首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ompB operon of Escherichia coli contains the structural genes for two proteins, OmpR and EnvZ, which control the osmoregulated biosynthesis of the porin proteins OmpF and OmpC. By inserting XbaI octamer linkers into the cloned ompB locus, four distinct frameshift mutants were isolated and subsequently characterized for their OmpR and EnvZ protein products and their outer membrane porin phenotype. In a minicell expression system, the wild-type products of the ompR and envZ genes were found to be approximately 28 and 50 kilodaltons in size, respectively, whereas the mutant proteins were either truncated or extended due to the frame shift. The identity of the envZ gene product was confirmed by immunoprecipitation. M13 dideoxy sequencing of the DNA around the wild-type ompR-envZ junction revealed an error in the sequence published for this operon; the complete corrected sequence is presented. A sequence, ATGA, was found that forms the termination codon for the OmpR reading frame and a possible initiation codon for the EnvZ protein; these sequences are consistent with the sizes of the proteins observed after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The translational activity of this ATG codon was confirmed by fusing the lacZ gene in frame with the putative EnvZ coding sequence. The implications of these results are discussed with respect to the regulation of synthesis of the ompB gene products.  相似文献   

2.
3.
4.
Previously, the transfer of the phosphoryl group between the EnvZ and OmpR proteins, which are involved in activation of the ompF and ompC genes in response to the medium osmolarity, has been demonstrated in vitro. In this study, we characterized mutant EnvZ and OmpR proteins in terms of their in vitro phosphorylation and dephosphorylation. The proteins isolated from the mutants, envZ11 and ompR3, were found to be defective in seemingly the same aspect, i.e. OmpR dephosphorylation. The protein isolated from the ompR77 mutant, which is a suppressor mutant specific for envZ11, was found to be defective in another aspect, i.e. OmpR phosphorylation. These results imply that the phosphotransfer reactions observed in vitro play roles in the mechanism underlying the osmoregulatory expression of the ompF and ompC genes in vivo. We provide evidence that the EnvZ protein is involved not only in OmpR phosphorylation but also in OmpR dephosphorylation.  相似文献   

5.
6.
7.
8.
9.
Osmoregulation of the bacterial porin genes ompF and ompC is controlled by a two-component regulatory system. EnvZ, the sensor component of this system, is capable both of phosphorylating and dephosphorylating OmpR, the effector component. Mutations were isolated in envZ that abolish the expression of both porin genes. These mutants appear to have lost the kinase activity of EnvZ while retaining their phosphatase activity, so that in their presence OmpR is completely unphosphorylated. The behavior of these mutants in haploid, and in diploid with other envZ alleles, is consistent with a model in which EnvZ mediates osmoregulation by controlling the concentration of a single species. OmpR-P.  相似文献   

10.
The ompB operon of Vibrio cholerae 569B has been cloned and fully sequenced. The operon encodes two proteins, OmpR and EnvZ, which share sequence identity with the OmpR and EnvZ proteins of a variety of other bacteria. Although the order of the ompR and envZ genes of V. cholerae is similar to that of the ompB operon of E. coli, S. typhimurium and X. nematophilus, the Vibrio operon exhibits a number of novel features. The structural organisation and features of the V. cholerae ompB operon are described.  相似文献   

11.
The EnvZ protein is a bacterial protein kinase, which specifically phosphorylates the activator protein, OmpR, involved in expression of the ompF and ompC genes in Escherichia coli. The phosphotransfer between the EnvZ and OmpR proteins was postulated to be involved in the signal transduction in response to an environmental osmotic stimulus. In this study, we isolated a novel type of envZ mutant, in which a base substitution resulted in a Tyr-to-Ser conversion at amino acid residue 351 of the EnvZ protein. This single amino acid conversion was found to dramatically affect the functions of the EnvZ protein. The mutant EnvZ protein was defective in its ability not only as to OmpR-phosphorylation but also as to OmpR-dephosphorylation. The envZ mutant, termed envZ30, was isolated as a pseudorevertant, which phenotypically suppresses an ompR3-type mutant exhibiting an OmpF- OmpC-constitutive phenotype. These results will be discussed in relation to the structure and function of the protein kinase, EnvZ.  相似文献   

12.
In Escherichia coli , EnvZ senses changes in the osmotic conditions of the growth environment and controls the phosphorylated state of the regulatory protein, OmpR. OmpR-phosphate regulates the expression of the porin genes, ompF and ompC . To investigate the role of the periplasmic domain of EnvZ in sensing of osmolarity signals, portions of this domain were deleted. Cells containing the EnvZ mutant proteins were able to regulate normally the production of OmpF and OmpC in response to changes in osmolarity. The periplasmic domain of EnvZ was also replaced with the non-homologous periplasmic domain of the histidine kinase PhoR of Bacillus subtilis . Osmoregulation of OmpF and OmpC production in cells containing the PhoR–EnvZ hybrid protein was indistinguishable from that in cells containing wild-type EnvZ. Identical results were obtained with an envZ – pta/ack strain, which could not synthesize acetyl phosphate. Thus, acetyl phosphate was not involved in the regulation of ompF and ompC observed in this study. These results indicate that the periplasmic domain of EnvZ is not essential for sensing of osmolarity signals.  相似文献   

13.
14.
15.
16.
17.
EnvZ is a cytoplasmic membrane protein which is involved in osmoregulatory expression of the ompF and ompC genes in Escherichia coli possibly by sensing the environmental osmotic signal. A truncated form of the EnvZ protein (EnvZ*), comprising 82% of EnvZ starting from the C terminus, was purified to homogeneity. The purified EnvZ* was autophosphorylated with ATP. The phosphoryl group on EnvZ* could then be rapidly transferred to OmpR, which is a positive regulator of the ompF and ompC genes and which was proposed to interact with EnvZ in the process of osmoregulation. In the presence of ATP, the phosphorylated OmpR was rapidly dephosphorylated. These results suggest that the transfer of the phosphoryl group between EnvZ and OmpR plays an important role in the signaling pathway in osmoregulation.  相似文献   

18.
19.
EnvZ is a membrane-located protein kinase which modulates expression of the ompF and ompC genes through phosphotransfer signal transduction in Escherichia coli. Previously, we developed an in vitro method for analyzing the intact form of EnvZ in isolated cytoplasmic membranes, and demonstrated that this particular form of EnvZ exhibits the ability not only of OmpR phosphorylation but also OmpR dephosphorylation. Taking advantage of this in vitro system, in this study, to assess the structural and functional importance of the membrane-spanning (transmembrane) regions of EnvZ, a set of mutant envZ genes, each of which specifies a mutant EnvZ protein with a single amino acid replacement within or very near the transmembrane regions, were isolated and characterized in terms of their in vivo osmoregulatory phenotypes and in vitro EnvZ-OmpR phosphotransfer activities. On the basis of the results, it was suggested that the transmembrane regions of EnvZ play roles in transmembrane signaling and consequent modulation of the kinase/phosphatase activity exhibited by the cytoplasmic domain in response to an osmotic stimulus.  相似文献   

20.
The EnvZ protein is presumably a membrane-located osmotic sensor, which specifically phosphorylates the activator protein, OmpR, involved in expression of the ompF and ompC genes in Escherichia coli. In this study, we developed an in vitro system for analyzing the intact form of the EnvZ protein located in the isolated cytoplasmic membrane. This particular form of the EnvZ protein exhibited its in vitro ability not only as to OmpR-phosphorylation but also OmpR-dephosphorylation. It was found that when a high concentration of a mono-cation (K+, Na-, or Li+) was present during the in vitro reactions, OmpR-dephosphorylation was preferentially inhibited and consequently the phosphorylated from of the OmpR protein was accumulated under the in vitro conditions used, although the K+ ion appears to be essential for the OmpR-phosphorylation reaction. Procaine, a local anesthetic, is known to affect the osmotic regulation of the ompF and ompC genes in vivo. In this study, procaine was also found to preferentially inhibit OmpR-dephosphorylation mediated by the EnvZ protein in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号