首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The grassland community of Lac du Bois Provincial Park in the interior of British Columbia has become increasingly invaded by Centaurea stoebe (=Centaurea maculosa; spotted knapweed). Allelopathy, through the production of the phytotoxin (±)-catechin by C. stoebe roots is believed to be partly responsible for knapweed’s invasive success. We used field sampling and greenhouse experiments to examine two questions: (1) Is increasing abundance of C. stoebe negatively associated with the abundance of specific native grassland species? (2) Do species that exhibit a negative correlation with C. stoebe abundance in the field demonstrate increased levels of susceptibility to application of (±)-catechin during germination? Thirty-eight plots were sampled in the grassland, encompassing areas of low—high knapweed abundance. Seeds from eight native species, exhibiting positive, neutral or negative correlation with knapweed abundance, were treated with three concentrations (0, 0.5, 2.0 mg/mL) of (±)-catechin. Root growth and percent germination were measured over a 6-week period. The results indicate that C. stoebe abundance is negatively correlated with native plant species abundance and may alter plant community composition. Moreover root radical growth was significantly negatively affected by treatment with (±)-catechin in all four native plant species that exhibited a negative correlation with knapweed abundance in the field. Past studies have failed to conclusively link greenhouse results with plant community patterns. Here, we provide a correlative link between plant community composition and tolerance to a phytotoxin.  相似文献   

2.
Russian knapweed ( Acroptilon repens ) and Spotted knapweed ( Centaurea maculosa ) are allelopathic weeds invasive in North American grasslands. Both species contain at least one phytotoxic flavonoid root exudate with demonstrated negative influences on other plants. Previous findings indicated that Silky lupine ( Lupinus sericeus ), among other legumes, was relatively resistant to Spotted knapweed invasion and allelochemistry. We hypothesized that legume species may exhibit resistance to flavonoids in knapweed root exudates and may serve as candidate species for management efforts. Because legumes form symbiotic relationships with rhizobia, these bacteria must also be evaluated for allelochemical resistance before legumes can be recommended for restoration. In this study, we examined four legume species for effects of 7,8-benzoflavone (from Russian knapweed) and (±)-catechin (from Spotted knapweed) on rhizosphere interactions involving legume roots and associated rhizobia. Pure cultures of four rhizobia strains exhibited varied responses when grown with 7,8-benzoflavone or (±)-catechin. Alfalfa ( Medicago sativa ) and its bacterial symbiont, Sinorhizobium meliloti , exhibited allelochemical resistance that varied with (±)-catechin concentration when grown in vitro. Four legume species were grown under greenhouse conditions. Plants that were inoculated and nodulated generally exhibited no response to 7,8-benzoflavone or (±)-catechin treatments. Plants that were not inoculated exhibited stronger responses. Therefore, inoculation and nodulation may confer resistance to allelochemicals. These results, when coupled with previous research and field observations, suggest that legumes may not be susceptible to knapweed allelopathy and may be good choices in restoration of knapweed infestations when inoculated, particularly on sites with low soil nitrogen.  相似文献   

3.
Infestations of the exotic perennial Spotted knapweed (Centaurea maculosa Lam.) hinder the restoration and management of native ecosystems on droughty, infertile sites throughout the Midwestern United States. We studied the effects of annual burning on knapweed persistence on degraded, knapweed‐infested gravel mine spoils in western Michigan. Our experiment included 48, 4‐m2 plots seeded to native warm‐season grasses in 1999 using a factorial arrangement of initial herbicide and fertility treatments. Beginning in 2003, we incorporated fire as an additional factor and burned half of the plots in late April or May for 3 years (2003–2005). Burning increased the dominance of warm‐season grasses and decreased both biomass and dominance of knapweed in most years. Burning reduced adult knapweed densities in all 3 years of the study, reduced seedling densities in the first 2 years, and reduced juvenile densities in the last 2 years. Knapweed density and biomass also declined on the unburned plots through time, suggesting that warm‐season grasses may effectively compete with knapweed even in the absence of fire. By the end of the study, mean adult knapweed densities on both burned (0.4‐m2) and unburned (1.3‐m2) plots were reduced to levels where the seeded grasses should persist with normal management, including the use of prescribed fire. These results support the use of carefully timed burning to help establish and maintain fire‐adapted native plant communities on knapweed‐infested sites in the Midwest by substantially reducing knapweed density, biomass, and seedling recruitment and by further shifting the competitive balance toward native warm‐season grasses.  相似文献   

4.
Allelopathy has been hypothesized to promote the success of invasive plants. Support for the role of allelopathy in invasions has emerged from research on the candidate allelochemical (?)‐catechin, which is secreted by spotted knapweed. Here we describe new methods to quantify catechin in liquid and soil. With a new technique, we assayed catechin production by individual plants in liquid media and found levels up to two orders of magnitude less than previously reported. An acetone/water solution provided consistent recovery of catechin from soil, with percent recovery depending upon soil type. We evaluated soils from two spotted knapweed sites in Montana, USA, but found no measurable catechin. Idaho fescue, a native species reportedly sensitive to catechin, only exhibited slightly reduced growth at concentrations 10 times higher than previously reported to cause 100% mortality. Our results emphasize that more research is required to clarify the role of catechin in the invasion of spotted knapweed.  相似文献   

5.
Knapweeds (Centaurea spp.) are damaging invaders of grasslands and other North American rangelands. A field study was conducted to determine conditions that promote diffuse knapweed (C. diffusa) emergence and establishment in a native Colorado grassland (North America). Knapweed was planted in native grassland under treatments with different opening sizes, levels of competition, knapweed seed burial and season of seeding. There was no effect of opening size where competing natives were alive, but knapweed emergence in 5- and 15-cm openings was higher than 0-cm openings where natives were killed. Reducing competition reduced fall diffuse knapweed emergence, but did not affect spring emergence. Seed burial increased knapweed emergence, but the effect varied by season. Although diffuse knapweed emergence reached 35%, only four plants survived from 3,600 seeds. This native grassland did not prevent knapweed emergence or establishment, but both were so low that rapid knapweed invasion is unlikely.  相似文献   

6.
Establishing native forbs is crucial for invasive plant management and restoring a desirable plant community. Our objectives were to determine (1) if increasing forb seed density results in increased forb establishment; (2) if a species‐rich mixture of forbs has greater establishment and survivorship than a single species; and (3) if mixtures of forbs are more competitive with Spotted knapweed (Centaurea maculosa) than a forb monoculture. To test our first two objectives, we seeded monocultures of Purple coneflower (Echinacea angustifolia), Arrowleaf balsamroot (Balsamorhiza sagittata), Annual sunflower (Helianthus annuus), Dotted gayfeather (Liatris punctata), Western white yarrow (Achillea millefolium), Sticky geranium (Geranium viscosissimum), as well as a mixture of all forbs. Pots were seeded at 800 or 2,000 seeds/m2 and watered twice or thrice weekly. The highest seed density produced the highest plant density, which averaged 4.35 plants/pot. The density of the mixture was similar to the mean density seen for individual species, and it doubled in response to the highest seed density. To test our third objective, Spotted knapweed and Purple coneflower were arranged in an addition series matrix with a maximum total density of 4,000 seeds/pot. We found that the forb mixture was seven times more competitive with Spotted knapweed than Purple coneflower alone. Using a mixture of forbs rather than a single species enhances forb establishment in various and unpredictable environments because the mixture possesses a variety of traits that may match year–year and site–site conditions. Once established, the mixture may have a greater chance of persisting than a monoculture.  相似文献   

7.
Question: Are the seed banks of an isolated subtropical oceanic island capable of naturally regenerating vegetation either with species of the historical forest community or with the existing grassland community after severe damage to the vegetation by goats? Location: Nakoudojima Island, Bonin Archipelago (Ogasawara Shoto), Japan. Methods: Soil samples were collected at 0–5 cm and 5–10 cm depths from seven plots in forests, grasslands, artificially matted areas and bare land. Soil seed banks were assessed using the seedling emergence method followed by the hand‐sorting of ungerminated seeds. We determined the size and composition of the seed banks in upper soil layers of plots and compared the seed banks to the standing vegetation. Results: A total of 12 220 seedlings belonging to 42 species from 20 families germinated. Total mean seed density (0–5 cm depth) was low in all plots within forest, grassland, and heavily degraded vegetation types (34.7 ± 8.6 to 693.5 ± 123.6, 58.6 ± 7.8 to 107.1 ± 10.0, and 1.1 ± 0.5 to 7.2 ± 2.3 seeds/m2, respectively). Forbs and graminoids dominated the seed banks of grassland and forest plots including Cyperus brevifolius, Gnaphalium pensylvanicum, Oxalis corniculata and Solanum nigrum, and these alien species comprised 90% of the density of the seed bank. There was little correlation between seed banks and standing vegetation of the island (Sørensen similarity coefficient values 0.26 to 0.45). Conclusions: If natural regeneration occurs from the seed bank of the island, future vegetation will not move toward the original forest community, because the seed bank is dominated by non‐native herbaceous grassland species. Though isolated, a few forest remnants with low species richness could be an important source for the natural re‐establishment of forest on the island; however, seed availability may be limited by either poor dispersal or pollination so that woody species will probably recover very slowly on this goat‐impacted island.  相似文献   

8.
Five insect biological control agents that attack flower heads of spotted knapweed, Centaurea stoebe L. subsp. micranthos (Gugler) Hayek, became established in western Montana between 1973 and 1992. In a controlled field experiment in 2006, seed-head insects reduced spotted knapweed seed production per seed head by 84.4%. The seed production at two sites in western Montana where these biological control agents were well established was 91.6-93.8% lower in 2004-2005 than 1974-1975, whereas the number of seed heads per square meter was 70.7% lower, and the reproductive potential (seeds/m(2)) was 95.9-99.0% lower. The average seed bank in 2005 at four sites containing robust spotted knapweed populations was 281 seeds/m(2) compared with 19 seeds/m(2) at four sites where knapweed density has declined. Seed bank densities were much higher at sites in central Montana (4,218 seeds/m(2)), where the insects have been established for a shorter period. Urophora affinis Frauenfeld was the most abundant species at eight study sites, infesting 66.7% of the seed heads, followed by a 47.3% infestation by Larinus minutus Gyllenhal and L. obtusus Gyllenhal. From 1974 to 1985, Urophora spp. apparently reduced the number of seeds per seed head by 34.5-46.9%; the addition of Larinus spp. further reduced seed numbers 84.2-90.5% by 2005. Path analysis indicated that both Larinus spp. and U. affinis contributed significantly to reduction of seed production over the 30-yr period. Spotted knapweed density may not decrease significantly until the seed bank falls below a critical threshold.  相似文献   

9.
Catechin is a flavonoid present in fruits, wine and cocoa products. Most foods contain the (+)-enantiomer of catechin but chocolate mainly contains ( ? )-catechin, in addition to its major flavanol, ( ? )-epicatechin. Previous studies have shown poor bioavailability of catechin when consumed in chocolate. We compared the absorption of ( ? ) and (+)-catechin after in situ perfusion of 10, 30 or 50 μmol/l of each catechin enantiomer in the jejunum and ileum in the rat. We also assayed 23 samples of chocolate for (+) and ( ? )-catechin. Samples were analyzed using HPLC with a Cyclobond I-2000 RSP chiral column. At all concentrations studied, the intestinal absorption of ( ? )-catechin was lower than the intestinal absorption of (+)-catechin (p < 0.01). Plasma concentrations of ( ? )-catechin were significantly reduced compared to (+)-catechin (p < 0.05). The mean concentration of ( ? )-catechin in chocolate was 218 ± 126 mg/kg compared to 25 ± 15 mg/kg (+)-catechin. Our findings provide an explanation for the poor bioavailability of catechin when consumed in chocolate or other cocoa containing products.  相似文献   

10.
Diffuse and spotted knapweed (Centaurea diffusa Lam. and C. stoebe micranthos (Gugler) Hayek) are Eurasian plants that devastate dry and mesic North American grasslands. They have a mutualistic association with arbuscular mycorrhizal fungal (AMF) phylotypes with hyphal links to nearby plants and a nutrient flux to the strongest sink, usually knapweed. They displace many AMF beneficial to grass and affect knapweed nutrient allocation, biology, knapweed insects and probably root necrosis and emergence of ant buried seed. AMF determined nutrient root or shoot allocation determines nutrient shoot and root allocation and the benefit to root or seed-head insect species and whether C. diffusa is an annual–biannual or a semelparous perennial needing 5 or more years to flower. Both knapweeds do well without its AMF phylotypes without competition in fertile soil. In grass in Eurasia, they have a community of seven seed-head species segregated by head development stage. Prolonged seed dormancy buffered knapweed decline that resulted in release of a surfeit seed-head species. The presence of an eliasome on the seed and vigorous seedling clumps suggests burial by myrmecochorous ants with AMF supplied carbon supporting their growth. The root species community is segregated by habitat, climate, root part, and size. With larval induced compensatory growth and AMF nutrient sharing, the growth of plants with and without a larva was the same. On feeding completion, a nutrient out flux from the attacked plants reduced growth; but without killing. This needs a dual species or a repeated single species attack. Root species packing increases knapweed utilization; but the four approved species are insufficient for maximum utilization. Two additions are suggested. The aim of the paper is to provide enough understanding of the AMF and its plant and insect interactions to facilitate knapweed biological control and avoid past mistakes.  相似文献   

11.
Spotted knapweed (Centaurea stoebe L. subsp. Micranthos (Gugler) Hayek) was first introduced in the 1890s from Europe into western North America, where it now occupies over three million hectares of rangeland and pasture in 14 states and two Canadian provinces, reducing forage production and causing economic damage. Despite many reported effects spotted knapweed can have on soils and native vegetation, it is not known whether patch size is correlated with these ecosystem-level effects. The objective of our study was to determine whether the effects of spotted knapweed on plant composition and soil properties was related to spotted knapweed patch size. We asked the following questions: (1) Are there differences in plant species richness and diversity between small and large knapweed patches? and (2) Do soil water and soil mineral nutrient properties change depending on knapweed patch size? Twenty-four knapweed patches, and paired natural grassland plots, were randomly selected within Lac du Bois Provincial Park, British Columbia, Canada. Knapweed patch size ranged from 6 to 366 m2. Sampling and analysis revealed a significant effect of knapweed patch size on soil and vegetation properties. Soil P, soil temperature, and total dry plant biomass (g/0.25 m2) increased, while soil N, soil C, and soil moisture decreased with patch size. Since our results show that spotted knapweed patch size is related to degree of soil alteration, it is important to consider size of patch when modeling the impact of spotted knapweed in North America. Since large patches of spotted knapweed seem to have a proportionately greater effect on soil chemistry properties, large patches may move the system further away from a point where it is possible to restore the site to pre-invasion conditions.  相似文献   

12.
The chiral separation of (±)‐catechin was investigated by capillary electrophoresis using characterized succinyl‐β‐cyclodextrins (Suc‐β‐CDs) with one to three degree of substitution values. The effects of nature and concentration of Suc‐β‐CDs and running buffer pH on the migration time and resolution of (±)‐catechin are discussed. All three kinds of Suc‐β‐CDs show a clear baseline separation of (±)‐catechin in capillary electrophoresis. Mono‐Suc‐β‐CD effectively separated (±)‐catechin, and additional substituted CDs (di‐ and tri‐Suc‐β‐CD) were capable of chiral separation at a broad pH range. The optimum running conditions were found to be 100 mM borate buffer (pH 9.8) containing 5 mM mono‐Suc‐β‐CD with no methanol organic modifier. Chirality, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Catechin compounds have potential benefits for recombinant monoclonal antibody (Mab) production as chemical additives in cell culture media. In this study, four catechin compounds catechin (Cat), epicatechin (EC), gallocatechin-gallate (GCG), and epigallocatechin-gallate (EGCG) were added to cell culture media (at 50 μM) and their effects on the recombinant Chinese hamster ovary (CHO) cell culture, specific productivity, and Mab quality were assessed. The results indicate that the improvement of specific productivity was linked to cell growth inhibition. All catechins caused cell phase growth arrest by lowering the number of cells in the G1/G0 phase and increasing the cells in the S and G2/M phases. Late addition of the catechin resulted in a significantly higher final IgG concentration. Cat and EC caused an improvement in the final antibody titer of 1.5 ± 0.1 and 1.3 ± 0.1 fold, respectively. Catechins with a galloyl group (GCG and EGCG) arrested cell growth and reduced cell specific productivity at the concentrations tested. The Cat-treated IgG was found to have reduced acidic species with a corresponding increase in the main peak.  相似文献   

14.
《Free radical research》2013,47(4):241-253
We have evaluated the abilities of ferulic acid, (±) catechin, (+) catechin and (-) epicatechin to scavenge the reactive oxygen species hydroxyl radical (OH±), hypochlorous acid (HOCl) and peroxyl radicals (RO2).

Ferulic acid tested at concentrations up to 5 mM inhibited the peroxidation of phospholipid liposomes. Both (±) and (+) catechin and (-) epicatechin were much more effective. All the compounds tested reacted with trichloromethyl peroxyl radical (CCl3O2) with rate constants > 1 × 106M?1s?1.

A mixture of FeCl3-EDTA, hydrogen peroxide (H2O2) and ascorbic acid at pH 7.4, has often been used to generate hydroxyl radicals (OH.) which are detected by their ability to cause damage to the sugar deoxyribose. Ferulic acid, (+) and (±) catechin and (-) epicatechin inhibited deoxyribose damage by reacting with OH. with rate constants of 4.5 × 109M?1s?1, 3.65 × 109M?1s?1, 2.36 × 109M?1s?1 and 2.84 × 109M?1s?1 respectively. (-) Epicatechin, ferulic acid and the (+) and (±) catechins exerted pro-oxidant action, accelerating damage to DNA in the presence of a bleomycin-iron complex. On a molar basis, ferulic acid was less effective in causing damage to DNA compared with the catechins.

A mixture of hypoxanthine and xanthine oxidase generates O2 which reduces cytochrome c to ferrocytochrome c. (+) Catechin and (-) epicatechin inhibited the reduction of cytochrome c in a concentration dependent manner. Ferulic acid and (±) catechin had only weak effects.

All the compounds tested were able to scavenge hypochlorous acid at a rate sufficient to protect alpha-1-antiproteinase against inactivation. Our results show that catechins and ferulic acid possess antioxidant properties. This may become important given the current search for “natural” replacements for synthetic antioxidant food additives.  相似文献   

15.
Spotted knapweed (Centaurea stoebe) is found in over 3 million ha of rangeland and forests across North America, and evidence supporting the use of biological control as a regional method to reduce infestations and their associated impacts remains inconclusive. Several species of insects have been reported to reduce plant densities in some areas; however, rigorous studies that test combinations of these species and the influence of resource availability are lacking. We examined the singular and combined effects of herbivory by a root weevil (Cyphocleonus achates) and a flower head weevil (Larinus minutus) on the growth and flower production of C. stoebe. We also manipulated soil resource fertility as an additional factor that could explain the outcomes of contradictory biological control herbivore effects on C. stoebe. In a greenhouse study, herbivory by C. achates decreased flower production for plants across all resource environments. In a caged common garden study, the negative effects of herbivory also did not interact with soil nutrient status. However, the presence of plant competition further decreased knapweed growth, and the negative effects of concurrent herbivory by C. achates and L. minutus on plant biomass and flower production were additive. Derived within the context of variable levels of soil nutrient availability and competing vegetation, these results support the cumulative stress hypothesis and the contention that combined above- and belowground herbivory can reduce spotted knapweed densities and reduce the ecological and economic impacts of this species in rangelands of western North America.  相似文献   

16.
1. Evaluating variation, or 'conditionality', in plant interactions is crucial to understanding their ecological importance and predicting where they might be at play. Much is known about conditionality for competition, facilitation and herbivory, but not for allelopathy, which likely contributes to the equivocal nature of reports on this topic. Centaurea maculosa (spotted knapweed) is an invasive species in North America, whose success has been attributed, at least in part, to the allelochemical root exudate (±)-catechin.
2. Understanding the ecological relevance of (±)-catechin necessitates determining how it interacts with various soil components. We found that some metals caused rapid declines in measurable (±)-catechin, while calcium impeded its auto-oxidation, maintaining concentrations higher than for (±)-catechin alone. Certain (±)-catechin–metal complexes were more phytotoxic than (±)-catechin alone, while others showed lower toxicity.
3. The variable phytotoxicity of these complexes suggests that (±)-catechin effects are enhanced, mitigated or otherwise affected by complexation with different metals and perhaps other soil components.
4.  Synthesis . These findings serve to illustrate that the precise chemical forms, interactions and effects of catechin in the environment are highly variable and that further examination is warranted to increase our understanding of its role in invasion and allelopathy. The conditional effects observed for catechin detection and phytotoxicity likely extend to related allelopathic compounds, other root exudates and potentially other systems involving chemically complex and spatially heterogeneous environments.  相似文献   

17.
Field studies were conducted to determine the competitive interactions between introduced biological control agents that attack the seed heads of spotted knapweed (Centaurea stoebe ssp. micranthos) and diffuse knapweed (Centaurea diffusa). Two weevils, Bangasternus fausti and Larinus minutus (Coleoptera: Curculionidae), were each paired with the previously established fly, Urophora affinis (Diptera: Tephritidae). Each species was released either alone or in pair-wise combinations inside screen cages placed over existing knapweed plants at six field sites in Montana and one in Oregon. Larinus minutus produced almost three times as many progeny on diffuse knapweed as on spotted knapweed. Larinus minutus reproduction was not affected by competition with U. affinis, but U. affinis reproduction was reduced by the presence of L. minutus (by 71% on spotted and 77% on diffuse knapweed). Bangasternus fausti reproduction generally was not affected by competition with U. affinis, nor was U. affinis affected by B. fausti on either host plant. There were extremely few cases of successful production of both weevil and fly in the same capitulum, which was probably because weevil larvae consume the developing flies. Both weevils increased the total proportion of seed heads infested on diffuse knapweed, and B. fausti increased it on spotted knapweed. However, the release of either weevil did not significantly further reduce seed production on either plant. The results and experimental design are discussed in light of the subsequent establishment and impact of these agents.  相似文献   

18.
Agapeta zoegana L. (Lepidoptera: Tortricidae) is an oligophagous herbivore that was introduced to North America as a biological control agent of spotted knapweed, Centaurea stoebe L. subsp. micranthos (Gugler) Hayek (often called Centaurea maculosa Lam.). Spotted knapweed is a perennial plant that usually increases in size each year. A previous field study reported that more larvae were found on larger plants and that infested plants tended to be larger than uninfested ones. Precisely quantifying the size-specific attack rate can help us model the impact of this agent on the weed population and better understand the interspecific interactions to improve the effectiveness of biological control. Field data were analyzed to determine the relative preference of attack for each size class of the host plant. Plants were classified based on root diameter at 2 cm below the root crown. Although small plants (<3 mm root diameter) were more abundant in the field population, the highest infestation rates occurred in large plants. Chesson’s electivity index was generally positive for root diameters >3.5 mm, indicating preferential attack of large plants. Because of its host-size preference, A. zoegana is expected to primarily affect large plants, which is contrary to previous expectations. Quantifying the insect’s direct impact is a difficult challenge, which may require several field seasons of measuring accumulated damage on individual plants. In order to complement the biological control agents already established, foreign exploration should focus on finding an agent that attacks young knapweed plants. These results also indicate that the efficiency of sampling roots in the field to detect the presence of A. zoegana can be improved by choosing only the largest plants.  相似文献   

19.
We studied the extent to which catechin applied as a soil drench modifies the effects of soil waterlogging on plant growth, the functioning of the free radical scavenging system and on oxidative stress levels. Forty-day-old tomato plants (Solanum lycopersicum L.) were treated with 0 and 2?mM catechin 48 h prior to 5 d waterlogging followed by a 4 d drainage period. Exogenous catechin increased total fresh and dry weight of flooded plants, reduced membrane damage, maintained chlorophyll concentrations, promoted photosynthesis and increased ATP concentration in the leaves, and raised sucrose synthase and alcohol dehydrogenase activities in the roots. Catechin pre-treatment also reduced hydrogen peroxide and superoxide radical concentration and increased various components of the antioxidative system in leaves. Catechin treatment affected superoxide dismutase and catalase activities in close coordination with ascorbate peroxidases and glutathione reductase. Exogenous catechin can markedly reduce the waterlogging injury in leaves and roots of tomato by enhancing free radical scavenging system sufficiently to lower hydrogen peroxide and superoxide concentrations.  相似文献   

20.
Syringomycin E (SRE) is a cyclic lipodepsinonapeptide with potent antifungal activity and is produced by certain strains of Pseudomonas syringae pv. syringae. In this study, its potential as an organic‐compatible agrofungicide and vegetable seed treatment against the soilborne pathogen Pythium ultimum var. ultimum was examined. A variant of P. syringae pv. syringae strain B301D with enhanced SRE‐producing capabilities was isolated and grown in a bioreactor with SRE yields averaging 50 mg/l in 40 h. SRE was extracted and purified through a large‐scale chromatography system using organic‐compatible processes and reagents. The minimum concentrations of the purified product required to inhibit 50 and 90% of P. ultimum oospore germination were determined as 31.3 and 250 μg/ml, respectively. Drench treatment of cucumber seeds in P. ultimum‐infested potting medium (500 oospores/g) with 50 μg/ml SRE or water with no SRE resulted in 90.2 ± 4.5% and 65.7 ± 4.6% germination rates, respectively. Seed coating with 0.03% (w/w) SRE allowed 65.7 ± 4.6% seedlings to germinate on naturally infested soil while 100.0 ± 0.0% of non‐coated seeds were unable to germinate due to Pythium infection. Organic‐compatible and scalably produced SRE is potentially a novel organic fungicide seed protectant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号