首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Background

Valuable insights into the complex process of retinal vascular development can be gained using models with abnormal retinal vasculature. Two such models are the recently described mouse lines with mutations in Lama1, an important component of the retinal internal limiting membrane (ILM). These mutants have a persistence of the fetal vasculature of vitreous (FVV) but lack a primary retinal vascular plexus. The present study provides a detailed analysis of astrocyte and vascular development in these Lama1 mutants.

Results

Although astrocytes and blood vessels initially migrate into Lama1 mutant retinas, both traverse the peripapillary ILM into the vitreous by P3. Once in the vitreous, blood vessels anastomose with vessels of the vasa hyaloidea propria, part of the FVV, and eventually re-enter the retina where they dive to form the inner and outer retinal capillary networks. Astrocytes continue proliferating within the vitreous to form a dense mesh that resembles epiretinal membranes associated with persistent fetal vasculature and proliferative vitreoretinopathy.

Conclusions

Lama1 and a fully intact ILM are required for normal retinal vascular development. Mutations in Lama1 allow developing retinal vessels to enter the vitreous where they anastomose with vessels of the hyaloid system which persist and expand. Together, these vessels branch into the retina to form fairly normal inner retinal vascular capillary plexi. The Lama1 mutants described in this report are potential models for studying the human conditions persistent fetal vasculature and proliferative vitreoretinopathy.  相似文献   

2.

Background

Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB) and blood-retinal (BRB) barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP) in blood plasma, as an endogenous tracer.

Results

The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB.

Conclusion

Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP) zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.  相似文献   

3.
《Autophagy》2013,9(7):922-928
The hyaloid vessel is a transient intraocular circulatory system that undergoes a complete regression as the retina becomes matured with retinal vascularization. If the complete involution of the hyaloid vessels failes, the pathological persistence of these vessels results in persistent hyperplastic primary vitreous (PHPV) associated with severe ocular pathologies. Unfortunately despite its clinical significance, cellular and molecular processes involved in hyaloid regression remain to be elucidated. Herein, we for the first time demonstrated that autophagy could contribute to the regression of hyaloid vessels in early developing retina. In developing retina, hyaloid vessel regression coincided with retinal vascular development; this occurred simultaneous with apoptotic and autophagic processes. Moreover, in vascular endothelial cells under hypoxic conditions, LC3-II conversion was detected along with caspase-3 activation. The autophagy inducer rapamycin induced autophagy-mediated cell death of vascular endothelial cells in a dose-dependent manner. Moreover, rapamycin significantly enhanced the involution of hyaloid vessels in the early developing eye. Therefore, our results suggest that the autophagy pathway would be involved in hyaloid regression that occurs during early ocular development. Furthermore, activation of the autophagy pathway could be considered for a therapeutic approach to PHPV.  相似文献   

4.
During embryogenesis, the development and differentiation of the eye requires the concomitant formation of the neural/glial elements along with a dense vascular network. The adult neural retina is supported by two distinct vascular systems, the proper retinal vessels and the choroidal vessels. The two beds differ not only in their pattern of embryonic differentiation, but also in their function in the adult organism. The retinal vasculature has barrier properties similar to those observed in the brain, whereas the choroidal vessels display a highly fenestrated phenotype. The hyaloid vasculature is a transient embryonic vascular bed which is complete at birth in mammals and regresses contemporaneously with the formation of the retinal vasculature. The dependence of the retina on its blood supply makes it highly vulnerable to any vascular changes and indeed ocular diseases, such as proliferative retinopathy, age-related macular degeneration and the hyperplastic primary vitreous, which are associated with abnormalities of the different vascular beds of the eye. A number of factors have been implicated in developmental and pathological changes in vessel formation and regression, including fibroblast growth factors, platelet-derived endothelial growth factor and vascular endothelial growth factor, among others. The purpose of this review is to describe and discuss new insights into the mechanisms and molecular cues involved in the development of the normal and pathological vascular systems of the eye. The characterization of the molecules and cell-cell interactions involved in the formation, stabilization and regression of new vessels has led to the identification of potential control points for therapeutic intervention.  相似文献   

5.
Light and transmission electron microscopy were used to characterize the ultrastructural features of the pineal glands of wild-type and two mutant zebrafish strains that have retinal defects. Particular attention was given to the pineal photoreceptors. Photoreceptors in the pineal gland appear quite similar to retinal cone photoreceptors, having many of the same structural characteristics including outer segment disk membranes often confluent with the plasma membrane, calycal processes surrounding the outer segments, and classic connecting cilia. The pineal photoreceptor terminals differ from photoreceptor terminals in the retina in that they have short synaptic ribbons and make dyad synapses which may or may not be invaginated. Pineal photoreceptors in two zebrafish mutants with abnormal retinal photoreceptors were also studied. Pineal photoreceptors in the niezerka (nie) mutant degenerate, as they do in the retina, indicating that pineal and retinal photoreceptors share at least some genes. However, the synaptic terminals of no optokinetic response c (nrc) pineal photoreceptors are normal, suggesting that this mutation is specific to the retina.  相似文献   

6.

Background

Aberrant growth of blood vessels in the eye forms the basis of many incapacitating diseases and currently the majority of patients respond to anti-angiogenic therapies based on blocking the principal angiogenic growth factor, vascular endothelial growth factor (VEGF). While highly successful, new therapeutic targets are critical for the increasing number of individuals susceptible to retina-related pathologies in our increasingly aging population. Prostate specific membrane antigen (PSMA) is a cell surface peptidase that is absent on normal tissue vasculature but is highly expressed on the neovasculature of most solid tumors, where we have previously shown to regulate angiogenic endothelial cell invasion. Because pathologic angiogenic responses are often triggered by distinct signals, we sought to determine if PSMA also contributes to the pathologic angiogenesis provoked by hypoxia of the retina, which underlies many debilitating retinopathies.

Methodology/Principal Findings

Using a mouse model of oxygen-induced retinopathy, we found that while developmental angiogenesis is normal in PSMA null mice, hypoxic challenge resulted in decreased retinal vascular pathology when compared to wild type mice as assessed by avascular area and numbers of vascular tufts/glomeruli. The vessels formed in the PSMA null mice were more organized and highly perfused, suggesting a more ‘normal’ phenotype. Importantly, the decrease in angiogenesis was not due to an impaired hypoxic response as levels of pro-angiogenic factors are comparable; indicating that PSMA regulation of angiogenesis is independent of VEGF. Furthermore, both systemic and intravitreal administration of a PSMA inhibitor in wild type mice undergoing OIR mimicked the PSMA null phenotype resulting in improved retinal vasculature.

Conclusions/Significance

Our data indicate that PSMA plays a VEGF-independent role in retinal angiogenesis and that the lack of or inhibition of PSMA may represent a novel therapeutic strategy for treatment of angiogenesis-based ocular diseases.  相似文献   

7.
Two vascular networks nourish the embryonic eye as it develops – the hyaloid vasculature, located at the anterior of the eye between the retina and lens, and the choroidal vasculature, located at the posterior of the eye, surrounding the optic cup. Little is known about hyaloid development and morphogenesis, however. To begin to identify the morphogenetic underpinnings of hyaloid formation, we utilized in vivo time-lapse confocal imaging to characterize morphogenesis of the zebrafish hyaloid through 5 days post fertilization (dpf). Our data segregate hyaloid formation into three distinct morphogenetic stages: Stage I: arrival of hyaloid cells at the lens and formation of the hyaloid loop; Stage II: formation of a branched hyaloid network; Stage III: refinement of the hyaloid network. Utilizing fixed and dissected tissues, distinct Stage II and Stage III aspects of hyaloid formation were quantified over time. Combining in vivo imaging with microangiography, we demonstrate that the hyaloid system becomes fully enclosed by 5 dpf. To begin to identify the molecular and cellular mechanisms underlying hyaloid morphogenesis, we identified a recessive mutation in the mab21l2 gene, and in a subset of mab21l2 mutants the lens does not form. Utilizing these “lens-less” mutants, we determined whether the lens was required for hyaloid morphogenesis. Our data demonstrate that the lens is not required for Stage I of hyaloid formation; however, Stages II and III of hyaloid formation are disrupted in the absence of a lens, supporting a role for the lens in hyaloid maturation and maintenance. Taken together, this study provides a foundation on which the cellular, molecular and embryologic mechanisms underlying hyaloid morphogenesis can be elucidated.  相似文献   

8.
Blood vessel formation in the vertebrate eye is a precisely regulated process. In the human retina, both an excess and a deficiency of blood vessels may lead to a loss of vision. To gain insight into the molecular basis of vessel formation in the vertebrate retina and to develop pharmacological means of manipulating this process in a living organism, we further characterized the embryonic zebrafish eye vasculature, and performed a small molecule screen for compounds that affect blood vessel morphogenesis. The screening of approximately 2000 compounds revealed four small molecules that at specific concentrations affect retinal vessel morphology but do not produce obvious changes in trunk vessels, or in the neuronal architecture of the retina. Of these, two induce a pronounced widening of vessel diameter without a substantial loss of vessel number, one compound produces a loss of retinal blood vessels accompanied by a mild increase of their diameter, and finally one other generates a severe loss of retinal vessels. This work demonstrates the utility of zebrafish as a screening tool for small molecules that affect eye vasculature and presents several compounds of potential therapeutic importance.  相似文献   

9.
Platelet-derived growth factor (PDGF) plays an important role in development of the central nervous system, including the retina. Excessive PDGF signaling is associated with proliferative retinal disorders. We reported previously that transgenic mice in which PDGF-B was over-expressed under control of the nestin enhancer, nes/tk-PdgfB-lacZ, exhibited enhanced apoptosis in the developing corpus striatum. These animals display enlarged lateral ventricles after birth as well as behavioral aberrations as adults. Here, we report that in contrast to the relatively mild central nervous system phenotype, development of the retina is severely disturbed in nes/tk-PdgfB-lacZ mice. In transgenic retinas all nuclear layers were disorganized and photoreceptor segments failed to develop properly. Since astrocyte precursor cells did not populate the retina, retinal vascular progenitors could not form a network of vessels. With time, randomly distributed vessels resembling capillaries formed, but there were no large trunk vessels and the intraocular pressure was reduced. In addition, we observed a delayed regression of the hyaloid vasculature. The prolonged presence of this structure may contribute to the other abnormalities observed in the retina, including the defective lamination.  相似文献   

10.

Background

High throughput techniques have generated a huge set of biological data, which are deposited in various databases. Efficient exploitation of these databases is often hampered by a lack of appropriate tools, which allow easy and reliable identification of genes that miss functional characterization but are correlated with specific biological conditions (e.g. organotypic expression).

Results

We have developed a simple algorithm (DGSA = Database-dependent Gene Selection and Analysis) to identify genes with unknown functions involved in organ development concentrating on the heart. Using our approach, we identified a large number of yet uncharacterized genes, which are expressed during heart development. An initial functional characterization of genes by loss-of-function analysis employing morpholino injections into zebrafish embryos disclosed severe developmental defects indicating a decisive function of selected genes for developmental processes.

Conclusion

We conclude that DGSA is a versatile tool for database mining allowing efficient selection of uncharacterized genes for functional analysis.  相似文献   

11.

Background

Pennes Bio Heat Transfer Equation (PBHTE) has been widely used to approximate the overall temperature distribution in tissue using a perfusion parameter term in the equation during hyperthermia treatment. In the similar modeling, effective thermal conductivity (Keff) model uses thermal conductivity as a parameter to predict temperatures. However the equations do not describe the thermal contribution of blood vessels. A countercurrent vascular network model which represents a more fundamental approach to modeling temperatures in tissue than do the generally used approximate equations such as the Pennes BHTE or effective thermal conductivity equations was presented in 1996. This type of model is capable of calculating the blood temperature in vessels and describing a vasculature in the tissue regions.

Methods

In this paper, a countercurrent blood vessel network (CBVN) model for calculating tissue temperatures has been developed for studying hyperthermia cancer treatment. We use a systematic approach to reveal the impact of a vasculature of blood vessels against a single vessel which most studies have presented. A vasculature illustrates branching vessels at the periphery of the tumor volume. The general trends present in this vascular model are similar to those shown for physiological systems in Green and Whitmore. The 3-D temperature distributions are obtained by solving the conduction equation in the tissue and the convective energy equation with specified Nusselt number in the vessels.

Results

This paper investigates effects of size of blood vessels in the CBVN model on total absorbed power in the treated region and blood flow rates (or perfusion rate) in the CBVN on temperature distributions during hyperthermia cancer treatment. Also, the same optimized power distribution during hyperthermia treatment is used to illustrate the differences between PBHTE and CBVN models. Keff (effective thermal conductivity model) delivers the same difference as compared to the CBVN model. The optimization used here is adjusting power based on the local temperature in the treated region in an attempt to reach the ideal therapeutic temperature of 43°C. The scheme can be used (or adapted) in a non-invasive power supply application such as high-intensity focused ultrasound (HIFU). Results show that, for low perfusion rates in CBVN model vessels, impacts on tissue temperature becomes insignificant. Uniform temperature in the treated region is obtained.

Conclusion

Therefore, any method that could decrease or prevent blood flow rates into the tumorous region is recommended as a pre-process to hyperthermia cancer treatment. Second, the size of vessels in vasculatures does not significantly affect on total power consumption during hyperthermia therapy when the total blood flow rate is constant. It is about 0.8% decreasing in total optimized absorbed power in the heated region as γ (the ratio of diameters of successive vessel generations) increases from 0.6 to 0.7, or from 0.7 to 0.8, or from 0.8 to 0.9. Last, in hyperthermia treatments, when the heated region consists of thermally significant vessels, much of absorbed power is required to heat the region and (provided that finer spatial power deposition exists) to heat vessels which could lead to higher blood temperatures than tissue temperatures when modeled them using PBHTE.  相似文献   

12.

Background

Ophthalmologists and retina specialists may consider choroidal detachment if patients with rhegmatogenous retinal detachment present with choroidal elevation. That misdiagnosis may lead to inappropriate treatments, development of tumor cell dissemination, and eventual promotion of patient death. We report a case of a patient with rhegmatogenous retinal detachment associated with choroidal melanoma simulating choroidal detachment according to fundus findings.

Case presentation

A 78-year-old Japanese woman with blurred vision in her right eye was referred to our hospital because of rhegmatogenous retinal detachment with complicated atypical choroidal detachment. Her intraocular pressure was normal with clear anterior chamber. Retinal detachment involving the inferior and nasal retina was observed, and a retinal hole was noted in the same quadrant. A small yellowish choroidal elevation was located in the inferonasal site. Gadolinium-enhanced magnetic resonance imaging revealed enhancement corresponding to the elevation, leading to the identification of a choroidal tumor. Enucleation of the patient’s right eye was eventually performed. The enucleated eye histologically demonstrated malignant melanoma.

Conclusions

If hypotony or an inflammatory sign is absent, ophthalmologists should pay attention to the differential diagnosis of choroidal elevations observed in such patients.
  相似文献   

13.
14.

Background

The low-density lipoprotein receptor-related protein 5 (LRP5) plays an important role in the development of retinal vasculature. LRP5 loss-of-function mutations cause incomplete development of retinal vessel network in humans as well as in mice. To understand the underlying mechanism for how LRP5 mutations lead to retinal vascular abnormalities, we have determined the retinal cell types that express LRP5 and investigated specific molecular and cellular functions that may be regulated by LRP5 signaling in the retina.

Methods and Findings

We characterized the development of retinal vasculature in LRP5 mutant mice using specific retinal cell makers and a GFP transgene expressed in retinal endothelial cells. Our data revealed that retinal vascular endothelial cells predominantly formed cell clusters in the inner-plexiform layer of LRP5 mutant retina rather than sprouting out or migrating into deeper layers to form normal vascular network in the retina. The IRES-β-galactosidase (LacZ) report gene under the control of the endogenous LRP5 promoter was highly expressed in Müller cells and was also weakly detected in endothelial cells of the retinal surface vasculature. Moreover, the LRP5 mutant mice had a reduction of a Müller cell-specific glutamine transporter, Slc38a5, and showed a decrease in b-wave amplitude of electroretinogram.

Conclusions

LRP5 is not only essential for vascular endothelial cells to sprout, migrate and/or anastomose in the deeper plexus during retinal vasculature development but is also important for the functions of Müller cells and retinal interneurons. Müller cells may utilize LRP5-mediated signaling pathway to regulate vascular development in deeper layers and to maintain the function of retinal interneurons.  相似文献   

15.

Background

Diabetic retinopathy and retinopathy of prematurity are diseases caused by pathological angiogenesis in the retina as a consequence of local hypoxia. The underlying mechanism for epiretinal neovascularization (tuft formation), which contributes to blindness, has yet to be identified. Neural cell adhesion molecule (N-CAM) is expressed by Müller cells and astrocytes, which are in close contact with the retinal vasculature, during normal developmental angiogenesis.

Methodology/Principal Findings

Notably, during oxygen induced retinopathy (OIR) N-CAM accumulated on astrocytes surrounding the epiretinal tufts. Here, we show that N-CAM ablation results in reduced vascular tuft formation due to reduced endothelial cell proliferation despite an elevation in VEGFA mRNA expression, whereas retinal developmental angiogenesis was unaffected.

Conclusion/Significance

We conclude that N-CAM exhibits a regulatory function in pathological angiogenesis in OIR. This is a novel finding that can be of clinical relevance in diseases associated with proliferative vasculopathy.  相似文献   

16.

Background

Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers.

Results

We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM.

Conclusion

By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.  相似文献   

17.

Purpose

We report our findings from a preclinical safety study designed to assess potential side effects of corneal ultraviolet femtosecond laser treatment on lens and retina.

Methods

Refractive lenticules (-5 dpt) with a diameter of 6 mm were created in the right cornea of eight Dutch Belted rabbits. Radiant exposure was 0.5 J/cm² in two animals and 18 J/cm² in six animals. The presence of lens opacities was assessed prior to and up to six months following laser application using Scheimpflug images (Pentacam, Oculus) and backscatter analysis (Opacity Lensmeter 702, Interzeag). Ganzfeld flash and flicker electroretinogram (ERG) recordings were obtained from both eyes prior to and up to six weeks following laser application. At the study endpoint, retinas were examined by light microscopy.

Results

Independent of energy dose applied, no cataract formation could be observed clinically or with either of the two objective methods used. No changes in ERG recordings over time and no difference between treated and untreated eye were detected. Histologically, retinal morphology was preserved and retinal pigment epithelium as well as photoreceptor inner and outer segments appeared undamaged. Quantitative digital image analysis did not reveal cell loss in inner or outer nuclear layers.

Conclusions

Our analysis confirms theoretical considerations suggesting that ultraviolet femtosecond laser treatment of the cornea is safe for intraocular tissues. Transmitted light including stray light induces no photochemical effects in lens or retina at energy levels much higher than required for the clinical purpose. These conclusions cannot be applied to eyes with pre-existing retinal damage, as these may be more vulnerable to light.  相似文献   

18.

Background

We previously observed that allergen-exposed mice exhibit remodeling of large bronchial-associated blood vessels. The aim of the study was to examine whether vascular remodeling occurs also in vessels where a spill-over effect of bronchial remodeling molecules is less likely.

Methods

We used an established mouse model of allergic airway inflammation, where an allergic airway inflammation is triggered by inhalations of OVA. Remodeling of bronchial un-associated vessels was determined histologically by staining for α-smooth muscle actin, procollagen I, Ki67 and von Willebrand-factor. Myofibroblasts were defined as and visualized by double staining for α-smooth muscle actin and procollagen I. For quantification the blood vessels were divided, based on length of basement membrane, into groups; small (≤250 μm) and mid-sized (250–500 μm).

Results

We discovered marked remodeling in solitary small and mid-sized blood vessels. Smooth muscle mass increased significantly as did the number of proliferating smooth muscle and endothelial cells. The changes were similar to those previously seen in large bronchial-associated vessels. Additionally, normally poorly muscularized blood vessels changed phenotype to a more muscularized type and the number of myofibroblasts around the small and mid-sized vessels increased following allergen challenge.

Conclusion

We demonstrate that allergic airway inflammation in mice is accompanied by remodeling of small and mid-sized pulmonary blood vessels some distance away (at least 150 μm) from the allergen-exposed bronchi. The present findings suggest the possibility that allergic airway inflammation may cause such vascular remodeling as previously associated with lung inflammatory conditions involving a risk for development of pulmonary hypertension.  相似文献   

19.
20.

Background

Inflammation contributes to cardiovascular complications in type 2 diabetes, which are often characterized by microvascular alterations. We investigated whether myeloid-related protein 8/14 complex (MRP8/14) secreted by transmigrating monocytes and granulocytes may represent a biomarker for microvascular alterations in patients with type 2 diabetes and nephropathy.

Methods

MRP8/14 was measured in 43 patients with type 2 diabetes and nephropathy. Additionally, the inflammatory markers Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP) were quantified. To detect microvascular alterations proteinuria and retinal vessel caliber were used as classical and novel marker, respectively. Proteinuria was quantified by protein-creatinine ratio (PCR); retinal vessel caliber was quantified after retina photography on digitalized retina pictures.

Results

MRP8/14 was positively associated with inflammation (r = 0.57), proteinuria (r = 0.40) and retinal arterial caliber (r = 0.48). Type 2 diabetic patients with MRP8/14 values above the median of 5.8 μg/ml demonstrated higher proteinuria and larger retinal artery caliber than patients with MRP8/14 values below the median (logPCR: -0.51 ± 0.52 versus -0.96 ± 0.46, P < 0.01; retinal artery lumen (μm): 178.3 ± 14.1 versus 162.7 ± 14.9 P < 0.01). Both groups did not differ with regard to metabolic factors and blood pressure. MRP8/14 was an independent predictor of retinal artery caliber in multivariate stepwise regression analysis (β = 0.607) and was positively associated with IL-6 (r = 0.57, P < 0.001) and TNF-α (r = 0.36, P < 0.05).

Conclusion

MRP8/14 – a marker for transendothelial migration – describes not only the state of inflammation in diabetic nephropathy, but additionally the degree of microvascular alterations in the glomerular and retinal bed. Therefore, MRP8/14 may be a potentially selective novel biomarker for microcirculatory defects in diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号