold front passages with northwesterly to northeasterly tailwinds. Most birds departed on a few days, apparently as a consequence of strong preference for tailwind situations. With northwesterly winds a proportionately high migratory activity was recorded in the Kattegatt area. With northeasterly winds activity was higher in the Baltic area. This allowed the Wood Pigeons to make maximal use of the tailwind component, and their ground speed usually exceeded 80 km/h. The calculated mean air speed was 60 km/h. Their dependence on tailwind was particularly strong when the birds were engaging in long sea-crossings, such as across the Kattegatt. Different coastlines affected the geographical pattern of migration in different ways. Frequently Wood Pigeon flocks flew almost parallel to the coast but some distance off shore, until they finally departed. The deflective force of coastlines was greatest when the birds' ground speed was low, that is, under headwind conditions or in calm weather. Mean track directions measured over two areas in northern Skane, called Inland W and Inland E, situated about 60 km apart, differed by 11, those over the western area being directed more to the south than those over the eastern. No significant correlation with wind directions was found in these areas. Combining data from the whole land area, however, track directions were found to vary from day to day in significant correlation to the wind direction. Mean track directions over the Baltic agreed with those over Skane, but both differed significantly from those over the Kattegatt. Both over the Baltic and over the Kattegatt directions were significantly correlated with wind directions, and showed greater variation than track directions over land. Daily track differences over the Baltic resulted both from differences taking place over the land, and from real wind deflection (drift). Both over the land and over the sea heading directions were correlated with wind directions, suggesting compensatory efforts on the part of the birds. On three days extensive fog covered much of the study area. Wood Pigeons continued to migrate, but certain aberrations in their behaviour were noted. Over land migration was relatively heavier in the west with northwesterly winds and in the east with northeasterly winds. The correlation demonstrated between wind direction and the mean track direction was based upon the fact that populations with different inherent primary directions made up different proportions of the migrating cohorts under different wind conditions (pseudo-drift). The incomplete compensation for wind deflection over the sea is ascribed to the lack of visual orientation cues. The more accurate orientation possible over land suggests one reason for the birds' reluctance to flights across the open sea. When mean track directions of Wood Pigeons in different parts of southern Scandinavia were related to the migratory goals of these birds, it was found that they have to change their primary direction in the course of their journey from breeding to wintering areas.  相似文献   

13.
Nocturnal passerine migrants could substantially reduce the amount of energy spent per distance covered if they fly with tailwind assistance and thus achieve ground speeds that exceed their airspeeds (the birds’ speed in relation to the surrounding air). We analysed tracking radar data from two study sites in southern and northern Scandinavia and show that nocturnally migrating passerines, during both spring and autumn migration, regularly travelled without tailwind assistance. Average ground and airspeeds of the birds were strikingly similar for all seasonal and site‐specific samples, demonstrating that winds had little overall influence on the birds’ resulting travel speeds. Distributions of wind effects, measured as (1) the difference between ground and airspeed and (2) the tail/headwind component along the birds’ direction of travel, showed peaks close to a zero wind effect, indicating that the migratory flights often occurred irrespective of wind direction. An assessment of prevailing wind speeds at the birds’ mean altitude indicated a preference for lower wind speeds, with flights often taking place in moderate winds of 3–10 m/s. The limited frequency of wind‐assisted flights among the nocturnal passerine migrants studied is surprising and in clear contrast to the strong selectivity of tailwinds exhibited by some other bird groups. Relatively high costs of waiting for favourable winds, rather low probabilities of occurrence of tailwind conditions and a need to use a large proportion of nights for flying are probably among the factors that explain the lack of a distinct preference for wind‐assisted flights among nocturnal passerine migrants.  相似文献   

14.
《Animal behaviour》1997,54(2):297-304
In 1994–1995 artificial nests with attached model eggs were put into territories that were known to have been occupied by male great reed warblers,Acrocephalus arundinaceusin previous years. Because the eggs were made of soft plasticine, predators left peckmarks in them and this enabled us to identify predators by comparing peckmarks with reference marks made by various species. Previous field data had suggested that infanticidal behaviour existed in our study population, as nests of primary females suffered a three times higher rate of nest loss during the egg-laying period than nests of secondary and monogamous females. The presence of infanticide was supported by the experiment. Small peckmarks resembling those of a great reed warbler occurred almost exclusively in territories occupied by great reed warblers, in particular when a new female settled in the territory. The newly settled females built nests closer to depredated than non-depredated nests. That small peckmarks occurred when new females settled strongly suggests that it is secondary female great reed warblers that commit infanticide on eggs of primary females. Females of low harem rank are expected to gain from infanticidal behaviour because a low ranked female gets a higher proportion of male parental investment when the nest of the primary female fails.  相似文献   

15.
When the adult sex ratio differs between years in local populations, but still is predictable between adjacent years, it has been proposed that the best strategy would be to bias the offspring sex ratio in favour of the rare sex. We tested this hypothesis using a data set of great reed warbler offspring, sexed by molecular techniques, that were collected over 11 breeding seasons at two adjacent reed marshes. Three important assumptions for this hypothesis are fulfilled in the studied great reed warbler population. First, a substantial proportion of great reed warblers are living in small local populations where sex ratio distortions would be sufficiently large and common. Second, breeding adults and their offspring return to breed in the local population to a high degree. Third, females have a possibility to assess the breeding sex ratio before laying their eggs. At our study site, the breeding sex ratio was positively correlated between successive years. However, contrary to our prediction, female great reed warblers seemed not to adjust their offspring sex ratio in relation to the local breeding sex ratio.  相似文献   

16.
The size of an animal is of utmost importance for its overall success and each species is thought to have its own optimal size. If this is true, size traits ought to be under stabilising selection unless the animal is living in a highly unstable environment. Wing length is a standard measurement of the size of birds, but up to date there have been few indications of stabilising selection on wing length. In this study we analyse recovery data for reed warblers Acrocephalus scirpaceus (n=771) ringed as juveniles in Sweden from 1981 until 2001. The data showed a significant relationship between juvenile wing length and survival time, with median juvenile wing lengths (66–67 mm) being the most favourable. The estimated stabilising selection differential (C=?0.094) supports that wing length of the reed warblers in our study is under stabilising selection. The reed warbler is a long‐distance migratory species and we suggest that opposing selection pressures may act on wing length during different life history stages, and that this might explain the rather broad peak of favourable wing lengths found.  相似文献   

17.
Hybridization is observed frequently in birds, but often it is not known whether the hybrids are fertile and if backcrossing occurs. The breeding ranges of the great reed warbler (Acrocephalus arundinaceus) and the clamorous reed warbler (A. stentoreus) overlap in southern Kazakhstan and a previous study has documented hybridization in a sympatric population. In the present study, we first present a large set of novel microsatellite loci isolated and characterised in great reed warblers. Secondly, we evaluate whether hybridization in the sympatric breeding population has been followed by backcrossing and introgression.We isolated 181 unique microsatellite loci in great reed warblers. Of 41 loci evaluated, 40 amplified and 30 were polymorphic. Bayesian clustering analyses based on genotype data from 23 autosomal loci recognised two well-defined genetic clusters corresponding to the two species. Individuals clustered to a very high extent to either of these clusters (admixture proportions ≥ 0.984) with the exception of four previously suggested arundinaceus-stentoreus hybrid birds that showed mixed ancestry (admixture proportions 0.495-0.619). Analyses of simulated hybrids and backcrossed individuals showed that the sampled birds do not correspond to first-fourth-generation backcrosses, and that fifth or higher generation backcrosses to a high extent resemble 'pure' birds at this set of markers.We conclude that these novel microsatellite loci provide a useful molecular resource for Acrocephalus warblers. The time to reach reproductive isolation is believed to be very long in birds, approximately 5 Myrs, and with an estimated divergence time of 2 Myrs between these warblers, some backcrossing and introgression could have been expected. However, there was no evidence for backcrossing and introgression suggesting that hybrids are either infertile or their progeny inviable. Very low levels of introgression cannot be excluded, which still may be an important factor as a source of new genetic variation.  相似文献   

18.
In this statistical analysis, the fastest 25% of homing speeds in 5955 races conducted in West Germany on 194 days in 1973–1990 and the return rates in 18 pigeon races held in 1932–1957 in Italy were examined with respect to distance, cloud cover, wind, sferics, solar and magnetic variables. 1. Under sun, the speeds rapidly increased with distance from 120 up to 240 km and slowly declined beyond 240 km. 2. Correlations between race and wind speeds were maximized by rotating clockwise and extrapolating the local surface wind linearly according to the average wind profile (difference between the mean surface and mean 900 m-height wind vector). The best predictors indicated the speeds of the winds the birds encountered aloft, which were blowing at lower heights in headwinds than in tailwinds. 3. The air speeds correlated negatively with the effective wind forces roughly in agreement with Pennycuick's theory of bird flight. 4. Rates of atmospherics (2.8–38 kHz, 0.02–0.4V/m recorded in Berlin) correlated negatively with the speeds. 5. Under sun, the difference between the fastest and slowest speed correlated with sunspot numbers (R) in a very active solar cycle (1979–1987), but not in the preceding and following cycles which had lesser activity. 6. Under sun, the speeds correlated directly or indirectly with solar and magnetic activity (25% and 21 % of the samples per year and per homeward direction, respectively), but did so only in 9.9% and 6.9% of samples (respectively) when races to the same home area were sampled over the years. Under overcast, most of the correlations were negative. 7. While magnetic disturbances appeared to coincide with higher speeds inconsistently under sun, they appeared to interfere with the speeds consistently under overcast. Under sun, the seasonal median speeds, unlike the daily median ones, correlated negatively with magnetic activity. 8. Hourly variations of the geomagnetic field components correlated negatively with the speeds in 1973–1975 in western, but positively in eastern and southern, homeward directions. 9. The return rates in Italian pigeon races were best predicted by hourly variations of the horizontal intensity of the regional geomagnetic field and second-best by sunspot numbers. 10. The significance of the results for understanding the role of the meteorological and solar-magnetic environment in pigeon homing is discussed.  相似文献   

19.
Migratory birds face significant challenges across their annual cycle, including occupying an appropriate non-breeding home range with sufficient foraging resources. This can affect demographic processes such as over-winter survival, migration mortality and subsequent breeding success. In the Sahel region of Africa, where millions of migratory songbirds attempt to survive the winter, some species of insectivorous warblers occupy both wetland and dry-scrubland habitats, whereas other species are wetland or dry-scrubland specialists. In this study we examine evidence for strategic regulation of body reserves and competition-driven habitat selection, by comparing invertebrate prey activity-density, warbler body size and extent of fat and pectoral muscle deposits, in each habitat type during the non-breeding season. Invertebrate activity-density was substantially higher in wetland habitats than in dry-scrubland. Eurasian reed warblers Acrocephalus scirpaceus occupying wetland habitats maintained lower body reserves than conspecifics occupying dry-scrub habitats, consistent with buffering of reserves against starvation in food-poor habitat. A similar, but smaller, difference in body reserves between wet and dry habitat was found among subalpine warblers Sylvia cantillans but not in chiffchaffs Phylloscopus collybita inhabiting dry-scrub and scrub fringing wetlands. Body reserves were relatively low among habitat specialist species; resident African reed warbler A. baeticatus and migratory sedge warbler A. schoenobaenus exclusively occupying wetland habitats, and Western olivaceous warblers Iduna opaca exclusively occupying dry habitats. These results suggest that specialists in preferred habitats and generalists occupying prey-rich habitats can reduce body reserves, whereas generalists occupying prey-poor habitats carry an increased level of body reserves as a strategic buffer against starvation.  相似文献   

20.
The size of an animal is of utmost importance for its overall success and each species is thought to have its own optimal size. If this is true, size traits ought to be under stabilising selection unless the animal is living in a highly unstable environment. Wing length is a standard measurement of the size of birds, but up to date there have been few indications of stabilising selection on wing length. In this study we analyse recovery data for reed warblers Acrocephalus scirpaceus (n=771) ringed as juveniles in Sweden from 1981 until 2001. The data showed a significant relationship between juvenile wing length and survival time, with median juvenile wing lengths (66–67 mm) being the most favourable. The estimated stabilising selection differential (C=−0.094) supports that wing length of the reed warblers in our study is under stabilising selection. The reed warbler is a long-distance migratory species and we suggest that opposing selection pressures may act on wing length during different life history stages, and that this might explain the rather broad peak of favourable wing lengths found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号