首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Schwann cells (SCs) have important roles in supporting and repairing peripheral neurons, and thus have great potential for nerve injury treatment. Adipose tissue-derived stem cells (ADSCs) can be reliably induced to differentiate into SCs. However, the underlying molecular mechanisms are unclear. We explored the roles of MEG3/let-7a-5p/RBPJ axis in the differentiation into SCs from ADSCs. Primary ADSCs were induced to differentiate into SCs by appropriate reagents. ELISA, immunostaining, Western blotting, and qRT-PCR were employed to examine levels of SC-markers such as S100, GFAP, SOX10, p75NTR, GAP43, MPZ, β-NGF, BDNF, and NCAM and let-7 family, MEG3, RBPJ, and Notch signaling related proteins. Dual luciferase assay and RNA immunoprecipitation were performed to validate interactions of let-7a-5p/RBPJ mRNA and MEG3/let-7a-5p. Cultured ADSCs could be induced to differentiate into functional SCs. Let-7a-5p and let-7d-5p were elevated during the differentiation while MEG3 and RBPJ/Notch-signaling were suppressed. Let-7a-5p mimics promoted ADSC differentiation into SCs and up-regulated the levels of SC-related markers including S100, GFAP, SOX10, p75NTR, GAP43, MPZ, β-NGF, and NCAM, while RBPJ or MEG3 overexpression retarded the differentiation and reduced those levels. Let-7a-5p directly targeted RBPJ and MEG3 disinhibited Notch-RBPJ signaling via sponging let-7a-5p. RBPJ overexpression reversed the acceleration of let-7a-5p mimics on SC differentiation while let-7a-5p mimics blocked MEG3-mediated suppression on SC differentiation. Let-7a-5p sponged by MEG3 promotes differentiation of ADSCs into SCs via suppressing Notch signaling by targeting RBPJ. These findings shed light on mechanisms underlying the differentiation of ADSCs to SCs and provide avenues to accelerate the process.

  相似文献   

2.
Schwann cells (SCs) are hitherto regarded as the most promising candidates for viable cell-based therapy to peripheral nervous system (PNS) injuries or degenerative diseases. However, the extreme drawbacks of transplanting autologous SCs for clinical applications still represent a significant bottleneck in neural regenerative medicine, mainly owing to the need of sacrificing a functional nerve to generate autologous SCs and the nature of slow expansion of the SCs. Thus, it is of great importance to establish an alternative cell system for the generation of sufficient SCs. Here, we demonstrated that adipose-derived stem cells (ADSCs) of rat robustly give rise to morphological, phenotypic and functional SCs using an optimized protocol. After undergoing a 3-week in vitro differentiation, almost all of treated ADSCs exhibited spindle shaped morphology similar to genuine SCs and expressed SC markers GFAP and S100. Most importantly, apart from acquisition of SC antigenic and biochemical features, the ADSC-derived SCs were functionally identical to native SCs as they possess a potential ability to form myelin, and secret nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glia-derived neurotrophic factor (GDNF). The current study may provide an ideal strategy for harvesting sufficient SCs for cell-based treatment of various peripheral nerve injuries or disorders.  相似文献   

3.
The differentiation of myelin-forming Schwann cells (SC) is completed with the appearance of myelin proteins MBP and P0 and a concomitant downregulation of markers GFAP and p75NTR, which are expressed by immature and adult non-myelin-forming SC. We have previously demonstrated that holotransferrin (hTf) can prevent SC dedifferentiation in culture ( Salis et al., 2002), while apotransferrin (aTf) cannot. As a consequence, we used pure cultured SC and submitted them to serum deprivation in order to promote dedifferentiation and evaluate the prodifferentiating ability of ferric ammonium citrate (FAC) through the expression of MBP, P0, p75NTR and c-myc. The levels of cAMP, CREB and p-CREB were also measured. Results show that Fe3+, either in its free form or as hTf, can prevent the dedifferentiation promoted by serum withdrawal.  相似文献   

4.
Fat transplantation is increasingly used in breast augmentation; and recently, the issue of safety concerns from a cellular and molecular point of view has been raised. In this study, attentions were paid to the interaction between adipose‐derived stem cells (ADSC) and mammary epithelial cells: human breast cancer cell line ‐ 100 (HBL ‐ 100) cells were used to simulate the normal microenvironment in breast tissue, ADSCs were harvest from human and co‐cultured with HBL‐100 cells. It was found that ADSCs formed tube‐like structures in the co‐culture with HBL‐100 cells in contrast to the normal morphology of ADSCs in the control group. In addition, the immunofluorescence imaging showed that cytokeratin 18 and 19 (CK18 and 19) were significantly expressed in ADSCs after the co‐culture with HBL‐100 cells. The ultrastructure of those ADSCs also showed epithelial changes. In conclusion, ADSCs are not biological stable when co‐cultured with HBL‐100 cells. They differentiate into epithelial‐like cells with the expression of epithelial surface marks (CK 18, 19) and form tube‐like structures. This may offer an important evidence for the further study of clinical application of transplanting ADSCs rich adipose tissue into the breast in the future.  相似文献   

5.
The Schwann cells (SCs) may be obtain from nerve biopsies for autologous transplantation. However, it is difficult to obtain sufficient amount of SCs for clinical applications. Human adipose-derived stem cells (ADSCs) can be induced to differentiate into Schwann-like cells (S-like cells) and used for autologous transplantation. However, effect of leukemia inhibitory factor (LIF) on the myelinogenic ability of SC-like cells induced from human ADSC is not investigated yet. The aim of this study was to evaluate of the effect of exogenous LIF on myelinogenic potential of differentiated cells in vitro. ADSCs were harvested from human fat tissue and characterized using flow cytometry. Human ADSCs were treated for sphere formation and LIF was added to terminal differentiation medium. GFAP/S100β and MBP markers were used to confirm differentiation of human ADSCs, and myelinogenic ability of SC-like cells, respectively, using both immunostaining and real-time RT-PCR analysis. The analysis for GFAP+/S100β+ revealed that LIF can increase both differentiated cells rates and the percentage of myelinating SC-like cells (p < 0.05). Our data showed that SC-like cells induced from human ADSCs were able to generate myelin when exposed to LIF and these cells could be a potential source for the treatment of peripheral and central axonal injuries.  相似文献   

6.
This study comparatively investigated the effectiveness of calcium and other well‐known inducers such as isobutylmethylxanthine (IBMX) and insulin in differentiating human adipose‐derived stem cells (ADSCs) into neuronal‐like cells. ADSCs were immunophenotyped and differentiated into neuron‐like cells with different combinations of calcium, IBMX, and insulin. Calcium mobilization across the membrane was determined. Differentiated cells were characterized by cell cycle profiling, staining of Nissl bodies, detecting the gene expression level of markers such as neuronal nuclear antigen (NeuN), microtubule associated protein 2 (MAP2), neuron‐specific enolase (NSE), doublecortin, synapsin I, glial fibrillary acidic protein (GFAP), and myelin basic protein (MBP) by quantitative real‐time polymerase chain reaction (quantitative real‐time polymerase chain reaction (qRT‐PCR) and protein level by the immunofluorescence technique. Treatment with Ca + IBMX + Ins induced neuronal appearance and projection of neurite‐like processes in the cells, accompanied with inhibition of proliferation and halt in the cell cycle. A significantly higher expression of MBP, GFAP, NeuN, NSE, synapsin 1, doublecortin, and MAP2 was detected in differentiated cells, confirming the advantages of Ca + IBMX + Ins to the other combinations of inducers. Here, we showed an efficient protocol for neuronal differentiation of ADSCs, and calcium fostered differentiation by augmenting the number of neuron‐like cells and instantaneous increase in the expression of neuronal markers.  相似文献   

7.
Transplantation of cell suspensions containing olfactory ensheathing cells (OECs) has been reported to remyelinate demyelinated axons in the spinal cord with a Schwann cell (SC)-like pattern of myelination. However, questions have been raised recently as to whether OECs can form SC-like myelin. To address this issue we prepared SCs and OECs from transgenic rats in which a marker gene, human placental alkaline phosphatase (hPAP), is linked to the ubiquitously active promoter of the R26 gene. SCs were prepared from the sciatic nerve and OECs from the outer nerve-fiber layer of the olfactory bulb. Positive S100 and p75 immunostaining indicated that >95% of cells in culture displayed either SC or OEC phenotypes. Suspensions of either SCs or OECs were transplanted into an X-irradiation/ethidium bromide demyelinating lesion in the spinal cord. We observed extensive SC-like remyelination following either SC or OEC transplantation 3 weeks after injection of the cells. Alkaline phosphatase (ALP) chromagen reaction product was associated clearly with the myelin-forming cells. Thus, cell suspensions that are enriched in either SCs or OECs result in peripheral-like myelin when transplanted in vivo.  相似文献   

8.
目的:探讨线粒体靶向抗氧化剂mitoTEMPO对糖尿病小鼠脂肪干细胞(Adipose-derived stem cells,ADSCs)氧化损伤的影响。方法:采用60%高脂饮食喂养雄性C57小鼠(4周龄)连续8周,并在高脂喂养第2周,对小鼠进行连续5天腹腔注射低剂量链脲佐菌素(streptozotocin,STZ)(25 mg·kg-1)制备2型糖尿病小鼠模型。喂养2周后,检测小鼠血浆葡萄糖水平等指标符合2型糖尿病标准者纳入实验。分别从正常小鼠与STZ诱导的糖尿病小鼠的腹股沟处皮下脂肪组织分离培养脂肪干细胞(ADSCs),并将其各分为4组:DMEM培养的正常ADSCs组(nADSCs组),DMEM培养的糖尿病ADSCs组(dADSCs组),TEMPO治疗的糖尿病ADSCs组(T-dADSCs组),mitoTEMPO治疗的糖尿病ADSCs组(mitoT-dADSCs组)。采用细胞计数试剂盒-8(CCK-8)检测细胞存活能力;油红-O和茜素红染色分别检测成脂细胞分化与成骨细胞分化能力;划痕实验和Transwell试验分别测定细胞迁移能力;DCF和mito SOX染色荧光成像分别检测细胞内和线粒体中的活性氧簇(Reactive oxygen species, ROS)水平。结果:①与nADSCs组相比,d ADSCs组的细胞活力明显下降(P0.05)、成骨细胞分化与成脂细胞分化程度明显下降(P0.05)、脂肪干细胞迁移能力明显下降(P0.05)、细胞内和线粒体中ROS水平明显升高(P0.05)。②与dADSCs组相比,T-dADSCs和mitoT-dADSCs组的细胞内和线粒体中的ROS水平明显降低(P0.05);与dADSCs组相比,mitoT-dADSCs组的成骨细胞分化与成脂细胞分化能力明显提升(P0.05),基本达到nADSCs组的分化水平;与dADSCs组相比,mitoT-dADSCs治疗组的细胞迁移能力显著升高(P0.05)、T-dADSCs组的细胞迁移能力增长无明显差异。结论:mitoTEMPO可以减轻糖尿病时线粒体内活性氧簇蓄积造成的脂肪干细胞的氧化应激损伤与功能紊乱。  相似文献   

9.
SMSCs (synovial mesenchymal stem cells) isolated from TMJs (temporomandibular joints) were induced to proliferate and differentiate in vitro by bFGF (basic fibroblast growth factor) and explore the potential of SMSC differentiation into neuronal cells. In this study, the cultured SMSCs were derived from the TMJ synovial membrane of condylar hyperplasia patients and were amplified with the indicated concentration of FCS (fetal calf serum) and DMEM (Dulbecco's modified Eagle's medium) in vitro. bFGF (25 ng/ml) was applied to induced synovial cells differentiated into neuronal cells. Inverted microscopy, scanning electron microscopy, immunocytochemical and RT‐PCR were used for checking the change of the induced cells. Morphology was mostly spindle; a small part was of a polygon. The undifferentiated SMSCs showed the fibroblast‐like morphology; however, most of the differentiated cells were in the shape of a spindle and the rest were polygonal. Furthermore, being induced by bFGF, SMSCs can be found to be a unique long extension from the cell body under the scanning electron microscope. RT‐PCR and immunocytochemical analysis was made to confirm nestin (neural stem cell marker) and NF‐L (neurofilament‐light or neurofilament 68‐kDa mature nerve cell marker) expression in SMSCs. SMSCs can differentiate into neuronal cells when induced by bFGF. The bFGF‐induced SMSCs not only changed into neural‐like cells but also expressed specific markers.  相似文献   

10.
Schwann cells (SCs) are the myelin producing cells of the peripheral nervous system. During development, SCs cease proliferation and differentiate into either a myelin-forming or non-myelin forming mature phenotype. We are interested in the role of insulin-like growth factor-I (IGF-I) in SC development. We have shown previously SCs proliferate in response to IGF-I in vitro. In the current study, we investigated the role of IGF-I in SC differentiation. SC differentiation was determined by morphological criteria and expression of myelin proteins. Addition of 1 mM 8-bromo cyclic AMP (cAMP) or growth on Matrigel matrix decreased proliferation and induced differentiation of SCs. IGF-I enhanced both cAMP and Matrigel matrix-induced SC differentiation, as assessed by both morphological criteria and myelin gene expression. Cultured SCs also express IGF binding protein-5 (IGFBP-5), which can modulate the actions of IGF-I. We examined the expression of IGFBP-5 during SC differentiation. Both cAMP and Matrigel matrix treatment enhanced IGFBP-5 protein expression and cAMP increased IGFBP-5 gene expression five fold. These findings suggest IGF-I potentiates SC differentiation. The concomitant up-regulation of IGFBP-5 may play a role in targeting IGF-I to SCs and thus increase local IGF-I bioavailability. J. Cell. Physiol. 171:161–167, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Co-culture conditions are well established in which Schwann cells (SCs) derived from immature or adult rats proliferate and form myelin in response to contact with sensory axons. In a companion article, we report that populations of adult-derived human Schwann cells (HASCs) fail to function under these co-culture conditions. Furthermore, we report progressive atrophy of neurons in co-cultures containing populations of either human fibroblasts. Two factors that might account for the insufficiency of the co-culture system to support HASC differentiation are the failure of many HASCs to proliferate and the influence of contaminating fibroblasts. To minimize fibroblast contamination of neuron-HASC co-cultures, we used fluorescence-activated cell sorting to highly purify HASC populations (to more than 99.8%). To stimulate expansion of the HASC population, a mitogenic mixture of heregulin (HRGβ1 amino acid residues 177-244; 10 nM), cholera toxin (100 ng/mL), and forskolin (1 μM) was used. When these purified and expanded HASCs were co-cultured with embryo-derived rat sensory neurons, neuronal shrinkage did not occur and after 4 to 6 weeks some myelin segments were seen in living co-cultures. This myelin was positively identified as human by immunostaining with a monoclonal antibody specific to the human peripheral myelin protein P0 (antibody 592). Although this is the first reported observation of myelination by HASCs in tissue culture, it should be noted that myelination occurred more slowly and in much less abundance than in comparable cultures containing adult rat-derived SCs. We anticipate that further refinements of the HASC co-culture system that enhance myelin formation will provide insights into important aspects of human SC biology and provide new opportunities for studies of human peripheral neuropathies. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Transplanting stem cells differentiated towards a cardiac lineage can regenerate cardiac muscle tissues to treat myocardial infarction. In this study, we tested the hypothesis that transforming growth factor‐β1 (TGF‐β1) induces cardiomyogenic differentiation of adipose‐ derived stromal cells (ADSCs) in vitro. Rat ADSCs were cultured with TGF‐β1 (10 ng ml?1) for 2 weeks in vitro. ADSCs cultured without TGF‐β1 served as a control. The mRNA expression of cardiac‐specific gene was induced by TGF‐β1, while the control culture did not show cardiac‐specific gene expression. Immunocytochemical analyses showed that a small fraction of ADSCs cultured with TGF‐β1 for 2 weeks stained positively for cardiac myosin heavy chain (MHC) and α‐sarcomeric actin. Flow cytometric analyses showed that the proportion of cells expressing cardiac MHC increased with TGF‐β1. However, no mesenchymal differentiation (e.g., osteogenic and adipogenic differentiation) was detected other than cardiomyogenic differentiation. These results showed that TGF‐β1 induce ADSC cardiomyogenic differentiation in vitro, which could be useful for myocardial infarction stem cell therapy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
There are some evidences for suggesting that adipose derived stem cells (ADSCs) can be differentiated to the fate of neural cell type. ADSCs can be expanded rapidly in vitro and can be obtained by a less invasive method. In this study, we attempted to compare the stability of neural differentiation in human ADSCs by using two induction protocols.Isolated ADSCs were induced into neural-like cells using diverse effects of two specific procedures. For protocol 1, ADSCs were induced by chemical induction. In protocol 2, ADSCs were treated for sphere formation. Then, the singled cells were cultured in neurobasal media supplemented with special components. Differentiated ADSCs were evaluated for Nestin, MAP2 and GFAP expression by immunocytochemistry and semi quantitative RT-PCR techniques. Moreover, MTT assay was employed to detect cell viability and proliferation.Immunocytochemical analysis of both protocols demonstrated that ADSCs had large expression of the neural-specific markers. In RT-PCR, protocol 1 showed the highest percentage of MAP2 expression, but with time passing, the neural like state was reversible. Protocol 2 found with express of Nestin at week 1, however MAP2 and GFAP expression increased after 3 weeks. The neural-like cells produced by protocol 1 led to the further cell death.Comparative analysis showed that neural-like cell differentiation of ADSCs in chemical induction protocol was rapid but transitory, while it was approximately steady in neurosphere formation protocol.  相似文献   

14.
15.
Background: Sertoli cells (SCs) have been described as the ‘nurse cells’ of the testis whose primary function is to provide essential growth factors and create an appropriate environment for development of other cells [for example, germinal and nerve stem cells (NSCs), used here]. However, the greatest challenge at present is that it is difficult to obtain sufficient SCs of normal physiological function for cell transplantation and biological medicine, largely due to traditional static culture parameter difficult to be monitored and scaled up. Objective: Operational stirred culture conditions for in vitro expansion and differentiation of SCs need to be optimized for large‐scale culture. Materials and methods: In this study, the culturing process for primary SC expansion and maintaining lack of differentiation was optimized for the first time, by using microcarrier bead technology in spinner flask culture. Effects of various feeding/refreshing regimes, stirring speeds, seed inoculum levels of SCs, and concentrations of microcarrier used for expansion of mouse SCs were also explored. In addition, pH, osmotic pressure and metabolic variables including consumption rates of glucose, glutamine, amino acids, and formation rates of lactic acid and ammonia, were investigated in culture. Results: After 6 days, maximal cell densities achieved were 4.6 × 106 cells/ml for Cytodex‐1 in DMEM/FBS compared to 4.8 × 105 cells/ml in static culture. Improved expansion was achieved using an inoculum of 1 × 105 cells/ml and microcarrier concentration of 3 mg/ml at stirring speed of 30 rpm. Results indicated that medium replacement (50% changed everyday) resulted in supply of nutrients and removal of waste products inhibiting cell growth, that lead to maintenance of cultures in steady state for several days. These conditions favoured preservation of SCs in the undifferentiated state and significantly increased their physiological activity and trophic function, which were assessed by co‐culturing with NSCs and immunostaining. Conclusion: Data obtained in this study demonstrate the vast potential of this stirred culture system for efficient, reproducible and cost‐effective expansion of SCs in vitro. The system has advantages over static culture, which has major obstacles such as lower cell density, is time‐consuming and susceptible to contamination.  相似文献   

16.
Human adult stem cells, which are capable of self‐renewal and differentiation into other cell types, can be isolated from various tissues. There are no ethical and rejection problems as in the case of embryonic stem cells, so they are a promising source for cell therapy. The human body contains a great amount of adipose tissue that contains high numbers of mesenchymal stem cells. Human adipose‐derived stem cells (hADSCs) could be easily induced to form neuron‐like cells, and because of its availability and abundance, we can use it for clinical cell therapy. On the other hand, T3 hormone as a known neurotropic factor has important impressions on the nervous system. The aim of this study was to explore the effects of T3 treatment on neural differentiation of hADSCs. ADSCs were harvested from human adipose tissue, after neurosphere formation, and during final differentiation, treatment with T3 was performed. Immunocytochemistry, real‐time RT‐PCR, Western blotting techniques were used for detection of nestin, MAP2, and GFAP markers in order to confirm the effects of T3 on neural differentiation of hADSCs. Our results showed an increase in the number of glial cells but reduction in neuronal cells number fallowing T3 treatment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Adult bone marrow‐derived very small embryonic‐like stem cells (VSEL‐SCs) exhibit a Sca‐1+/Lin/CD45 phenotype and can differentiate into various cell types, including cardiomyocytes and endothelial cells. We have previously reported that transplantation of a small number (1 × 106) of freshly isolated, non‐expanded VSEL‐SCs into infarcted mouse hearts resulted in improved left ventricular (LV) function and anatomy. Clinical translation, however, will require large numbers of cells. Because the frequency of VSEL‐SCs in the marrow is very low, we examined whether VSEL‐SCs can be expanded in culture without loss of therapeutic efficacy. Mice underwent a 30 min. coronary occlusion followed by reperfusion and, 48 hrs later, received an intramyocardial injection of vehicle (group I, n= 11), 1 × 105 enhanced green fluorescent protein (EGFP)‐labelled expanded untreated VSEL‐SCs (group II, n= 7), or 1 × 105 EGFP‐labelled expanded VSEL‐SCs pre‐incubated in a cardiogenic medium (group III, n= 8). At 35 days after myocardial infarction (MI), mice treated with pre‐incubated VSEL‐SCs exhibited better global and regional LV systolic function and less LV hypertrophy compared with vehicle‐treated controls. In contrast, transplantation of expanded but untreated VSEL‐SCs did not produce appreciable reparative benefits. Scattered EGFP+ cells expressing α‐sarcomeric actin, platelet endothelial cell adhesion molecule (PECAM)‐1, or von Willebrand factor were present in VSEL‐SC‐treated mice, but their numbers were very small. No tumour formation was observed. We conclude that VSEL‐SCs expanded in culture retain the ability to alleviate LV dysfunction and remodelling after a reperfused MI provided that they are exposed to a combination of cardiomyogenic growth factors and cytokines prior to transplantation. Counter intuitively, the mechanism whereby such pre‐incubation confers therapeutic efficacy does not involve differentiation into new cardiac cells. These results support the potential therapeutic utility of VSEL‐SCs for cardiac repair.  相似文献   

19.
Muscle-derived stem cells (MDSCs) are multipotent stem cells with a remarkable long-term self-renewal and regeneration capacity. Here, we show that postnatal MDSCs could be transdifferentiated into Schwann cell-like cells upon the combined treatment of three neurotrophic factors (PDGF, NT-3 and IGF-2). The transdifferentiation of MDSCs was initially induced by Schwann cell (SC) conditioned medium. MDSCs adopted a spindle-like morphology similar to SCs after the transdifferentiation. Immunocytochemistry and immunoblot showed clearly that the SC markers S100, GFAP and p75 were expressed highly only after the transdifferentiation. Flow cytometry assay showed that the portion of S100 expressed cells was more than 60 percent and over one fourth of the transdifferentiated cells expressed all the three SC markers, indicating an efficient transdifferentiation. We then tested neurotrophic factors in the conditioned medium and found it was PDGF, NT-3 and IGF-2 in combination that conducted the transdifferentiation. Our findings demonstrate that it is possible to use specific neurotrophic factors to transdifferentiate MDSCs into Schwann cell-like cells, which might be therapeutically useful for clinical applications.  相似文献   

20.
Scaffolds porosity has an important role in in vitro and in vivo differentiation process of stem cells with given the amount of space available to the cells to proliferate and differentiate. In the present study, chitosan with three porosities including 10%, 15%, and 20% that created by gelatin were used for investigation of the proliferation and osteogenic differentiation potential of adipose‐derived stem cells (ADSCs). In order to be more like the scaffold to natural bone tissue, freeze‐drying method was used in the scaffold preparation. Scaffold morphology, cell attachment, and toxicity were evaluated using scanning electron microscopy and MTT assay. Then, osteogenic differentiation potential of ADSCs cultured on chitosan with different porosities was evaluated by common osteogenic markers such as Alizarin red staining, ALP activity, calcium content, and osteogenic‐related genes expression via real‐time RT‐PCR. Although all scaffolds supported the proliferation and differentiation of ADSCs, but 10% scaffold demonstrated higher amount of osteogenic markers in comparison with the other porosities and control groups. Taking together, it can be concluded that osteogenic differentiation well done in the scaffolds with lower porosity because density of the cells will increase by forcing resulted from the scaffold, so osteogenic differentiation of the stem cells have an inverse association with scaffold porosity. J. Cell. Biochem. 119: 625–633, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号