首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Substrate specificity of african oil palm tree peroxidase   总被引:1,自引:0,他引:1  
The optimal conditions for catalysis by the peroxidase isolated from leaves of African oil palm tree (AOPTP) have been determined. The pH optimum for oxidation of the majority of substrates studied in the presence of AOPTP is in the interval of 4.5-5.5. A feature of AOPTP is low pH value (3.0) at which the peroxidase shows its maximal activity toward 2,2"-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS). Increasing the buffer concentration changes the AOPTP activity, the degree of the effect depending upon the chemical structure of the substrate. Under optimal conditions of AOPTP catalysis, the values of second order rate constant characterizing efficiency of enzymatic oxidation of substrates have been calculated. It was shown that among 12 peroxidase substrates studied, ABTS and ferulic acid are the best substrates for AOPTP. The results show that substrate specificities of AOPTP and royal palm tree peroxidase are similar, but different from substrate specificity of other plant peroxidases.  相似文献   

2.
A detailed kinetic study on thermal inactivation of African oil palm tree peroxidase (AOPTP) at different pHs has been carried out. The enzyme does not undergo inactivation over a broad range from pH 2 to 12 at ambient temperature. Complete inactivation of AOPTP is observed only at 70 degrees C and extremal pHs like <3.0 and >12.0, whereas under neutral conditions, its activity shows no changes. The study of AOPTP inactivation kinetics in the presence of dithiothreitol (DTT) and ethylenediaminetetraacetic acid (EDTA) showed that calcium ions, disulfide bonds and the interaction between apo-AOPTP and heme are important structural elements responsible for the enzyme stability. The guanidium hydrochloride (GdHCl)-induced inactivation of AOPTP indicated that the hydrogen-bonding network plays also a significant role in stabilizing the active structure of the enzyme. AOPTP is stable toward hydrogen peroxide treatment, especially under neutral conditions. The comparison of AOPTP stability to that of other peroxidases shows that AOPTP is the most stable peroxidase reported so far.  相似文献   

3.
We optimized the conditions for oxidation of luminol by hydrogen peroxide in the presence of peroxidase (EC 1.11.1.7) from royal palm leaves (Roystonea regia). The pH range (8.3–8.6) corresponding to maximum chemiluminescence was similar for palm tree peroxidase and horseradish peroxidase. Variations in the concentration of the Tris buffer were accompanied by changes in chemiluminescence. Note that maximum chemiluminescence was observed in the 30 mM Tris solution. The detection limit of the enzyme assay during luminol oxidation by hydrogen peroxide was 1 pM. The specific feature of palm tree peroxidase was the generation of a long-term chemiluminescent signal. In combination with the data on the high stability of palm tree peroxidase, our results indicate that this enzyme is promising for its use in analytical studies.  相似文献   

4.
Conditions of luminol oxidation by hydrogen peroxide in the presence of peroxygenase from the mushroom Agrocybe aegerita V.Brig. have been optimized. The pH value (8.8) at which fungal peroxygenase produces a maximum chemiluminescent signal has been shown to be similar to the pH optimum value of horseradish peroxidase. Luminescence intensity changed when the concentration of Tris-buffer was varied; maximum intensity of chemiluminescence was observed in 40 mM solution. It has been shown that enhancer (p-iodophenol) addition to the substrate mixture containing A. aegerita peroxygenase exerted almost no influence on the intensity of the chemiluminescent signal, similarly to soybean, palm, and sweet potato peroxidases. Detection limit of the enzyme in the reaction of luminol oxidation by hydrogen peroxide was 0.8 pM. High stability combined with high sensitivity make this enzyme a promising analytical reagent.  相似文献   

5.
We optimized the conditions for luminol oxidation by hydrogen peroxide in the presence of peroxidase (EC 1.11.1.7) from royal palm leaves (Roystonea regia). The pH range (8.3-8.6) corresponding to maximum chemiluminescence was similar for palm tree peroxidase and horseradish peroxidase. Variations in the concentration of the Tris buffer were accompanied by changes in chemiluminescence. Note that maximum chemiluminescence was observed in the 30 mM solution. The detection limit of the enzyme assay during luminol oxidation by hydrogen peroxide was 1 pM. The specific feature of palm tree peroxidase was the generation of a long-term chemiluminescent signal. In combination with the data on the high stability of palm tree peroxidase, our results indicate that this enzyme is promising for its use in analytical studies.  相似文献   

6.
Systematic studies on phenol derivatives facilitates an explanation of the enhancement or inhibition of the luminol–H2O2–horseradish peroxidase system chemiluminescence. Factors that govern the enhancement are the one-electron reduction potentials of the phenoxy radicals (PhO/PhOH) vs. luminol radicals (L/LH) and the reaction rates of the phenol derivatives with the compounds of horseradish peroxidase (HRP-I and HRP-II). Only compounds with radicals with a similar or greater reduction potential than luminol at pH 8.5 (0.8 V) can act as enhancers. Radicals with reduction potentials lower than luminol behave in a different way, because they destroy luminol radicals and inhibit chemiluminescence. The relations between the reduction potential, reaction rates and the Hammett constant of the substituent in a phenol suggest that 4-substituted phenols with Hammett constants (σ) for their substituents similar or greater than 0.20 are enhancers of the luminol–H2O2–horseradish peroxidase chemiluminescence. In contrast, those phenols substituted in position 4 for substituents with Hammett constants (σ) lower than 0.20 are inhibitors of chemiluminescence. On the basis of these studies, the structure of possible new enhancers was predicted. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
《Luminescence》2003,18(5):249-253
We established a peroxynitrite–luminol chemiluminescence system for detecting peroxynitrite in cell culture solution exposed to carbon disulphide (CS2). Three factors, including exposure time to ozone (Factor A), volume of peroxynitrite (ONOO?) solution (Factor B) and luminol concentrations (Factor C) at three levels were selected and the combinations were in accordance with orthogonal design L9 (34). Peroxynitrite was generated from the reaction of ozone and 0.01 mol/L sodium azide (NaN3) dissolved in carbonic acid buffer solution (pH 11), and it was reacted with luminol to yield chemiluminescence. The peak value, peak time and kinetic curve of the light emission were observed. The selected combination conditions were 50 s ozone, 800 µL peroxynitrite and 0.001 mol/L luminol solution. Cell culture solution with CS2 enhanced the emission intensity of chemiluminescence (F = 8.38, p = 0.018) and shortened the peak time to chemiluminescence (F = 139.00, p = 0.0001). The data demonstrated that this luminol chemiluminescence system is suitable for detecting peroxynitrite in cell culture solutions for evaluating the effect of CS2 on endothelial cells. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The wild-type anionic tobacco peroxidase and its Glu141Phe mutant have been expressed in Escherichia coli, and reactivated to yield active enzymes. A Glu141Phe substitution was made with the tobacco anionic peroxidase (TOP) to mimic neutral plant peroxidases, such as horseradish peroxidase (HRP). Both recombinant forms of tobacco peroxidase show extremely high activity in luminol oxidation with hydrogen peroxide, and thus, preserve the unique property of the native tobacco peroxidase, a superior chemiluminescent reagent. The chemiluminescent signal intensity for both recombinant forms of TOP is orders of magnitude higher than that for wild-type recombinant HRP. The substitution slightly increases TOP activity and stability in the reaction course, but has almost no effect on the optimal parameters of the reaction (pH, luminol and hydrogen peroxide concentrations) and calibration plot. Comparison of substrate specificity profiles for recombinant TOP and HRP demonstrates that Glu141 has no principal effect on the enzyme activity. It is not the presence of the negative charge at the haem edge, but the high redox potential of TOP Compounds I and II that provides high activity towards aromatic amines and aminophenols, and luminol in particular.  相似文献   

9.
Lu Han  Ying Li  Aiping Fan 《Luminescence》2018,33(4):751-758
Peroxidase is a commonly used catalyst in luminol–H2O2 chemiluminescence (CL) reactions. Natural peroxidase has a sophisticated separation process, short shelf life and unstable activity, therefore it is important to develop peroxidases that have both high catalytic activity and good stability as alternatives to the natural enzyme. Gold nanoclusters (Au NCs) are an alternative peroxidase with catalytic activity in the luminol–H2O2 CL reaction. In the present study, ethanediamine was modified on the surface of Au NCs forming cationic Au NCs. The zeta potential of the cationic Au NCs maintained its positive charge when the pH of the solution was between 4 and 9. The cationic Au NCs showed higher catalytic activity in the luminol–H2O2 CL reaction than did unmodified Au NCs. A mechanism study showed that the better performance of cationic Au NCs may be attributed to the generation of 1O2 on the surface of cationic Au NCs and a positive surface charge, for better affinity to luminol. Cationic Au NC, acting as a peroxidase mimic, has much better stability than horseradish peroxidase over a wide range of temperatures. We believe that cationic Au NCs may be useful as an artificial peroxidase for a wide range of potential applications in CL and bioanalysis.  相似文献   

10.
Hydrogen peroxide formed during the course of the copper(II)-catalysed oxidation of cysteamine with oxygen was continuously determined by a peroxidase (POD)-catalysed luminol chemiluminescence (CL) method. Horseradish peroxidase (HRP), lactoperoxidase (LPO) and Arthromyces ramosus peroxidase (ARP) were used as a CL catalyst. The respective PODs gave specific CL intensity-time profiles. HRP caused a CL delay, and ARP gave a time-response curve which followed the production rate of H2O2. LPO gave only a weak CL flash which decayed promptly. These differences of CL response curves could be explained in terms of the different reactivities of PODs for superoxide anion and the different formation rate of luminol radicals in the peroxidation of luminol catalysed by POD.  相似文献   

11.
3-(10'-Phenothiazinyl)propane-1-sulfonate (SPTZ) was shown to be a potent enhancer of anionic sweet potato peroxidase (aSPP)-induced chemiluminescence. The optimal conditions for aSPP-catalyzed oxidation of luminol were investigated by varying the concentrations of luminol, hydrogen peroxide, Tris, and SPTZ as well as the pH values of the reaction mixture. Addition of 4-morpholinopyridine (MORP) to the reaction mixture markedly increased the light intensity. Using SPTZ and MORP together enhanced the effect 265 times. The lower detection limit (LDL) of SPP was 0.09 pM, approximately in 10 times lower than that for the cationic isozyme c of horseradish peroxidase/4-iodophenol system. It was shown that aSPP in the presence of SPTZ produced a longer lasting chemiluminescent signal.  相似文献   

12.
The thermal stability of peroxidase from leaves of the African oil palm tree Elaeis guineensis (AOPTP) at pH 3.0 was studied by differential scanning calorimetry (DSC), intrinsic fluorescence, CD and enzymatic assays. The spectral parameters as monitored by ellipticity changes in the far-UV CD spectrum of the enzyme as well as the increase in tryptophan intensity emission upon heating, together with changes in enzymatic activity with temperature were seen to be good complements to the highly sensitive but integral method of DSC. The data obtained in this investigation show that thermal denaturation of palm peroxidase is an irreversible process, under kinetic control, that can be satisfactorily described by the two-state kinetic scheme, N -->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.  相似文献   

13.
Abstract

Recent data support the possible role of nitric oxide (NO?) in the development of insulin signalling. The aim of this study was to examine the effect of insulin on NO? production by platelets. The chemiluminescence of platelet-rich plasma prepared from the blood of healthy volunteers was measured in the presence of luminol. Indirect detection of NO? by luminol is possible in the form of peroxynitrite produced in the reaction of NO? with a superoxide free radical. Luminol oxidation induced by hydroxyl free radical and lipid peroxidation was prevented by 150 µmol/l of desferrioxamine mesylate. Insulin, in the range of 0.084–840 nmol/l, induced a concentration-dependent increase in chemiluminescence, which was inhibited both by the competitive antagonist of the NO? synthase enzyme, Nω-nitro-L-arginine methyl ester (at concentrations of 2.0–4.0 mmol/l, P <0.001), and by the elimination of superoxide free radicals using superoxide dismutase (72–144 IU/ml, P <0.001). In conclusion, we assume that the insulin-induced increase in chemiluminescence of platelet-rich plasma was due to increased production of NO? and superoxide free radicals forming peroxynitrite. The data are consistent with production of peroxynitrite from human platelets under insulin stimulation.  相似文献   

14.
《Plant science》2001,161(5):853-860
Screening of tropical plants demonstrated high peroxidase activity in leaves of some species of palms. Using the leaves of royal palm Roystonea regia as a source, the peroxidase has been isolated to homogeneity. The enzyme purification steps included homogenization, (NH4)2SO4 precipitation, extraction of palm leaf colored compounds and consecutive chromatography on Phenyl-Sepharose, Sephacryl S100 and DEAE-Toyopearl. The novel peroxidase was characterized as having a specific activity of 6170 U/mg, RZ 3.0, molecular weight of 51 kDa and isoelectric point pI 3.5. The electronic spectrum of RPP is characteristic for plant peroxidases with a Soret maximum at 403 nm and maxima in a visible region at 492 and 633 nm, respectively. The substrate specificity of royal palm tree peroxidase (RPTP) is distinct from the specificity of other plant peroxidases. The best substrates for RPTP are ferulic acid and 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid). The palm peroxidase exhibits an unusually high thermostability inactivating at 90 °C with kinac of 1.5×10−2 min−1.  相似文献   

15.
Anionic sweet potato peroxidase (SPP; Ipomoea batatas) was shown to efficiently catalyse luminol oxidation by hydrogen peroxide, forming a long-term chemiluminescence (CL) signal. Like other anionic plant peroxidases, SPP is able to catalyse this enzymatic reaction efficiently in the absence of any enhancer. Maximum intensity produced in SPP-catalysed oxidation of luminol was detected at pH 7.8-7.9 to be lower than that characteristic of other peroxidases (8.4-8.6). Varying the concentrations of luminol, hydrogen peroxide and Tris buffer in the reaction medium, we determined favourable conditions for SPP catalysis (100 mmol/L Tris-HCl buffer, pH 7.8, containing 5 mmol/L hydrogen peroxide and 8 mmol/L luminol). The SPP detection limit in luminol oxidation was 1.0 x 10(-14) mol/L. High sensitivity in combination with the long-term CL signal and high stability is indicative of good promise for the application of SPP in CL enzyme immunoassay.  相似文献   

16.
The intensity of 4-I-phenol-enhanced chemiluminescence from the luminol-H2O2-horseradish peroxidase system is markedly attenuated in the presence of low concentrations of non-enhancer phenols. Under the conditions studied, the effect is not associated with competition between 4-I-phenol and non-enhancer phenol for the enzyme intermediates, Compounds I and II, but involves a competition between non-enhancer phenol and luminol most probably for the 4-I-phenoxy radical.  相似文献   

17.
The chemiluminescence associated with peroxidation of luminol in buffered aqueous solution is a complex process involving several intermediates. It can be inhibited by removal of oxygen from the incubation medium. Superoxide radical is both an intermediate in this reaction and an essential component in light-producing steps. The importance of O2? in propagating this reaction was shown by the inhibition of luminescence by superoxide dismutase. A mechanism was proposed which is consistent with the data. It appears likely that the diverse biological effects of peroxidases are largely due to the reactivities of these intermediates and products.  相似文献   

18.
The chemiluminescence of the luminol–H2O2–horseradish peroxidase system is increased by fluorescein. Fluorescein produces an enhancement of the luminol chemiluminescence similar to that of phenolphthalein, by an energy transfer process from luminol to fluorescein. The maximum intesity and the total chemiluminescence emission (between 380 and 580 nm) of luminol with fluorescein was more than three times greater than without fluorescein; however, the emission duration was shorter. The emission spectra in the presence of fluorescein had two maxima (425 and 535 nm) and the enhancement was dependent on pH and fluorescein concentration. A mechanism is proposed to explain these effects. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Acetaminophen, also called paracetamol, is found in Tylenol, Excedrin and other products as over–the‐counter medicines. In this study, acetaminophen as a luminol signal enhancer was used in the chemiluminescence (CL) substrate solution of horseradish peroxidase (HRP) for the first time. The use of acetaminophen in the luminol–HRP–H2O2 system affected not only the intensity of the obtained signal, but also its kinetics. It was shown that acetaminophen was to be a potent enhancer of the luminol–HRP–H2O2 system. A putative enhancement mechanism for the luminol–H2O2–HRP–acetaminophen system is presented. The resonance of the nucleophilic amide group and the benzene ring of acetaminophen structure have a great effect on O‐H bond dissociation energy of the phenol group and therefore on phenoxyl radical stabilization. These radicals act as mediators between HRP and luminol in an electron transfer reaction that generates luminol radicals and subsequently light emission, in which the intensity of CL is enhanced in the presence of acetaminophen. In addition, a simple method was developed to detect acetaminophen by static injection CL based on the enhanced CL system of luminol–H2O2–HRP by acetaminophen. Experimental conditions, such as pH and concentrations of substrates, have been examined and optimized. The proposed method exhibited good performance, the linear range was from 0.30 to 7.5 mM, the relative standard deviation was 1.86% (n = 10), limit of detection was 0.16 mM and recovery was 99 ± 4%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In the previous work, after screening tropical plants (43 species) for peroxidase activity, high activity has been detected in leaves of some palms and especially African oil palm Elaeis guineensis. This palm is widely cultivated in Colombia and presents a promising source for the industrial production of peroxidase. The initial enzyme isolation included homogenization and extraction of pigments using aqueous two phase polymer system. Initially, traditional system, formed by polyethyleneglycol/K2HPO4, was used. The replacement of K2HPO4 with (NH4)2SO4 allowed direct application of the salt phase with accumulated peroxidase on a Phenyl-Sepharose column. The final purification was carried out by liquid chromatography on Sephacryl S200 and DEAE-Toyopearl columns. The specific activity of the purified peroxidase measured toward guaiacol was 4300 units per mg of protein. The molecular weight and isoelectric point for palm peroxidase were 57.000 and 3.8, respectively. Palm peroxidase possesses uniquely high thermostability and is more stable in organic solvents than horseradish peroxidase is.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号