首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Bovine oocyte activation is one of the essential elements that determine the success of nuclear transfer and the subsequent development of cloned embryos. Three methods for oocyte activation, including 5 microM ionomycin (5 min, Group 1) alone, ionomycin+1.9 mM 6-dimethylaminopurine (DMAP, 3h, Group 2), and ionomycin+10 microg/ml cycloheximide (CHX, 3h, Group 3) were compared for the development of embryos produced by somatic nuclear transfer (SCNT) to parthenotes and IVF counterparts. At 19-h post-activation/insemination (hpa/hpi), 27.5% of oocytes in Group 2 cleaved and this rate was greater (P<0.05) than other groups (Group 1, 2.1%; Group 3, 3.0%). None of the oocytes in the IVF control group cleaved at 19-22 hpi. At 24 hpa, the rates of cleavage of oocytes in Group 2 (52.1%) were greater (P<0.05) than those in Groups 1 and 3 (7 and 38.3%, respectively). Only six oocytes (3.3%) in the IVF control group cleaved at 24 hpi. The overall cleavage rates of oocytes in Group 2 (85.5%) at 48 hpa were greater (P<0.05) than other treatments, but it did not show any difference when compared with the IVF control group (75.0%). The development rate to two-cell stage embryos of Group 2 was consistently greater at all observation points followed by Groups 3 and 1. Similar results were obtained in SCNT embryos, but the rates of cleavage at 48 hpi and blastocyst development in Group 2 (68.4 and 16.3%, respectively) did not differ from Group 3 (63.0 and 13.1%, respectively). The chromosomal composition in the parthenotes and SCNT embryos differed (P<0.05) among treatments. In Groups 1 and 3, greater percentages of haploid parthenotes (86 and 71%, respectively) were observed. In contrast, 84% of parthenotes in Group 2 had abnormal ploidy (44% polyploid and 40% mixoploid). In the case of SCNT embryos, Groups 1 and 3 had greater percentages of diploid chromosomal sets (77 and 70%, respectively), whereas 54% in Group 2 were polyploid or mixoploid. These results indicate that DMAP treatment after ionomycin greatly increases the developmental rates of parthenotes, but did not differ in blastocyst development compare with CHX treatment. However, DMAP treatment increased the time-dependent cleavage rate to two-cell stage embryos. Further, it greatly enhanced the incidence of chromosomal abnormalities in parthenotes and SCNT embryos. Hence, it is concluded that CHX combined with ionomycin is more desirable than DMAP for oocyte activation during nuclear transfer in cattle.  相似文献   

2.
In vitro development of bovine oocytes reconstructed with round spermatids   总被引:1,自引:0,他引:1  
Ock SA  Kwack DO  Lee SL  Cho SR  Jeon BG  Kumar BM  Choe SY  Rho GJ 《Theriogenology》2006,65(7):1242-1253
The timing between round spermatid(s) (RS) injection and oocyte activation are critical for spermatid remodeling and embryo development in intracytoplasmic injection of round spermatid (ROSI) procedure. The objective of the present study was to develop an appropriate oocyte activation method for producing developmentally competent bovine embryos reconstructed with RS. Embryos reconstructed by ROSI were compared with three activation treatments for the rates of pronuclear formation, development and ploidy. RS were isolated from bull testes by Percoll density gradients. Matured oocytes were divided into three activation groups. In Group 1, oocytes were activated with ionomycin (5 microM, 5 min) before ROSI. In Group 2, oocytes were activated with ionomycin after ROSI. In Group 3, oocytes were activated twice with ionomycin before and after ROSI. All the eggs were then incubated in cycloheximide (CHX, 10 microg/mL) for 5 h and cultured in CR1aa medium for up to 8 days. Three methods of oocyte activation were also compared for the activation and development of parthenotes. Activation rates among the groups were 70-79% and did not differ. Cleavage rates in parthenotes were significantly (P < 0.05) higher in Group 3 than in Groups 1 and 2, but blastocyst rates did not differ among the groups. In ROSI embryos, the rates of cleavage and development into blastocysts were significantly (P < 0.05) greater in Group 3 (82.3% and 13.1%) than in Groups 1 and 2 (53.7, 5.8% and 64.2, 1.7%, respectively). Ploidy analysis by examining the metaphase spreads of ROSI blastocysts displayed greater numbers of diploid chromosomal complements. These results suggest that intracytoplasmic RS injection combined with repeated ionomycin activation followed by CHX treatment is more efficient for producing developmentally competent embryos.  相似文献   

3.
绵羊胞内单精子注射技术   总被引:7,自引:0,他引:7  
In this study, the possibility of sheep transgenesis by intracytoplasmic sperm injection (ICSI) was assessed. In experiment 1, activation of ovine oocytes matured in vitro in preparation for ICSI has been investigated with 3.42 mmol/L Ca2+ treatment, ionomycin alone and ionomycin followed by 6-dimethylaminopurine (DMAP) after 3-h delay (group 1, 2 and 3, respectively). After activation, the oocytes were then cultured in SOFaaBSA medium. Cleavage rates were significantly (P<0.05) different among three groups (18.4%, 91.8% and 71.7%, respectively). In additional culture, no parthenotes in group 1, whereas 11% and 17.4% in group 2 and 3 developed to the blastocyst stage. Therefore we used the third activation method in the following ICSI tests. In experiment 2, development of ovine oocytes after ICSI was investigated. Thawed semen from two rams was separated by Percoll centrifugation and was used for ICSI or in vitro fertilization (IVF) trails. A total of 71.8% of oocytes reached the 2-cell stage following living sperm injection, which was significantly (p>0.05) different from those following IVF (41.4%) and sham-ICSI (30.2%). After seven days' culture, no sham-injected oocytes developed into the blastocyst stage, although 7% in ICSI and 16.1% in IVF-oocytes developed into the blastocyst stage, but there was no significant difference in ICSI and IVF groups (p>0.05). In the further study, the possibility of sheep transgenesis by ICSI was assessed. After coinjection of ovine oocytes matured in vitro with dead sperm cold to -20 degrees C and exogenous DNA encoding green fluorescent protein (GFP), seventy-three percent of coinjected oocytes developed to 2-cell stage (33/45) and two of them were transgene-expressing embryos. Among ten embryos at the 16-cell stage, all embryonic cells in one transgenic embryo still expressed GFP. Four coinjected blastocysts were thawed and transferred to the uterine of the two progesterone-synchronized recipient ewe. No pregnancies were detected on the 60th day. These results suggested sheep transgenic embryos could be produced by ICSI and further studies should be performed.  相似文献   

4.
Parthenogenetic activation with various combinations of the calcium ionophore A23187 and protein synthesis or phosphorylation inhibitors was investigated as a means of producing human parthenogenones with one haploid pronucleus. Unfertilised human aged oocytes exposed to 5 microM A23187 for 5 min were treated with 10 microg/ml puromycin (puromycin group, 46 oocytes) or 2 mM 6-dimethylaminopurine (DMAP group, 42 oocytes) for 5 h. Oocytes treated only with A23187 served as a control (control group, 40 oocytes). After washing the oocytes, they were incubated for up to 37 h. Evidence of activation (pronuclear formation) and cleavage was observed 18 h and 42 h after A23187 treatment, respectively. Activation rates in the puromycin and DMAP groups were significantly higher than in the control group (91% (42/46) and 77% (34/44) vs 20% (8/40), p < 0.05, respectively). In the puromycin group, 81% (34/42) of the activated oocytes showed one pronucleus with the second polar body (2ndPB), whereas none (0/34) of the activated oocytes in the DMAP group extruded the 2ndPB. The cleavage rate in the puromycin group was significantly lower than in the DMAP group (38% vs 68%, p < 0.05). The activated oocytes which had one pronucleus with the 2ndPB in the puromycin group showed a haploid set of chromosomes (10/13). In conclusion, the combination of A23187 and puromycin is effective for producing human parthenogenones with one haploid pronucleus.  相似文献   

5.
Assisted reproductive technologies in the llama (Lama glama) are needed to provide alternative methods for the propagation, selection and genetic improvement; however, recovery of adequate quantity and quality of spermatozoa for conventional IVF is problematic. Therefore, an effort was made to adapt the intracytoplasmic sperm injection (ICSI) procedure for the in vitro production of llama embryos. The specific objectives of this study were: (1) to determine in vitro maturation rates of oocytes recovered by transvaginal ultrasound-guided oocyte aspiration (TUGA) or flank laparotomy; (2) to evaluate the effects of activation treatments following ICSI; (3) to evaluate the development of llama ICSI embryos in CR1aa medium or in an oviduct cell co-culture system. Llamas were superstimulated by double dominant follicle reduction followed by oFSH administered in daily descending doses over a 3-day interval. Oocytes were harvested by flank laparotomy or TUGA and matured in vitro for 30 h. Mature oocytes were subjected to ICSI followed by no chemical activation (Treatment A), ionomycin only (Treatment B) or ionomycin/DMAP activation (Treatment C). More oocytes were recovered by flank laparotomy procedure compared with TUGA (94% versus 61%, P<0.05) and a greater number of oocytes harvested by flank laparotomy reached the metaphase-II stage (77% versus 44%, P<0.05). After ICSI, the proportion of cleaved and 4-8-cell stages embryos was significantly greater when injected oocytes were activated with ionomycin/DMAP combination (63% and 38%, respectively, P<0.05). The co-culture of ICSI embryos with llama oviduct epithelial cells resulted in progression to morula (25%) and blastocyst (12%) stages; whereas, all embryos cultured in CR1aa medium arrested at the 8-16-cell developmental stage.  相似文献   

6.
In this study, the developmental capacity and cytogenetic composition of different oocyte activation protocols was evaluated following intracytoplasmic sperm injection (ICSI) of in vitro matured bovine oocytes. Motile spermatozoa selected by Percoll density gradient were treated with 5 mM dithiothreitol (DTT) and analysed for ultrastructural changes of the head using transmission electron microscopy (TEM). The alterations in sperm morphology after DTT treatment for different times (15, 30 and 60 min) were 10%, 45-55% and 70-85%, respectively. Further, a partial decondensation of sperm heads was observed after DTT treatment for 30 min. Oocytes were injected with sperm treated with DTT for 30 min. In group 1, sperm injection was performed without any activation stimulus to the oocytes. In group 2, sham injection without sperm was performed without activating the oocytes. Oocytes injected with sperm exposed to 5 microM ionomycin for 5 min (group 3), 5 microM ionomycin + 1.9 mM dimethylaminopurine (DMAP) for 3 h (group 4) and 5 microM ionomycin + 3 h culture in M199 + 1.9 mM DMAP (group 5) were also evaluated for cleavage, development and chromosomal abnormality. Cleavage and development rates in groups 1, 2 and 3 were significantly (p < 0.05) lower than those in groups 4 and 5. The incidence of chromosomal abnormality in the embryos treated directly with DMAP after ionomycin (group 4) was higher than in group 5. We conclude that immediate DMAP treatment after ionomycin exposure of oocytes results in arrest of release of the second polar body, and thus leads to changes in chromosomal pattern. Therefore, the time interval between ionomycin and DMAP plays a crucial role in bovine ICSI.  相似文献   

7.
This study compared the effects of activation treatments on the development and ploidy of nuclear transferred (NT) pig embryos. After in vitro maturation of oocytes collected from the slaughterhouse, oocytes were enucleated and reconstructed by transfer of donor cells and fusion with three DC pulses (1.4 kV/cm, 20 musec). Oocytes were pulsed thrice electrically with 1.4 kV/cm for 20 musec and NT eggs were divided into three treatment groups: Group 1 (no further treatment), Group 2 (10 mug/mL cycloheximide [CHX], 3 hr), and Group 3 (1.9 mM 6-dimethylaminopurine [DMAP], 3 hr). All the eggs were cultured in sets of 30 in 60 muL drops of NCSU-23 supplemented with 4 mg/mL fatty acid free BSA, and compared for the rates of development and ploidy. The rates of cleavage, development, and total cell number of parthenotes in Group 3 were significantly (P < 0.05) higher than those in Groups 1 and 2. Cleavage rates of NT embryos in Group 1 were significantly (P < 0.05) lower than those in Groups 2 and 3 (73% vs. 81% and 82%, respectively). Development into blastocyst stage and total cell number of NT embryos in Group 3 were significantly (P < 0.05) higher than those in Groups 1 and 2. Although the embryos in Group 3 had higher development, approximately 58% of NT embryos evaluated were abnormal ploidy (6% haploidy, 9% polyploidy, and 42% mixoploid). The results suggested that although DMAP enhanced development and higher cell number, due attention should be paid to abnormal ploidy in pig NT embryos.  相似文献   

8.
Activation of bovine oocytes by experimental procedures that closely mimic normal fertilization and allow to obtain haploid oocytes is essential both for intracytoplasmic sperm injection (ICSI) and for nuclear transfer. Therefore, with the goal of producing haploid activated oocytes, this study evaluated whether bohemine, either alone or in combination with ionomycin, is able to activate young matured bovine oocytes. Furthermore, the effect of bohemine on the patterns of DNA synthesis after pronuclear formation as well as changes in histone H1 kinase and MAP kinase activities during the process of activation were studied. Our results with bohemine show that the specific inhibition of CDKs in metaphase II bovine oocytes induces parthenogenetic activation in a dose-dependent manner (25, 50, and 100 microM, respectively), either alone (3%, 30%, and 50%) or in combination with ionomycin (30%, 70%, and 87.5%). A single pronucleus and extrusion of the second polar body was observed (97%) when Ca(2+) influx was stimulated in the presence of bohemine, although pronuclear formation without polar body extrusion was observed when bohemine was used alone. Bohemine-activated oocytes started to synthesize DNA in the first hour (37%) after their removal from bohemine-supplemented medium (6-7 hr post-activation; hpa). A high synchrony in the S-phase was registered with more than 85% of parthenotes actively synthesizing DNA 8 hpa. By contrast, DNA synthesis was absent in oocytes cultured for 4, 6, and 8 hpa in the presence of bohemine and a low rate was observed by those cultured for 18 hr (30%) in bohemine-supplemented medium. This confirms the ability of the inhibitor to arrest the cell cycle in the G1/S boundary for at least 8 hr. A drop in histone H1 kinase activity was observed in bohemine-activated oocytes. The activity of MBP kinase decreased later than histone H1 kinase and even 4 hr after inomycin-bohemine treatment at least half of this activity was still detectable. Then, the MBP kinase activity decreased and the lowest level could be seen 6-8 hpa. In summary, our study shows that in vitro matured bovine oocytes can be successfully activated by a synthetic inhibitor of CDKs. This effect can be improved by combination with ionomycin. The targeting of CDKs in the way to activate bovine oocytes can be an approach to improve the efficiency of mammalian oocyte activation.  相似文献   

9.
The objective of this study was to compare the effectiveness of different methods of bovine oocyte activation following intracytoplasmic sperm injection (ICSI) in terms of oocyte cleavage and blastocyst rates, and calf production. Oocytes were harvested, post mortem, from the ovaries of Japanese Black heifers or cows. ICSI was carried out using a piezo-electric actuator. The injected or sham-injected oocytes that were assigned to three activation treatments, each replicated three times, were studied: (1) exposure to 5 microM ionomycin for 5 min (ionomycin); (2) exposure to 5 microM ionomycin for 5 min followed by culture in TCM199 for 3 h and a further 3h culture in 1.9 mM 6-dimethylaminopurine (DMAP-ionomycin+DMAP); (3) exposure to 7% ethanol in TCM199 for 5 min, 4 h after ICSI (ethanol). One or two blastocysts from the ionomycin+DMAP (8 recipients) and ethanol (17 recipients) oocyte activation treatments were non-surgically transferred into Holsteins for the study of calf production. The highest cleavage and blastocyst production rates were observed in the ionomycin+DMAP treatment (83.9% and 40.1%) by the ICSI. These rates were significantly (P<0.05) higher than those for the ionomycin oocyte activation treatment (57.6% and 18.2%) but did not differ from the ethanol treatment (75.6% and 29.4%). In the sham-injected, the highest blastocyst production rates were observed for the ionomycin+DMAP and ethanol treatments (10.7% and 11.3%). Pregnancy and birth rates for blastocysts derived from the ethanol oocyte activation treatment (58.8% and 47.4%) were significantly higher (P<0.05) than those of the ionomycin+DMAP treatment (12.5% and 9.2%). The results showed that post-ICSI oocyte activation with ethanol is more effective than activation with ionomycin alone or with ionomycin+DMAP for the production of viable blastocysts and calves.  相似文献   

10.
Li GP  Seidel GE  Squires EL 《Theriogenology》2003,59(5-6):1143-1155
Five experiments were designed to study the fertilizability and development of bovine oocytes fertilized by intracytoplasmic sperm injection (ICSI) with stallion spermatozoa. Experiment 1 determined the time required for pronuclear formation after ICSI. Equine sperm head decondensation began 3 h after ICSI; 42% were decondensed 6 h after ICSI. Male pronuclei (MPN) began to form 12 h after ICSI. Female pronuclei (FPN), however, formed as early as 6 h after ICSI. In Experiment 2, ionomycin, ionomycin plus 6-dimethylaminopurine (DMAP), and thimerosal were used to activate ICSI ova. None of the ICSI ova cleaved after treatment with thimerosal. Ionomycin activation after 24 and 30 h of oocyte maturation resulted in 29 and 48% cleavage rates, respectively. Ionomycin combined with DMAP resulted in 49, 6 and 3% cleavage, morula and blastocyst rates, respectively, when oocytes were activated after 24 h maturation. In Experiment 3, rates of cleavage (45-60%) and development to morulae (4-13%) and blastocysts (1-5%) stages following ICSI were not different (P>0.05) among three stallions. Treatment of stallion spermatozoa with ionomycin did not affect cleavage or development of ova fertilized by ICSI. The chromosomal constitution of blastocysts derived from ICSI was bovine, not bovine and equine hybrids. In Experiment 4, to make male and FPN form synchronously, colchicine and DMAP were used for 4 h to inhibit oocytes at metaphase during activation; 63% of oocytes were still at metaphase 8h after ICSI when treated with colchicine, and 50% of sperm nuclei were decondensed. About 18 h after ICSI, 21 and 50% male and FPN had formed, respectively, but cleavage rates were low, and only 1% developed to morulae. In Experiment 5, to test if capacitated equine sperm could fuse with the bovine oolemma, capacitated spermatozoa were injected subzonally (SUZI). Of the 182 SUZI oocytes, 49 (27%) contained extruded second polar bodies. After activation of oocytes with second polar bodies, 44, 22 and 15% developed to 2-, 4- and 8-cell stages, respectively, but development stopped at the 8-cell stage. None of the unactivated oocytes cleaved. In conclusion, equine spermatozoa can decondense and form MPN in bovine oocytes after ICSI, but subsequent embryonic development is parthenogenetic with only bovine chromosomes being found.  相似文献   

11.
The protocol of ionomycin followed by 6-dimethylaminopurine (6-DMAP) is commonly used for activation of oocytes and reconstituted embryos. Since numerous abnormalities and impaired development were observed when oocytes were activated with 6-DMAP, this protocol needs optimization. Effects of concentration and treatment duration of both drugs on activation and development of goat oocytes were examined in this study. The best oocyte activation (87-95%), assessed by pronuclear formation, was obtained when oocytes matured in vitro for 27 hr were treated with 0.625-20 microM ionomycin for 1 min before 6-hr incubation in 2 mM 6-DMAP. Progressional reduction of time for 6-DMAP-exposure showed that the duration of 6-DMAP treatment can be reduced to 1 hr from the second up to the fourth hour after ionomycin, to produce activation rates greater than 85%. Activation rates of oocytes in vitro matured for 27, 30, and 33 hr were higher (P < 0.05) than that of oocytes matured for 24 hr when treated with ionomycin plus 1-hr (the third hour) 6-DMAP, but a 4-hr incubation in 6-DMAP enhanced activation of the 24-hr oocytes. Goat activated oocytes began pronuclear formation at 3 hr and completed it by 5-hr post ionomycin. An extended incubation in 6-DMAP (a) impaired the development of goat parthenotes, (b) quickened both the release from metaphase arrest and the pronuclear formation, and (c) inhibited the chromosome movement at anaphase II (A-II) and telophase II (T-II), leading to the formation of one pronucleus without extrusion of PB2. In conclusion, duration, concentration, and timing of ionomycin and 6-DMAP treatment had marked effects on goat oocyte activation, and to obtain better activation and development, goat oocytes matured in vitro for 27 hr should be activated by 1 min exposure to 2.5 microM ionomycin followed by 2 mM 6-DMAP treatment for the third hour.  相似文献   

12.
Aneuploidy underlies failed development and possibly apoptosis of some preimplantation embryos. We employed a haploid model in the mouse to study the effects of aneuploidy on apoptosis in preimplantation embryos. Mouse metaphase II oocytes that were activated with strontium formed haploid parthenogenetic embryos with 1 pronucleus, whereas activation of oocytes with strontium plus cytochalasin D produced diploid parthenogenetic embryo controls with 2 pronuclei. Strontium induced calcium transients that mimic sperm-induced calcium oscillations, and ploidy was confirmed by chromosomal analysis. Rates of development and apoptosis were compared between haploid and diploid parthenogenetic embryos (parthenotes) and control embryos derived from in vitro fertilization (IVF). Haploid mouse parthenotes cleaved at a slower rate, and most arrested before the blastocyst stage, in contrast to diploid parthenotes or IVF embryos. Developmentally retarded haploid parthenotes exhibited apoptosis at a significantly higher frequency than did diploid parthenotes or IVF embryos. However, diploid parthenotes exhibited rates of preimplantation development and apoptosis similar to those of IVF embryos, indicating that parthenogenetic activation itself does not initiate apoptosis during preimplantation development. These results suggest that haploidy can lead to an increased incidence of apoptosis. Moreover, the initiation of apoptosis during preimplantation development does not require the paternal genome.  相似文献   

13.
In this study, we compared the developmental capacity of bovine haploid and diploid androgenetic and parthenogenetic embryos obtained by different methods. Androgenetic embryos were produced by piezo-intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF) of enucleated oocytes with or without subsequent pronuclear transfer from one haploid zygote to another. Parthenogenetic embryos were obtained by activation of matured oocytes by ionomycin combined with cycloheximide or 6-dimethylaminopurine (DMAP) treatment. Only few cleaved androgenetic haploid embryos were able to compact (2.7%) and to form blastocysts (1.8%), while significantly more haploid parthenogenotes underwent compaction (24-37%) and a minority developed to blastocysts at different rates, depending on the activation procedure (cycloheximide 3%, 6-DMAP 14.5%). By contrast, development to blastocyst of diploid androgenotes, cloned androgenetic embryos, and parthenogenotes (31%, 39%, and 43%, respectively) was similar to IVF control embryos (35%). Cell number on Day 7 was higher for IVF blastocysts and decreased in consecutive order in diploid androgenotes, diploid parthenogenotes, and haploid uniparental embryos. Following transfer of diploid androgenetic embryos, a pregnancy was established and maintained up to Day 28.  相似文献   

14.
Freshly ovulated mouse oocytes exposed to 5 mM calcium ionophore A23187 for 5 min and controls (not exposed) were cultured in TYH medium with 10 microg/ml puromycin (the puromycin group) or 2 mM 6-dimethylaminopurine (DMAP; the DMAP group) for 4 h. Among the controls, few oocytes were activated even if they were treated with DMAP or puromycin. In the oocytes exposed to A23187, in contrast, the activation rate, i.e. the rate of oocytes showing at least one pronucleus (PN) after the treatment, was 46.2% (48/104) in the DMAP group and 90.0% (118/131) in the puromycin group. Activation rate in the puromycin group was significantly higher than in the DMAP and control groups (p < 0.0001, respectively). Furthermore, 82.4% (108/131) of the activated oocytes in the puromycin group showed one PN with extrusion of the second polar body (PB). In the puromycin group, the DNA content of the PN of parthenogenones with 1PN2PB was half that of a set of metaphase II chromosomes. Chromosomal analysis was possible in 14 parthenogenones with 1PN2PB in the puromycin group. The parthenogenones possessed a normal set (n = 20) of haploid chromosomes. The combination of A23187 and puromycin proved to be an effective method of producing haploid parthenogenones.  相似文献   

15.
Chung JT  Keefer CL  Downey BR 《Theriogenology》2000,53(6):1273-1284
In the human and the mouse, intracytoplasmic sperm injection (ICSI) apparently triggers normal fertilization and may result in offspring. In the bovine, injection of spermatozoa must be accompanied by artificial methods of oocyte activation in order to achieve normal fertilization events (e.g., pronuclear formation). In this study, different methods of oocyte activation were tested following ICSI of in vitro-matured bovine oocytes. Bovine oocytes were centrifuged to facilitate sperm injection, and spermatozoa were pretreated with 5 mM dithiothreitol (DTT) to promote decondensation. Sperm-injected or sham-injected oocytes were activated with 5 microM ionomycin (A23187). Three hours after activation, oocytes with second polar bodies were selected and treated with 1.9 mM 6-dimethylaminopurine (DMAP). The cleavage rate of sperm-injected oocytes treated with ionomycin and DMAP was higher than with ionomycin alone (62 vs 27%, P < or = 0.05). Blastocysts (2 of 41 cleaved) were obtained only from the sperm-injected, ionomycin + DMAP-treated oocytes. Upon examination 16 h after ICSI, pronuclear formation was observed in 33 of 47 (70%) DMAP-treated oocytes. Two pronuclei were present in 18 of 33 (55%), while 1 and 3 pronuclei were seen in 8 of 33 (24%) and 7 of 33 (21%) oocytes, respectively. In sham-injected oocytes, pronuclear formation was observed in 15 of 38 (39%) with 9 (60%) having 2 pronuclei. Asa single calcium stimulation was insufficient and DMAP treatment could result in triploidy, activation by multiple calcium stimulations was tested. Three calcium stimulations (5 microM ionomycin) were given at 30-min intervals following ICSI. Two pronuclei were found in 12 of 41 (29%) injected oocytes. Increasing the concentration of ionomycin from 5 to 50 microM resulted in a higher rate of activation (41 vs 26%). The rate of metaphase III arrest was lower while the rate of pronuclear formation and cleavage development was higher in sperm-injected than sham-injected oocytes, suggesting that spermatozoa contribute to the activation process. Further improvements in oocyte activation following ICSI in the bovine are necessary.  相似文献   

16.
17.
The present study was designed to investigate the effect of activation regimens on full‐term development of rabbit oocytes after round spermatid injection (ROSI). In the first series, rabbit oocytes were treated with 5 µM ionomycin before ROSI, after ROSI, or before and after ROSI. In addition, non‐treated oocytes were subjected to intracytoplasmic sperm injection (ICSI) using ejaculated spermatozoa. Cleavage rate of ROSI oocytes activated before and after ROSI (55%) was comparable with that of ICSI oocytes (60%), and significantly higher than those of ROSI oocytes activated either before or after ROSI (29–39%; P < 0.05). No offspring were produced by transfer of the cleaving ROSI oocytes, while 8% of the cleaving ICSI oocytes transferred gave birth to offspring. In the second series, oocytes were exposed to 5, 10, or 20 µM ionomycin, followed by ROSI, 5 µM ionomycin treatment, and incubation with 5 µg/ml cycloheximide (CHX) + 2 mM 6‐dimethylaminopurine (DMAP). Significantly higher cleavage rates were derived from oocytes activated with 10 and 20 µM ionomycin before ROSI (91% and 82%, respectively; P < 0.05) compared to those activated with 5 µM ionomycin before ROSI (53%). Live offspring were obtained when the cleaving ROSI oocytes with the initial ionomycin treatment at 5 and 10 µM were transferred (offspring rate 2% and 4%, respectively). These activation regimens, however, were not valid for the ROSI using cryopreserved round spermatids. In conclusion, rabbit ROSI oocytes were capable of developing into full‐term when the oocytes were activated with a combined treatment of ionomycin and CHX/DMAP. Mol. Reprod. Dev. 76: 573–579, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
A mouse spermatozoon was injected into mouse secondary oocytes (ICSI) in the vicinity of the metaphase spindle. In 22% of oocytes injected successfully, the maternal chromatin (the haploid chromatids formed after the second meiotic division) and paternal chromatin (from the sperm nucleus) were surrounded by a common nuclear envelope to form one diploid bi-parental pronucleus. However, the use of spermatozoa in which BrdU had been incorporated into DNA during spermatogenesis revealed, that maternal and paternal chromatin occupied two separate compartments within the one pronucleus. In the living state, the diploid pronucleus could be distinguished from a haploid one by its distinctly larger size and by a greater number of "nucleolus-like bodies"-criteria confirmed karylogically at the 1st cleavage division. Such zygotes with one diploid pronucleus were able to develop in vitro into blastocysts as often as those with two haploid pronuclei [11/29 (38%) vs. 14/35 (40%)]. Seventy nine 2-cell embryos developing in vitro from zygotes with one diploid pronucleus were transplanted to the oviducts of pseudopregnant recipients: two females had six foetuses when killed on the 17th day, and two females gave birth to nine young, eight of which survived and developed into normal fertile animals.  相似文献   

19.
The objective of this study was to optimize the protocols for bovine oocytes activation through comparing the effectiveness of different treatments on the activation and subsequent development of oocytes and examining the effects of two combined activation treatments on the blastocyst apoptosis and ploidy. Cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After maturation, cumulus-free oocytes were activated according to the experiment designs. Activated oocytes were cultured in vitro in modified synthetic oviductal fluid (mSOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage. In Experiment 1, the matured oocytes were treated with single activation agents, including ionomycin (5 microM for 5 min), ethanol (7% for 7 min), calcium ionophore A23187 (5 microM for 5 min) or strontium (10mM for 5h). The pronuclear formation and cleavage rate were higher significantly in ionomycin (39.0 and 30.7%) and ethanol (41.5 and 28.1%) treatment alone compared to other treatments (9.7-25.2 and 11.3-23.7%, respectively, P<0.05). Very low blastocyst rates (3.9-5.3%) resulted which were not significantly different among treatments (P>0.05). For the combined activation treatment (Experiment 2), the same concentrations of ionomycin and ethanol as in Experiment 1 were used in combination with either 6-dimethylaminopurine (6-DMAP, 2.0 mM for 3 h) or cycloheximide (CHX)+cytochalasin B (CB, 10 microg/ml for 3 h). The pronuclear formation, cleavage rate, blastocyst rate and cell number of blastocyst were higher significantly (P<0.05) in ionomycin+6-DMAP treatment (67.1, 69.2, 28.0 and 91.3%, respectively) and ethanol+CHX+CB treatment (68.9, 70.2, 25.5 and 89.3%, respectively) compared to other treatments (11.7-58.1, 10.2-47.1, 1.5-24.2 and 34.2-62.7%, respectively). In Experiment 3, the parthenogenetic blastocysts produced by activation with ionomycin+6-DAMP and ethanol+CHX+CB and in vitro fertilized blastocysts (control group) were examined for apoptosis using a terminal deoxynucleotidyl transferase mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The ethanol+CHX+CB treatment (7.0%) showed significantly lower blastocyst apoptosis index compared to ionomycin+6-DAMP treatment (9.1%, P<0.05). Furthermore, the chromosomal composition in the parthenotes embryos differed (P<0.05) among treatments. The percentage of haploid parthenotes was higher in ionomycin+6-DMAP treatment than ethanol+CHX+CB treatment. These results suggested that ethanol+CHX+CB treatment was more favorable protocol for parthenogenesis of bovine oocytes.  相似文献   

20.
Pronuclear formation, and the chromosomal constitution and developmental capacity of bovine zygotes formed by intracytoplasmic sperm injection with freeze-dried (lyophilized) spermatozoa were evaluated. Frozen-thawed spermatozoa were selected, freeze-dried, and stored at 4 degrees C until use. After 22-24 h of in vitro maturation oocytes were denuded and injected singly with a lyophilized spermatozoon. Injected oocytes were activated by treatment with 10 microM ionomycin (5 min) alone and in combination with 1.9 mM 6-dimethylaminopurine (DMAP) for 4 h. Ionomycin plus DMAP activation treatment resulted in a significantly higher proportion of sperm-injected oocytes with two pronuclei than was found after activation with ionomycin alone (74% vs. 56%; P < 0.03). The rates of cleavage, morula, and blastocyst development of sperm-injected oocytes treated with ionomycin plus DMAP were higher than after activation with ionomycin alone (63.3%, 34.2%, and 29.6% vs. 44.7%, 18.7%, and 10.6%, respectively; P < 0.05). Seventy-three percent of blastocysts produced with lyophilized sperm were diploid. These results demonstrate that in vitro-matured bovine oocytes can be fertilized with freeze-dried sperm cells, and that resultant zygotes can develop into karyotypically normal blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号