首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The nuclear lamina is a major structural element of the nucleus and is predominately composed of the intermediate filament lamin proteins. Missense mutations in the human lamins A/C cause a family of laminopathic diseases, with no known mechanistic link between the position of the mutation and the resulting disease phenotypes. The Caenorhabditis elegans lamin (Ce-lamin) is structurally and functionally homologous to human lamins, and recent advances have allowed detailed structural analysis of Ce-lamin filaments both in vitro and in vivo. Here, we studied the effect of laminopathic mutations on Ce-lamin filament assembly in vitro and the corresponding physiological phenotypes in animals. We focused on three disease-linked mutations, Q159K, T164P, and L535P, which have previously been shown to affect lamin structure and nuclear localization. Mutations prevented the proper assembly of Ce-lamin into filament and/or paracrystalline arrays. Disease-like phenotypes were observed in strains expressing low levels of these mutant lamins, including decreased fertility and motility coincident with muscle lesions. In addition, the Q159K- and T164P-expressing strains showed a reduced lifespan. Thus, different disease-linked mutations in Ce-lamin exhibit major effects in vivo and in vitro. Using C. elegans as a model system, a comprehensive analysis of the effects of specific lamin mutations from the level of in vitro filament assembly to the physiology of the organism will help uncover the mechanistic differences between these different lamin mutations.  相似文献   

2.
Like Duchenne and Becker muscular dystrophies, Emery-Dreifuss muscular dystrophy (EDMD) is characterized by myopathic and cardiomyopathic abnormalities. EDMD has the particularity of being linked to mutations in nuclear proteins. The X-linked form of EDMD is caused by mutations in the emerin gene, whereas autosomal dominant EDMD is caused by mutations in the lamin A/C gene. Emerin colocalizes with lamin A/C in interphase cells, and binds in vitro to lamin A/C. Recent work suggests that lamin A/C might serve as a receptor for emerin. We have undertaken a structural analysis of emerin, and in particular of its N-terminal domain, which is comprised in the emerin segment critical for binding to lamin A/C. We show that region 2-54 of emerin adopts the LEM fold. This fold was originally described in the two N-terminal domains of another inner nuclear membrane protein called lamina-associated protein 2 (LAP2). The existence of a conserved solvent-exposed surface on the LEM domains of LAP2 and emerin is discussed, as well as the nature of a possible common target.  相似文献   

3.
4.
5.
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the gene encoding the nuclear membrane protein emerin (X-linked EDMD) or in the gene encoding lamins A/C (autosomal dominant EDMD). One hypothesis explaining the disease suggests that the mutations lead to weakness of the nuclear lamina. To test this hypothesis we investigated lamin solubility and distribution in skin fibroblasts from X-EDMD patients. Using in situ extraction of cells and immunofluorescence microscopy or biochemical fractionation and immunoblotting, we found that all lamin subtypes displayed increased solubility properties in fibroblasts from X-EDMD patients compared to normal individuals. Lamin and emerin solubility was mildly increased in fibroblasts from an X-EDMD carrier. Biochemical fractionation and immunoblotting also indicated that lamin C but no other lamin became redistributed from the nuclear lamina to the nucleoplasm in X-EDMD fibroblasts. Indirect immunofluorescence and confocal microscopy studies using lamin A- and lamin C-specific antibodies confirmed that lamin C but not lamin A became redistributed to the nucleoplasm. Interestingly, the lamin A/C binding protein LAP2alpha was also mislocalized in X-EDMD fibroblasts.  相似文献   

6.
Autosomal dominantly inherited missense mutations in lamins A and C cause familial partial lipodystrophy of the Dunnigan-type (FPLD), and myopathies including Emery-Dreifuss muscular dystrophy (EDMD). While mutations responsible for FPLD are restricted to the carboxyl-terminal tails, those responsible for EDMD are spread throughout the molecules. We observed here the same structural abnormalities in the nuclear envelope and chromatin of fibroblasts from patients with FPLD and EDMD, harboring missense mutations at codons 482 and 453, respectively. Similar nuclear alterations were generated in fibroblasts, myoblasts, and preadipocytes mouse cell lines overexpressing lamin A harboring either of these two mutations. A large variation in sensitivity to lamin A overexpression was observed among the three cell lines, which was correlated with their variable endogenous content in A-type lamins and emerin. The occurrence of nuclear abnormalities was reduced when lamin B1 was coexpressed with mutant lamin A, emphasizing the functional interaction of the two types of lamins. Transfected cells therefore develop similar phenotypes when expressing lamins mutated in the carboxyl-terminal tail at sites responsible for FPLD or EDMD.  相似文献   

7.
Emery–Dreifuss muscular dystrophy (EDMD) is caused by mutations in the gene encoding the nuclear membrane protein emerin (X-linked EDMD) or in the gene encoding lamins A/C (autosomal dominant EDMD). One hypothesis explaining the disease suggests that the mutations lead to weakness of the nuclear lamina. To test this hypothesis we investigated lamin solubility and distribution in skin fibroblasts from X-EDMD patients. Using in situ extraction of cells and immunofluorescence microscopy or biochemical fractionation and immunoblotting, we found that all lamin subtypes displayed increased solubility properties in fibroblasts from X-EDMD patients compared to normal individuals. Lamin and emerin solubility was mildly increased in fibroblasts from an X-EDMD carrier. Biochemical fractionation and immunoblotting also indicated that lamin C but no other lamin became redistributed from the nuclear lamina to the nucleoplasm in X-EDMD fibroblasts. Indirect immunofluorescence and confocal microscopy studies using lamin A- and lamin C-specific antibodies confirmed that lamin C but not lamin A became redistributed to the nucleoplasm. Interestingly, the lamin A/C binding protein LAP2α was also mislocalized in X-EDMD fibroblasts.  相似文献   

8.
Lamins are nucleus-specific intermediate filament (IF) proteins that together with a complex set of membrane proteins form a filamentous meshwork tightly adhering to the inner nuclear membrane and being associated with the nuclear pore complexes. This so-called nuclear lamina provides mechanical stability and, in addition, has been implicated in the spatial organization of the heterochromatin. While increasing knowledge on the biological function of lamins has been obtained in recent years, the assembly mechanism of lamin filaments at the molecular level has remained largely elusive. Therefore, we have now more systematically investigated lamin assembly in vitro. Using Caenorhabditis elegans lamin, which has been reported to assemble into 10-nm filaments under low ionic strength conditions, we investigated the assembly kinetics of this protein into filaments in more detail using both His-tagged and un-tagged recombinant proteins. In particular, we have characterized distinct intermediates in the filament assembly process by analytical ultracentrifugation, electron and atomic force microscopy. In contrast to the general view that lamins assemble only slowly into filaments, we show that in vitro association reactions are extremely fast, and depending on the ionic conditions employed, significant filamentous assemblies form within seconds.  相似文献   

9.
The lamins of the tunicate Ciona intestinalis and the nematode Caenorhabditis elegans show unusual sequence features when compared to the more than 35 metazoan lamin sequences currently known. We therefore analyzed the in vitro assembly of these two lamins by electron microscopy using chicken lamin B2 as a control. While lamin dimers usually appear as a rod carrying two globules at one end, these globules are absent from Ciona lamin, which lacks the central 105-residue region of the tail domain. The deletion of 14 residues or two heptads from the coiled coil rod domain of the single C.elegans lamin results in a 1.5-nm shortening of the dimer rod. Similarly, the paracrystals assembled from the C.elegans lamin exhibit a 3.1-nm reduction of the true axial repeat compared to that of chicken lamin B2 paracrystals. We speculate that the banding pattern in the C.elegans lamin paracrystals arises from a relative stagger between dimers and/or a positioning of the globular tail domain relative to the central rod that is distinct from that observed in chicken lamin B2 paracrystals. Here we show that a nuclear lamin can assemble in vitro into 10-nm intermediate filaments (IFs). C.elegans lamin in low ionic strength Tris-buffers at a pH of 7.2-7.4 provides a stable population of lamin IFs. Some implications of this filament formation are discussed.  相似文献   

10.
11.
The factors and mechanisms regulating assembly of intermediate filament (IF) proteins to produce filaments with their characteristic 10 nm diameter are not fully understood. All IF proteins contain a central rod domain flanked by variable head and tail domains. To elucidate the role that different domains of IF proteins play in filament assembly, we used negative staining and electron microscopy (EM) to study the in vitro assembly properties of purified bacterially expressed IF proteins, in which specific domains of the proteins were either mutated or swapped between a cytoplasmic (mouse neurofilament-light (NF-L) subunit) and nuclear intermediate filament protein (human lamin A). Our results indicate that filament formation is profoundly influenced by the composition of the assembly buffer. Wild type (wt) mouse NF-L formed 10 nm filaments in assembly buffer containing 175 mM NaCl, whereas a mutant deleted of 18 NH2-terminal amino acids failed to assemble under similar conditions. Instead, the mutant assembled efficiently in buffers containing CaCl2 > or = 6 mM forming filaments that were 10 times longer than those formed by wt NF-L, although their diameter was significantly smaller (6-7 nm). These results suggest that the 18 NH2-terminal sequence of NF-L might serve two functions, to inhibit filament elongation and to promote lateral association of NF-L subunits. We also demonstrate that lengthening of the NF-L rod domain, by inserting a 42 aa sequence unique to nuclear IF proteins, does not compromise filament assembly in any noticeable way. Our results suggests that the known inability of nuclear lamin proteins to assemble into 10 nm filaments in vitro cannot derive solely from their longer rod domain. Finally, we demonstrate that the head domain of lamin A can substitute for that of NF-L in filament assembly, whereas substitution of both the head and tail domains of lamins for those of NF-L compromises assembly. Therefore, the effect of lamin A "tail" domain alone, or the synergistic effect of lamin "head" and the "tail" domains together, interferes with assembly into 10-nm filaments.  相似文献   

12.
Emerin and LEM2 are ubiquitous inner nuclear membrane proteins conserved from humans to Caenorhabditis elegans. Loss of human emerin causes Emery-Dreifuss muscular dystrophy (EDMD). To test the roles of emerin and LEM2 in somatic cells, we used null alleles of both genes to generate C. elegans animals that were either hypomorphic (LEM-2-null and heterozygous for Ce-emerin) or null for both proteins. Single-null and hypomorphic animals were viable and fertile. Double-null animals used the maternal pool of Ce-emerin to develop to the larval L2 stage, then arrested. Nondividing somatic cell nuclei appeared normal, whereas dividing cells had abnormal nuclear envelope and chromatin organization and severe defects in postembryonic cell divisions, including the mesodermal lineage. Life span was unaffected by loss of Ce-emerin alone but was significantly reduced in LEM-2-null animals, and double-null animals had an even shorter life span. In addition to striated muscle defects, double-null animals and LEM-2-null animals showed unexpected defects in smooth muscle activity. These findings implicate human LEM2 mutations as a potential cause of EDMD and further suggest human LEM2 mutations might cause distinct disorders of greater severity, since C. elegans lacking only LEM-2 had significantly reduced life span and smooth muscle activity.  相似文献   

13.
14.
The vertebrate proteins Nesprin-1 and Nesprin-2 (also referred to as Enaptin and NUANCE) together with ANC-1 of Caenorhabditis elegans and MSP-300 of Drosophila melanogaster belong to a novel family of alpha-actinin type actin-binding proteins residing at the nuclear membrane. Using biochemical techniques, we demonstrate that Nesprin-2 binds directly to emerin and the C-terminal common region of lamin A/C. Selective disruption of the lamin A/C network in COS7 cells, using a dominant negative lamin B mutant, resulted in the redistribution of Nesprin-2. Furthermore, using lamin A/C knockout fibroblasts we show that lamin A/C is necessary for the nuclear envelope localization of Nesprin-2. In normal skin where lamin A/C is differentially expressed, strong Nesprin-2 expression was found in all epidermal layers, including the basal layer where only lamin C is present. This indicates that lamin C is sufficient for proper Nesprin-2 localization at the nuclear envelope. Expression of dominant negative Nesprin-2 constructs and knockdown studies in COS7 cells revealed that the presence of Nesprin-2 at the nuclear envelope is necessary for the proper localization of emerin. Our data imply a scaffolding function of Nesprin-2 at the nuclear membrane and suggest a potential involvement of this multi-isomeric protein in human disease.  相似文献   

15.
Nuclear intermediate filaments (IFs) are made from fibrous proteins termed lamins that assemble, in association with several transmembrane proteins of the inner nuclear membrane and an unknown number of chromatin proteins, into a filamentous scaffold called the nuclear lamina. In man, three types of lamins with significant sequence identity, i.e. lamin A/C, lamin B1 and B2, are expressed. The molecular characteristics of the filaments they form and the details of the assembly mechanism are still largely unknown. Here we report the crystal structure of the coiled-coil dimer from the second half of coil 2 from human lamin A at 2.2A resolution. Comparison to the recently solved structure of the homologous segment of human vimentin reveals a similar overall structure but a different distribution of charged residues and a different pattern of intra- and interhelical salt bridges. These features may explain, at least in part, the differences observed between the lamin and vimentin assembly pathways. Employing a modeled lamin A coil 1A dimer, we propose that the head-to-tail association of two lamin dimers involves strong electrostatic attractions of distinct clusters of negative charge located on the opposite ends of the rod domain with arginine clusters in the head domain and the first segment of the tail domain. Moreover, lamin A mutations, including several in coil 2B, have been associated with human laminopathies. Based on our data most of these mutations are unlikely to alter the structure of the dimer but may affect essential molecular interactions occurring in later stages of filament assembly and lamina formation.  相似文献   

16.
The nuclear envelope (NE) LINC complex, in mammals comprised of SUN domain and nesprin proteins, provides a direct connection between the nuclear lamina and the cytoskeleton, which contributes to nuclear positioning and cellular rigidity. SUN1 and SUN2 interact with lamin A, but lamin A is only required for NE localization of SUN2, and it remains unclear how SUN1 is anchored. Here, we identify emerin and short nesprin-2 isoforms as novel nucleoplasmic binding partners of SUN1/2. These have overlapping binding sites distinct from the lamin A binding site. However, we demonstrate that tight association of SUN1 with the nuclear lamina depends upon a short motif within residues 209–228, a region that does not interact significantly with known SUN1 binding partners. Moreover, SUN1 localizes correctly in cells lacking emerin. Importantly then, the major determinant of SUN1 NE localization has yet to be identified. We further find that a subset of lamin A mutations, associated with laminopathies Emery-Dreifuss muscular dystrophy (EDMD) and Hutchinson-Gilford progeria syndrome (HGPS), disrupt lamin A interaction with SUN1 and SUN2. Despite this, NE localization of SUN1 and SUN2 is not impaired in cell lines from either class of patients. Intriguingly, SUN1 expression at the NE is instead enhanced in a significant proportion of HGPS but not EDMD cells and strongly correlates with pre-lamin A accumulation due to preferential interaction of SUN1 with pre-lamin A. We propose that these different perturbations in lamin A-SUN protein interactions may underlie the opposing effects of EDMD and HGPS mutations on nuclear and cellular mechanics.  相似文献   

17.
18.
LEM-domain proteins share a folded structure, the 'LEM-domain', which binds a conserved chromatin protein named BAF. Most LEM-domain proteins are found at the nuclear membrane, but some are nucleoplasmic. All characterized members of this family bind nuclear lamin filaments. We summarize the 'founding' LEM-domain proteins LAP2, emerin and MAN1 ('SANE' or 'XMAN' in Xenopus) and their emerging roles in gene regulation and nuclear assembly. These roles are placed in the context of human diseases ('laminopathies') caused by mutations in either emerin or A-type lamins. Other LEM-domain proteins might modify the phenotype or severity of human laminopathy, or cause new laminopathies. We summarize evidence that the human genome encodes at least four additional LEM-domain proteins, designated Lem2 (NET-25), Lem3, Lem4 and Lem5. Early adaptation of a consistent nomenclature, such as the "Lem" names proposed here, will facilitate rapid progress in this field. Further investigation of 'founder' and novel members of this family will be important to understand nuclear structure, and presents new opportunities to understand human disease.  相似文献   

19.
The nuclear lamina (NL) consists of lamin polymers and proteins that bind to the polymers. Disruption of NL proteins such as lamin and emerin leads to developmental defects and human diseases. However, the expression of multiple lamins, including lamin-A/C, lamin-B1, and lamin-B2, in mammals has made it difficult to study the assembly and function of the NL. Consequently, it has been unclear whether different lamins depend on one another for proper NL assembly and which NL functions are shared by all lamins or are specific to one lamin. Using mouse cells deleted of all or different combinations of lamins, we demonstrate that the assembly of each lamin into the NL depends primarily on the lamin concentration present in the nucleus. When expressed at sufficiently high levels, each lamin alone can assemble into an evenly organized NL, which is in turn sufficient to ensure the even distribution of the nuclear pore complexes. By contrast, only lamin-A can ensure the localization of emerin within the NL. Thus, when investigating the role of the NL in development and disease, it is critical to determine the protein levels of relevant lamins and the intricate shared or specific lamin functions in the tissue of interest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号